
SE 3XA3:Test Plan: Revision 0

Team 03, Pongthusiastics
Adwity Sharma - sharma78

Arfa Butt - buttaa3
Jie Luo - luoj3

October 31, 2016

1

Contents

1 General Information 4
1.1 Purpose . 4
1.2 Scope . 4
1.3 Acronyms, Abbreviations, and Symbols 4
1.4 Overview of Document . 5

2 Plan 5
2.1 Software Description . 5
2.2 Test Team . 6
2.3 Testing Tools . 6
2.4 Testing Schedule . 6

3 System Test Description 6
3.1 Tests for Functional Requirements 6

3.1.1 Mode Selection . 6
3.1.2 Game State . 11

3.2 Tests for Nonfunctional Requirements 13
3.2.1 Usability . 13
3.2.2 Operating System Support 13
3.2.3 Spelling and Grammar 14
3.2.4 Hardware Requirement 14
3.2.5 Entertainment . 14
3.2.6 Challenge . 15
3.2.7 Contols . 15

4 Tests for Proof of Concept 15
4.1 Game Modes . 16
4.2 Paddle and Ball Movement . 17

5 Comparison to Existing Implementation 17

6 Unit Testing Plan 18
6.1 Unit Testing of Internal Functions 18
6.2 Unit Testing of Output Files 18

2

7 Appendix 19
7.1 Symbolic Parameters . 19
7.2 Usability Survey Questions . 19

List of Tables

1 Revision History . 3
2 Acronyms and Abbreviations 4

List of Figures

Table 1: Revision History

Date Version Notes

October 31, 2016 1.0 Created test plan

3

1 General Information

1.1 Purpose

The purpose of this report is to verify that the software has been tested
properly and that it was implemented correctly.

1.2 Scope

This document provides a basis for testing the functionality and the proper-
ties of the ping pong game after re-implementation it. It tests the abilities
and limits of the game. It also documents the aspects of the game that are to
be tested. Setting the testing criteria makes it possible to gauge the degree
of success or failure of the software. Also competing this document before
finalizing the project helps determine what aspects can lead to failure of the
software.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Acronyms and Abbreviations
Terms Definitions
SRS Software Requirements Specifica-

tion
Users Players of the game
The Project The pong game that is being recon-

structed.
Product The game that is being developed.
Java Java programming language.
Git The GitLab website.
Windows Microsoft windows.
Customer Anyone who would like to use this

game.
3XA3 team Professor, course coordinators,

teaching assistant and any other
personnel responsible for running
of the 3XA3 course.

4

Structural testing Structural testing is the testing of the internal struc-
ture of the software. Also called white box testing.

Functional testing Functional testing is the testing of the program’s func-
tion. Also called black box testing.

Dynamic testing Testing done by running the program and checking the
result against expected behaviour.

Static testing Testing done without executing a program and it is gener-
ally done in the requirements and design stage.

Manual testing Testing of a software manually by hand.

Automated testing Testing is done automatically by the software.

1.4 Overview of Document

The fault in our pong provides a improved reimplementation of the pong
game found in this link: https://github.com/mihneadb/Pong. The objec-
tives of this game has been detailed in the SRS document, found in the gitlab
repository for this project. The SRS document details all the requirements
and functionality of the project that we hope to achieve. This document
details the testing of those requirements and functionality.

2 Plan

2.1 Software Description

This software will allow users to play the classic game of Ping Pong, with
different features added to it, if they desire. The game will give the user
the option to either play a normal ping pong game, or choose one of the
new modes that have been added to this game. These modes will include a
multiplayer option as well as a ping pong game with obstacles added to the
playing field. This software will allow users to play an updated version of
ping pong while still preserving the spirit of the original game. The entire
game will be implemented in Java.

5

2.2 Test Team

The entire testing process, including writing and executing test cases, will
be done by the following members:

• Adwity Sharma

• Arfa Butt

• Jie Luo

2.3 Testing Tools

The Junit package, available in Java by default, is the tool that will be
used for automated testing. It will be used to validate all major classes and
function.

2.4 Testing Schedule

See Gantt Chart at the following url:
https://gitlab.cas.mcmaster.ca/Group3/FaultInOurPong/blob/master/ProjectSchedule/ GanttChart.pdf

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Mode Selection

3.1.1.1 Open New Game

• FS-NG-1: When user chooses new game, a new page with the
options for selecting a new game should open

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button click

Output: New game page

How test will be performed: Run the program and check if appro-

6

priate page opens.

• FS-NG-2: Single Player Mode chosen

Type: Functional, Dynamic, Manual

Initial State: New game page

Input: Button click

Output: New single player mode game is started

How test will be performed: Run the program and check if appro-
priate game mode starts.

• FS-NG-3: Advanced Single Player Mode chosen

Type: Functional, Dynamic, Manual

Initial State: New game page

Input: Button click

Output: New advanced single player mode game is started

How test will be performed: Run the program and check if appro-
priate game mode starts.

• FS-NG-4: Multiplayer Mode chosen

Type: Functional, Dynamic, Manual

Initial State: New game page

Input: Button click

Output: New multiplayer mode game is started

How test will be performed: Run the program and check if appro-
priate game mode starts.

• FS-NG-5: Back button to go back to the menu page

Type: Functional, Dynamic, Manual

Initial State: New game page

7

Input: Button click

Output: Menu page

How test will be performed: Run the program and check if appro-
priate page opens.

3.1.1.2 Load Game

• FS-LG-1: Load a saved game instead of starting a new one

Type: Functional, Dynamic, Automated

Initial State: Menu page

Input: Load previously saved game state

Output: The scores aren’t reset to zero

How test will be performed: Check that the scores do not start at
zero through automated testing. This testing approach may give
us errors if the user saved a game state with a zero score. However,
this can be overcome by implementing it so that a saved game state
with a score of zero will be treated as a new game.

• FS-LG-2: Game loaded is same as the game state that was saved
the last time

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button click

Output: The scores, game mode, and the speed should be the exact
same as ones in the last saved game.

How test will be performed: Run the program and check if the data
from the saved game state matches the data for the game that is
loaded.

3.1.1.3 Change Speed

8

• FS-CS-1: Open speed change page with fast, normal, and slow
options

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button click

Output: Speed change page

How test will be performed: Run the program and check if appro-
priate page opens.

• FS-CS-2: Once option is chosen, go back to menu page so user can
start a new game

Type: Functional, Dynamic, Manual

Initial State: Speed change page

Input: Button click (one of the three speeds)

Output: Menu page

How test will be performed: Choose a speed, and check if appro-
priate page opens.

• FS-CS-3: Check that single player mode has the updated speed

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button clicks

Output: Single player mode game starts with the ball having the
appropriate speed.

How test will be performed: Run the program, start a single player
mode game and verify the speed.

• FS-CS-4: Check that advanced single player mode has the updated
speed

Type: Functional, Dynamic, Manual

9

Initial State: Menu page

Input: Button clicks

Output: Advanced single player mode game starts with the ball
having the appropriate speed.

How test will be performed: Run the program, start an advanced
single player mode game and verify the speed.

• FS-CS-5: Check that multiplayer mode has the updated speed

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button clicks

Output: Multiplayer mode game starts with the ball having the
appropriate speed.

How test will be performed: Run the program, start a multiplayer
mode game and verify the speed.

3.1.1.4 Highscores

• FS-HS-1: Open highscores page when option is chosen from the
menu page

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button click

Output: Highscores page

How test will be performed: Run the program, and check if appro-
priate page opens.

• FS-HS-2: Add a new highscore and check if it is added at the right
place in the highscores list

Type: Functional, Dynamic, Manual

Initial State: Menu page

10

Input: Button clicks

Output: Highscores page

How test will be performed: Run the program, play a single player
mode game, and make a highscore. Go back to the menu page,
open the highscores list and check if the new highscore was added
or not. Also, make sure that the highscore was added at the correct
rank.

3.1.1.5 Tutorial

• FS-TU-1: Open tutorial page when option is chosen from the menu
page

Type: Functional, Dynamic, Manual

Initial State: Menu page

Input: Button click

Output: Tutorial page

How test will be performed: Run the program, and check if the
tutorial page opens.

• FS-TU-2: Back button to go back to the menu page

Type: Functional, Dynamic, Manual

Initial State: Tutorial page

Input: Button click

Output: Menu page

How test will be performed: Run the program and check if appro-
priate page opens.

3.1.2 Game State

• FS-GS-1: Paddle movement

Type: Functional, Dynamic, Manual

Initial State: Game

11

Input: Left key pressed

Output: User’s paddle is moved left

How test will be performed: Run the program, open a game and
press left key. Check that the paddle moved left on the console.

• FS-GS-2: Paddle movement

Type: Functional, Dynamic, Manual

Initial State: Game

Input: Right key pressed

Output: User’s paddle is moved right

How test will be performed: Run the program, open a game and
press right key. Check that the paddle moved right on the console.

• FS-GS-3: Increment scores

Type: Functional, Dynamic, Manual

Initial State: Game

Input: One of the users misses a turn

Output: The other user’s score should increase by 1

How test will be performed: Run the program, open a multiplayer
game and miss one of the player’s turn. Check that the other
player’s score increased by 1.

• FS-GS-4: Decrease lives (in single player mode)

Type: Functional, Dynamic, Manual

Initial State: One of the single player modes game

Input: Miss the ball (when thrown by the computer)

Output: User’s life should decrease by 1

How test will be performed: Run the program, open one of the sin-

12

gle player modes game and miss one turn. Check that the player’s
lives decreased by 1.

3.2 Tests for Nonfunctional Requirements

3.2.1 Usability

• FN-1: This testing is done to ensure that the re-designing of the
game has made the game better than it was originally.

Type: Structural, static, manual

Initial State: Users group have already downloaded and played the
original version of the pong game. After playing the game they
have also filled in the survey that they were asked to fill in, so that
we could have something to compare our game’s ability against.
The usability and entertainment factors are the areas we are most
focused on for the game.

Input: the same group of user are given our re-designed game and
asked to fill in the same survey.

Output/ result: The user response for each major category of the
survey is tallied, for both the surveys. Based of that tally, the
original game and the redesigned version are given a rating for the
usability and entertainment factor of the game.

How test will be performed: The same group of the user who par-
ticipated in playing the initial version of the game are made to
play the new updated version of the game. They are then given
the same survey questions to fill in, as they had filled in after the
original game. The result for both versions are tallied. If the up-
dated version receives more favourable responses from the user for
the game, then it can be said that this re-design of the game is
successful.

3.2.2 Operating System Support

• FN-2: This test is done to confirm that the game runs in all major
operating systems such as Windows, Mac OX, Linux etc.

13

Type: Functional (dynamic, manual)

Tester: Development team

Pass: The game can be compiled and run in each of the platform
and change the game to make sure that it runs in each operating
system.

3.2.3 Spelling and Grammar

• FN-3: Making sure that the game does not have any grammar or
spelling errors.

Type: Functional (dynamic, manual)

Tester: Development team

Pass: The development team checks to see if the game has any
grammar or spelling errors in it and all the errors are corrected.

3.2.4 Hardware Requirement

• FN-4: Making sure that the speed of game doesn’t change in dif-
ferent machines.

Type: Functional (dynamic, manual)

Tester: Development team

Pass: The development team runs it in their respective computers
at the same time to see that the game runs at the same speed in
all the computers.

3.2.5 Entertainment

• FN-5: This testing is done to determine if the game is entertaining
enough for the user.

Type: Functional (dynamic, manual)

Tester: Testing group

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and if

14

the average vote says that they deem it entertaining then we pass
this test.

3.2.6 Challenge

• FN-6: This testing is done to determine if the game is challenging
enough for the user.

Type: Functional (dynamic, manual)

Tester: Testing group

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and
if the average vote says that they rate it medium for challenging
then we pass this test. A medium means that the game isn’t too
hard but isn’t so easy that it gets boring.

3.2.7 Contols

• FN-7: This testing is done to determine if the game controls are
intuitive.

Type: Functional (dynamic, manual)

Tester: Testing group

Pass: First the testing group is made to play the game and complete
the survey relating to it. Then the survey response is tallied and if
the average vote is high then we pass the test.

4 Tests for Proof of Concept

Proof of concept focuses on the automated testing of the software and verify-
ing that the results are the same. This testing process is more accurate than
manual testing because human bias or human errors do not affect the results
of this type of testing. Automated testing would require the ability to check
if the various modes of the games are rigorously implemented and that the
direction and paddles used for the game changes directions accordingly.

15

4.1 Game Modes

• PC-1: Checking to see that the games starts with scores set at 0

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: make a new game state

Output: the score at the beginning of the game

How test will be performed: A new game state is created and the
score at the beginning of the game is returned and the results are
evaluated to see that it matches the expected result. If the results
match, then the test unit returns true.

• PC-2: Checking to see that the load game mode starts correctly

Type: Functional, Dynamic, Automated

Initial State: Load game page

Input: make a load game state

Output: the score at beginning of the loaded game and end of the
old game

How test will be performed: A load game state is created and
the score at the beginning of the game is returned and result is
compared with the score returned at the end of the save game. If
the results match, then the test unit returns true.

• PC-3: Checking to see that the high score function is implemented
correctly

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: make a new game state

Output: the score at the end of the game

How test will be performed: A new game state is created and the
score at the end of the game is returned and the over all high scores

16

stored is checked to see if the new high score is added to the list
or not. It returns true if the new high score is added only if player
beat the old saved records.

4.2 Paddle and Ball Movement

• PC-4: Checking to see that the direction of the ball changes

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: initial speed and potion of the ball

Output: the x and y coordinates and speed of the ball

How test will be performed: A new game state is created and the
position of the ball at the beginning of the game is returned and
then position and speed of the ball at various stages are returned.
If the ball changes direction, then the coordinates should go to
negative. If this is happening, then the test function returns true.
Otherwise, it returns false.

• PC-5: Checking to see if the paddle changes direction correctly

Type: Functional, Dynamic, Automated

Initial State: New game page

Input: the initial position of the paddle

Output: the coordinates of the paddle at various stages of the
game.

How test will be performed: A new game state is created and the
initial position of the paddle is returned in the test unit. When
the paddle changes direction, the new coordinates of the paddle is
returned. If the coordinates change, then the test function would
return true.

5 Comparison to Existing Implementation

There is one test that compares the modified game to the original game.
Please refer to:

17

• test FN-1 in Tests for Usability in Nonfunctional Requirements

6 Unit Testing Plan

JUNIT testing from the java built in function will be used to test this pro-
gramme.

6.1 Unit Testing of Internal Functions

For the testing of the internal functions of this project, function that return a
value can be tested automatically. We will take each function and give it an
input and see if the input matches the expected output in the testing unit.
We will try to include all the boundary cases as input for our unit testing, so
that we know all the limitations of the function. For the game to be certified
through unit testing of internal functions, the game should return the same
result as expected for at least 95% of the functions that are tested. Also we
can perform a white box testing of the functions to see that the code has
been well formatted and that the naming convention is followed properly. In
addition, we well try to make sure that the mvc model has been implemented
correctly while we are conduction the white box testing.

6.2 Unit Testing of Output Files

To accurately test the output files of the project, the output of the game for
each of the function will be compared against the expected output for the
files. Automated testing can be implemented for some of the files. Automated
testing ensures that the output is accurate to the desired outputs. Playing the
game and checking each component of the game. And making sure that the
functionality of the game is same is important. We use an action, expected
and result table to conduct this testing. Each feature or possible scenario in
the game is listed in the action column. The expected result for each action
is listed in the expected column. The actual output for the action is listed
in the result column. If the expected and result match, then we can say that
the result is pass. To ensure accuracy of the game’s functionality, we should
get pass result in at least 95% of the test results.

18

7 Appendix

7.1 Symbolic Parameters

Currently not applicable.

7.2 Usability Survey Questions

Please refer to the survey documents located in the same directory.

19

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Mode Selection
	Game State

	Tests for Nonfunctional Requirements
	Usability
	Operating System Support
	Spelling and Grammar
	Hardware Requirement
	Entertainment
	Challenge
	Contols

	Tests for Proof of Concept
	Game Modes
	Paddle and Ball Movement

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit Testing of Internal Functions
	Unit Testing of Output Files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

