SE 3XA3:Test Plan: Revision 0

Team 03, Pongthusiastics
Adwity Sharma - sharma78
Arfa Butt - buttaa3
Jie Luo - luoj3

Contents

1 General Information
1.1 Purpose e
1.2 Scopeo

1.3 Acronyms, Abbreviations, and Symbols
1.4 Overview of Document

2 Plan
2.1 Software Description
22 Test Team o
2.3 Testing Tools
2.4 Testing Schedule 0oL

3 System Test Description
3.1 Tests for Functional Requirements
3.1.1 Mode Selection
3.1.2 Game State
3.2 Tests for Nonfunctional Requirements
321 Usability
3.2.2 Operating System Support
3.2.3 Spelling and Grammar
3.2.4 Hardware Requirement
3.2.5 Entertainmento oL
3.2.6 Challenge
327 Contols

4 Tests for Proof of Concept
4.1 Game Modes
4.2 Paddle and Ball Movement

5 Comparison to Existing Implementation

6 Unit Testing Plan
6.1 Unit Testing of Internal Functions
6.2 Unit Testing of Output Files

10
11
11
12
12
12
13
13
13

14
14
15

16

1 General Information

1.1 Purpose

The purpose of this report is to verify that the software has been tested
properly and that it was implemented correctly.

1.2 Scope

This document provides a basis for testing the functionality and the proper-
ties of the ping pong game after re-implementation it. It tests the abilities
and limits of the game. It also documents the aspects of the game that are to
be tested. Setting the testing criteria makes it possible to gauge the degree
of success or failure of the software. Also competing this document before
finalizing the project helps determine what aspects can lead to failure of the
software.

1.3 Acronyms, Abbreviations, and Symbols

Terms Definitions

SRS Software Requirements Specification

Users Players of the game

The Project The pong game that is being reconstructed.

Product The game that is being developed.

Java Java programming language.

Git The GitLab website.

Windows Microsoft windows.

Customer Anyone who would like to use this game.

3XA3 team Professor, course coordinators, teaching as-
sistant and any other personnel responsible
for running of the 3XA3 course.

Structural testing Structural testing is the testing of the internal struc-
ture of the software. Also called white box testing.

Functional testing Functional testing is the testing of the program’s func-
tion. Also called black box testing.

Dynamic testing Testing done by running the program and checking the
result against expected behaviour.

Static testing Testing done without executing a program and it is gener-
ally done in the requirements and design stage.

Manual testing Testing of a software manually by hand.

Automated testing Testing is done automatically by the software.

1.4 Overview of Document

The fault in our pong provides a improved reimplementation of the pong
game found in this link: https://github.com/mihneadb/Pong. The objec-
tives of this game has been detailed in the SRS document, found in the gitlab
repository for this project. The SRS document details all the requirements
and functionality of the project that we hope to achieve. This document
details the testing of those requirements and functionality.

2 Plan

2.1 Software Description

This software will allow users to play the classic game of Ping Pong, with
different features added to it, if they desire. The game will give the user
the option to either play a normal ping pong game, or choose one of the
new modes that have been added to this game. These modes will include a
multiplayer option as well as a ping pong game with obstacles added to the
playing field. This software will allow users to play an updated version of
ping pong while still preserving the spirit of the original game. The entire
game will be implemented in Java.

2.2 Test Team

The entire testing process, including writing and executing test cases, will
be done by the following members:

e Adwity Sharma
e Arfa Butt

e Jie Luo

2.3 Testing Tools

The Junit package, available in Java by default, is the tool that will be
used for automated testing. It will be used to validate all major classes and
function.

2.4 Testing Schedule

See Gantt Chart at the following url:
https://gitlab.cas.mcmaster.ca/Group3/FaultInOurPong/blob /master/ProjectSchedule/
GanttChart.pdf

3 System Test Description

3.1 Tests for Functional Requirements
3.1.1 Mode Selection
3.1.1.1 Open New Game

1. FS-NG-1: When user chooses new game, a new page with the options
for selecting a new game should open
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button click
Output: New game page

How test will be performed: Run the program and check if appropriate
page opens.

2. FS-NG-2: Single Player Mode chosen
Type: Functional, Dynamic, Manual
Initial State: New game page
Input: Button click
Output: New single player mode game is started

How test will be performed: Run the program and check if appropriate
game mode starts.

3. FS-NG-3: Advanced Single Player Mode chosen
Type: Functional, Dynamic, Manual
Initial State: New game page
Input: Button click
Output: New advanced single player mode game is started

How test will be performed: Run the program and check if appropriate
game mode starts.

4. FS-NG-4: Multiplayer Mode chosen
Type: Functional, Dynamic, Manual
Initial State: New game page
Input: Button click
Output: New multiplayer mode game is started
How test will be performed: Run the program and check if appropriate
game mode starts.
5. FS-NG-5: Back button to go back to the menu page
Type: Functional, Dynamic, Manual
Initial State: New game page
Input: Button click
Output: Menu page

How test will be performed: Run the program and check if appropriate
page opens.

3.1.1.2 Load Game

1. FS-LG-1: Load a saved game instead of starting a new one
Type: Functional, Dynamic, Automated
Initial State: Menu page
Input: Load previously saved game state
Output: The scores aren’t reset to zero

How test will be performed: Check that the scores do not start at zero
through automated testing. This testing approach may give us errors
if the user saved a game state with a zero score. However, this can be
overcome by implementing it so that a saved game state with a score
of zero will be treated as a new game.

2. FS-LG-2: Game loaded is same as the game state that was saved the
last time
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button click

Output: The scores, game mode, and the speed should be the exact
same as ones in the last saved game.

How test will be performed: Run the program and check if the data
from the saved game state matches the data for the game that is loaded.

3.1.1.3 Change Speed

1. FS-CS-1: Open speed change page with fast, normal, and slow options
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button click
Output: Speed change page

How test will be performed: Run the program and check if appropriate
page opens.

2. FS-CS-2: Once option is chosen, go back to menu page so user can
start a new game

Type: Functional, Dynamic, Manual
Initial State: Speed change page
Input: Button click (one of the three speeds)
Output: Menu page
How test will be performed: Choose a speed, and check if appropriate
page opens.
3. FS-CS-3: Check that single player mode has the updated speed
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button clicks

Output: Single player mode game starts with the ball having the ap-
propriate speed.

How test will be performed: Run the program, start a single player
mode game and verify the speed.

4. FS-CS-4: Check that advanced single player mode has the updated
speed
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button clicks

Output: Advanced single player mode game starts with the ball having
the appropriate speed.

How test will be performed: Run the program, start an advanced single
player mode game and verify the speed.
5. FS-CS-5: Check that multiplayer mode has the updated speed
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button clicks

Output: Multiplayer mode game starts with the ball having the appro-
priate speed.

How test will be performed: Run the program, start a multiplayer mode
game and verify the speed.

3.1.1.4 Highscores

1. FS-HS-1: Open highscores page when option is chosen from the menu
page
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button click
Output: Highscores page
How test will be performed: Run the program, and check if appropriate
page opens.
2. FS-HS-2: Add a new highscore and check if it is added at the right
place in the highscores list
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button clicks
Output: Highscores page

How test will be performed: Run the program, play a single player
mode game, and make a highscore. Go back to the menu page, open
the highscores list and check if the new highscore was added or not.
Also, make sure that the highscore was added at the correct rank.

3.1.1.5 Tutorial
1. FS-TU-1: Open tutorial page when option is chosen from the menu
page
Type: Functional, Dynamic, Manual
Initial State: Menu page
Input: Button click

Output: Tutorial page
How test will be performed: Run the program, and check if the tutorial
page opens.
2. FS-TU-2: Back button to go back to the menu page
Type: Functional, Dynamic, Manual
Initial State: Tutorial page
Input: Button click
Output: Menu page

How test will be performed: Run the program and check if appropriate
page opens.

3.1.2 Game State
1. FS-GS-1: Paddle movement

Type: Functional, Dynamic, Manual
Initial State: Game
Input: Left key pressed
Output: User’s paddle is moved left
How test will be performed: Run the program, open a game and press
left key. Check that the paddle moved left on the console.
2. FS-GS-2: Paddle movement
Type: Functional, Dynamic, Manual
Initial State: Game
Input: Right key pressed
Output: User’s paddle is moved right
How test will be performed: Run the program, open a game and press
right key. Check that the paddle moved right on the console.
3. FS-GS-3: Increment scores
Type: Functional, Dynamic, Manual

Initial State: Game

10

Input: One of the users misses a turn
Output: The other user’s score should increase by 1
How test will be performed: Run the program, open a multiplayer game
and miss one of the player’s turn. Check that the other player’s score
increased by 1.
4. FS-GS-4: Decrease lives (in single player mode)
Type: Functional, Dynamic, Manual
Initial State: One of the single player modes game
Input: Miss the ball (when thrown by the computer)
Output: User’s life should decrease by 1

How test will be performed: Run the program, open one of the single
player modes game and miss one turn. Check that the player’s lives
decreased by 1.

3.2 Tests for Nonfunctional Requirements
3.2.1 Usability

1. FN-1: This testing is done to ensure that the re-designing of the game
has made the game better than it was originally.

Type: Structural, static, manual

Initial State: Users group have already downloaded and played the
original version of the pong game. After playing the game they have
also filled in the survey that they were asked to fill in, so that we could
have something to compare our game’s ability against. The usability
and entertainment factors are the areas we are most focused on for the
game.

Input: the same group of user are given our re-designed game and asked
to fill in the same survey.

Output/ result: The user response for each major category of the survey
is tallied, for both the surveys. Based of that tally, the original game
and the redesigned version are given a rating for the usability and
entertainment factor of the game.

11

How test will be performed: The same group of the user who partici-
pated in playing the initial version of the game are made to play the
new updated version of the game. They are then given the same survey
questions to fill in, as they had filled in after the original game. The
result for both versions are tallied. If the updated version receives more
favourable responses from the user for the game, then it can be said
that this re-design of the game is successful.

3.2.2 Operating System Support

. FN-2: This test is done to confirm that the game runs in all major
operating systems such as Windows, Mac OX, Linux etc.

Type: Functional (dynamic, manual)
Tester: Development team

Pass: The game can be compiled and run in each of the platform and
change the game to make sure that it runs in each operating system.

3.2.3 Spelling and Grammar

. FN-3: Making sure that the game does not have any grammar or
spelling errors.

Type: Functional (dynamic, manual)
Tester: Development team

Pass: The development team checks to see if the game has any grammar
or spelling errors in it and all the errors are corrected.

3.2.4 Hardware Requirement

. FN-4: Making sure that the speed of game doesn’t change in different
machines.

Type: Functional (dynamic, manual)

Tester: Development team

12

Pass: The development team runs it in their respective computers at
the same time to see that the game runs at the same speed in all the
computers.

3.2.5 Entertainment

. FN-5: This testing is done to determine if the game is entertaining
enough for the user.

Type: Functional (dynamic, manual)
Tester: Testing group

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and if the
average vote says that they deem it entertaining then we pass this test.

3.2.6 Challenge

. FN-6: This testing is done to determine if the game is challenging
enough for the user.

Type: Functional (dynamic, manual)
Tester: Testing group

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and if the
average vote says that they rate it medium for challenging then we pass
this test. A medium means that the game isn’t too hard but isn’t so
easy that it gets boring.

3.2.7 Contols

. FN-7: This testing is done to determine if the game controls are intu-
itive.
Type: Functional (dynamic, manual)

Tester: Testing group

13

4

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and if the
average vote is high then we pass the test.

Tests for Proof of Concept

Proof of concept focuses on the automated testing of the software and verify-
ing that the results are the same. This testing process is more accurate than
manual testing because human bias or human errors do not affect the results
of this type of testing. Automated testing would require the ability to check
if the various modes of the games are rigorously implemented and that the
direction and paddles used for the game changes directions accordingly.

4.1 Game Modes

1. PC-1: Checking to see that the games starts with scores set at 0

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: make a new game state

Output: the score at the beginning of the game

How test will be performed: A new game state is created and the score
at the beginning of the game is returned and the results are evaluated
to see that it matches the expected result. If the results match, then
the test unit returns true.

. PC-2: Checking to see that the load game mode starts correctly

Type: Functional, Dynamic, Automated
Initial State: Load game page
Input: make a load game state

Output: the score at beginning of the loaded game and end of the old
game

How test will be performed: A load game state is created and the score
at the beginning of the game is returned and result is compared with
the score returned at the end of the save game. If the results match,
then the test unit returns true.

14

3.

4.2

PC-3: Checking to see that the high score function is implemented
correctly

Type: Functional, Dynamic, Automated
Initial State: New game page

Input: make a new game state

Output: the score at the end of the game

How test will be performed: A new game state is created and the score
at the end of the game is returned and the over all high scores stored
is checked to see if the new high score is added to the list or not. It
returns true if the new high score is added only if player beat the old
saved records.

Paddle and Ball Movement

. PC-4: Checking to see that the direction of the ball changes

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: initial speed and potion of the ball

Output: the x and y coordinates and speed of the ball

How test will be performed: A new game state is created and the
position of the ball at the beginning of the game is returned and then
position and speed of the ball at various stages are returned. If the ball
changes direction, then the coordinates should go to negative. If this
is happening, then the test function returns true. Otherwise, it returns
false.

. PC-5: Checking to see if the paddle changes direction correctly

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: the initial position of the paddle

Output: the coordinates of the paddle at various stages of the game.

How test will be performed: A new game state is created and the initial
position of the paddle is returned in the test unit. When the paddle

15

changes direction, the new coordinates of the paddle is returned. If the
coordinates change, then the test function would return true.

5 Comparison to Existing Implementation

There is one test that compares the modified game to the original game.
Please refer to:

e test FN-1 in Tests for Usability in Nonfunctional Requirements

6 Unit Testing Plan

JUNIT testing from the java built in function will be used to test this pro-
gramme.

6.1 Unit Testing of Internal Functions

For the testing of the internal functions of this project, function that return a
value can be tested automatically. We will take each function and give it an
input and see if the input matches the expected output in the testing unit.
We will try to include all the boundary cases as input for our unit testing, so
that we know all the limitations of the function. For the game to be certified
through unit testing of internal functions, the game should return the same
result as expected for at least 95% of the functions that are tested. Also we
can perform a white box testing of the functions to see that the code has
been well formatted and that the naming convention is followed properly. In
addition, we well try to make sure that the mvc model has been implemented
correctly while we are conduction the white box testing.

6.2 Unit Testing of Output Files

To accurately test the output files of the project, the output of the game for
each of the function will be compared against the expected output for the
files. Automated testing can be implemented for some of the files. Automated
testing ensures that the output is accurate to the desired outputs. Playing the
game and checking each component of the game. And making sure that the
functionality of the game is same is important. We use an action, expected

16

and result table to conduct this testing. Each feature or possible scenario in
the game is listed in the action column. The expected result for each action
is listed in the expected column. The actual output for the action is listed
in the result column. If the expected and result match, then we can say that
the result is pass. To ensure accuracy of the game’s functionality, we should
get pass result in at least 95% of the test results.

17

