SE 3XA3 Module Guide: Revision 0

Team 03, Pongthusiastics
Adwity Sharma - sharma78
Arfa Butt - buttaa3
Jie Luo - luoj3

November 14, 2016

Contents

(1 _Introduction|

2

Anticipated and Unlikely Changes|

2.1 Anticipated Changes|
(2.2 Unlikely Changes|

Module Hierarchy|

Connection Between Requirements and Design|

Module Decomposition|

b.1 Hardware Hiding Modules (M1)[.
[>.2 Behavior-Hiding Module,
[5.2.1 Input Control Module M2
[5.2.2 Output Control Module M3|
.3 Software Decision Modulel

Traceability Matrix|

(7

Use Hierarchy Between Modules|

List of Tables

(1 Revision History|
[2 Module Hierarchy|
(3 Trace Between Requirements and Modules|
{4 Trace Between Anticipated Changes and Modules|

List of Figures

Table 1: Revision History

Date

Version

Notes

November 9, 2016
November 11, 2016

November 13, 2016

November 13, 2016
November 14, 2016

1.0
2.0

3.0

4.0
5.0

Created Module Guide

Divided sections between group mem-
bers

Created format for Module Guide and
added sections 2 and 4

Sections 1, 3 and 6 added

Final version with all sections added

1 Introduction

This document indicates the Module Guides for the implementation of the
“Fault in Our Pong” project. This document is intended to facilitate the
design and maintenance of the project. Design follows the following rules:

1. MVC model: MVC model has been implemented in rigorously in the
project. The design has been separated in model, view and control
classes. The model class is responsible for managing the data, logic
and rules of application of the project. View is responsible for the
output representation of the information. Control is responsible for the
implementations of commands from users and manipulates the model.

2. Each data structure is implemented in only one model.

3. If any other program requires the data structure implemented in a
module, it calls on that particular module to access the data.

4. The implementations that are likely to change are stored in separate
modules.

The major purpose of this document is to provide a detailed information
for the concerned parties about how and why a certain implementation has
been carried out. The potential readers of the document are as follows: New
project members: If new project members are added to the project then this
document, along with the document about the MIS implementation, would
help the new members understand how and why the functionalities have been
implemented. It will also help them understand the features that must be
preserved.

Designers: This document provides the designers with a means of com-
munication about the module specifications. It also helps determine if the
requirements have been met. It can also show the flexibility and feasibility
of various modules. Maintainers: It is important for the people responsible
for maintaining the modules to understand the hierarchical structure of the
modules. This document helps people responsible for updating this project
to understand the way the implementation has been done for the project.
The rest of the document is arranged as follows. The second section (2.1 and
2.2) of this document provides details about anticipated and unlikely changes
of the document. The third section contains the breakdown of the module

hierarchy, per the likely changes. The forth section shows the connections be-
tween the software requirements and the modules. The fifth section shows a
detailed breakdown of the module description. The sixth section includes the
tractability matrix. The seventh section describes the use hierarchy between
various modules.

2 Anticipated and Unlikely Changes

2.1 Anticipated Changes

AC1: The specific hardware on which the game is running.

AC2: The format of the input data. (left and right keys can be changed to
different keys inside the GameController class without it affecting the rest of
the project)

AC3: The constraints on the input parameters.

AC4: Game features. (Number of people added on the highscores list,
number of lives given to the user)

AC5: Additional features. (Advanced single player mode with obstacles
added, different speeds of the ball)

AC6: Magnitude of game controls and media (size of the buttons, ball etc.).

2.2 Unlikely Changes

UC1: Input and output devices. (Input: mouse clicks and keyboard presses,
Output: screen/console)

UC2: There will always be a source of input data external to the software.

UC3: Game mechanics. (Formulas to calculate when ball should change
direction)

UC4: Execution environment. (Must be java-based)

3 Module Hierarchy

This section provides an overview of the module design. Modules are sum-
marized in a hierarchy decomposed by secrets in Table 2. The modules listed
below, which are leaves in the hierarchy tree, are the modules that will ac-
tually be implemented.

M1

M2

M3

M4

M5

Hardware hiding modules
Input control module
Output control module
Game frame control module

Player details controlling module

M1 is not a required module in our project, because the implementation
is software based.

Level 1 Level 2

Hardware-Hiding
Module

Behaviour-Hiding
Module

Paddle control module

Ball control module

Start and end of game control module
Input control module

Output control module

High score controlling module

Software Decision
Moaodule

Game frame controlling module
Player details controlling module

Table 2: Module Hierarchy

4 Connection Between Requirements and De-
sign
The design of the system is intended to satisfy the requirements developed

in the SRS. In this stage, the system is decomposed into modules. The
connection between requirements and modules is listed in Table 3.

5 Module Decomposition

5.1 Hardware Hiding Modules (M1)
Secrets: The data structure and algorithm used to implement the virtual

hardware.

Services: Serves as a virtual hardware used by the rest of the system.
This module provides the interface between the hardware and the software.
So, the system can use it to display outputs or to accept inputs.

Implemented By: Windows

5.2 Behavior-Hiding Module

Secrets: The contents of the required behaviours.

Services: Includes programs that provide externally visible behaviour of
the system as specified in the software requirements specification (SRS) doc-
uments. This module serves as a communication layer between the hardware-

hiding module and the software decision module. The programs in this mod-
ule will need to change if there are changes in the SRS.

Implemented By: -

5.2.1 Input Control Module M2

Secrets: The structure and forms of the input data.

Services: Converts the input data provided by the user into a command
for the movement and other optional services within the game.

Implemented By: The classes within the model folder that takes in
account of the various stages and input control factors of the game, such as
various speed levels.

5.2.2 Output Control Module M3

Secrets: The structure and forms of the output data.

Services: Based on the input data provided by the user it controls the
movement and other services, based on users’ choice for the game. This

module is used to hide the implementation of the various outputs that the
users get during the game.

Implemented By: The classes within the view folder that takes in ac-
count of the various output of the game, such as the movement of the paddle
in the game frame based on the keyboard keys movement by the user.

5.3 Software Decision Module
5.3.1 Game Frame Control Module M4

Secrets: The structure and format of the game frame control.

Services: This module controls the outer frame of the ping pong game,
such as the frame size, the switching between one frame to another etc.

Implemented By: The game view class within the view folder.

5.3.2 Player Details Controlling Module M5
Secrets: The structure and format of the player object implementation.
Services: This module controls the information and details about each

user and provides the user with the services and details associated with the
player class while they are playing the game.

Implemented By: The player class within the model folder.

6 Traceability Matrix

Requirements Modules

R1 M2, M4, M5
R2 M1, M2, M3, M4, M5
R3 M1, M2, M4, M5

R4 M1, M3, M5, M6

R5 M2, M3, M5

R6 M2, M3, M4, M5, M6
R7 M2, M3, M4, M5, M6
R9 M1, M3, M4, M5
R10 M1, M4, M6

R11 M1, M3, M4, M6
R12 M1, M2, M3, M5
R13 M1, M3, M4, M6
R14 M1, M3, M4, M6
R15 M1, M4, M5

R16 M1, M4, M5

R17 M1, M2, M3, M4, M5
R18 M1, M3, M4, M6
R20 M1, M4, M5

R21 M1, M2, M4, M5, M6
R22 M3, M4, M5

Table 3: Trace Between Requirements and Modules

AC Modules
AC1 M1

AC2 M2, M4
AC3 M4, M6
AC4 M4, M6
ACH M2, M3, M4
AC6 M3, M4, M5

Table 4: Trace Between Anticipated Changes and Modules

10

7 Use Hierarchy Between Modules

GameModel.java class uses ball.java, paddle.java and player.java.

GameView.java uses welcome.java, mode.java, pongGameDisplay.java and
tutorial.java.

Tutorial.java uses Imagelcon.img.

GameController.java uses GameView.java, GameModel.java, Welcome.java,
mode.java, highScore.java and Tutorial.java.

StartGame.java uses GameView.java, GameModel.java and GameController.java.

11

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M1)
	Behavior-Hiding Module
	Input Control Module M2
	Output Control Module M3

	Software Decision Module
	Game Frame Control Module M4
	Player Details Controlling Module M5

	Traceability Matrix
	Use Hierarchy Between Modules

