SE 3XA3: Test Plan
Rogue Reborn

Team #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Due Monday, October 31", 2016

Contents

1 General Information
1.1 Purpose e
1.2 Scope
1.3 Acronyms, Abbreviations, and Symbols
1.4 Overview of Document

2 Plan
2.1 Software Description
22 Test Team oo
2.3 Automated Testing Approach
2.4 Testing Tools
2.5 Testing Schedule L.

3 System Test Description
3.1 Tests for Functional Requirements
3.1.1 Areaof Testingl
3.1.2 Areaof Testing2
3.2 Tests for Nonfunctional Requirements
3.2.1 Areaof Testingl
3.2.2 Areaof Testing2

4 Tests for Proof of Concept
4.1 Areaof Testingl,
4.2 Areaof Testing2,

5 Comparison to Existing Implementation

6 Unit Testing Plan
6.1 Unit testing of internal functions
6.2 Unit testing of output files

7 Appendix
7.1 Symbolic Parameters
7.2 Usability Survey Questions?

List of Tables

PRI

Revision History
Table of Abbreviations
Table of Definitions
Symbolic Parameter Table

List of Figures

Table 1: Revision History

Date Version Notes
10/21/16 0.1 Initial Setup
10/24/16 0.2 Add Unit Testing and Usability Survey

i

This document ...

1 General Information

1.1 Purpose
1.2 Scope
1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

Abbreviationl Definitionl
Abbreviation2 Definition2

Table 3: Table of Definitions

Term Definition
Term1 Definitionl
Term?2 Definition2

1.4 Overview of Document
2 Plan

2.1 Software Description

2.2 Test Team

2.3 Automated Testing Approach
2.4 Testing Tools

2.5 Testing Schedule
See Gantt Chart at the following url ...

3 System Test Description

3.1 Tests for Functional Requirements
3.1.1 Area of Testingl
Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:
Input:

Output:

How test will be performed:

3.1.2 Area of Testing2

3.2 Tests for Nonfunctional Requirements

3.2.1 Area of Testingl

Title for Test

1.

2.

test-id1

Type:

Initial State:
Input/Condition:
Output/Result:

How test will be performed:

test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

3.2.2 Area of Testing2

4

4.1

Tests for Proof of Concept

Area of Testingl

Title for Test

1.

4.2

5]
6

test-id1

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

. test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

Area of Testing?2

Comparison to Existing Implementation

Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have decided
we will not use a unit testing framework for testing the product. We con-
cluded that adding a framework would not make the work significantly easier,
while reducing our flexibility and adding installation difficulties.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved for
more complex functions so as to not waste development time unnecessarily.
The following are examples of internal functions that are good candidates for
unit testing:

e The dungeon generation functions. The work of generating the dungeon
is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectness, compliance
with formulas for item generation, presence or absence of certain key
features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

e The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

e Some of the item activation functions. For example it could be verified
that when the player drank a potion of healing their health increased (if
it was not at its maximum), when a scroll of magic-mapping is read the
level was revealed, or that a scroll of identification reveals the nature
of an item.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which stores
the scores in a csv format. The production and reading of this file can be
unit-tested by verifying its contents after writing to it, and by providing a
testing version of the file with known contents and verifying the function
reads them correctly.

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 4: Symbolic Parameter Table

Parameter Value
FINAL_LEVEL 26
WIDTH_RESOLUTION 1280
HEIGHT_RESOLUTION 400
VIEW_DISTANCE 2
START_LEVEL 1

MINIMUM_ENTERTAINMENT _TIME 20

MINIMUM_RESPONSE_SPEED 30
HIGH_SCORE_CAPACITY 15
LUMINOSITY _DELTA 0.5

7.2 Usability Survey Questions?

e [s there any game feature you were unable to figure out how to utilize?

How helpful was the help screen for you?

Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

e What common Ul interactions did you find particularly lengthy?

What aspects of the interface did you find unintuitive?

6

How responsive was the interface?
How easy was it to see everything that was going on?
How effective are the graphics/symbols?

Would an alternative input device such as a mouse make interacting
with the interface easier for you?

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

