
SE 3XA3: Requirements Specification
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Due Tuesday, October 11th, 2016

Contents

1 Project Drivers 1
1.1 The Purpose of the Project 1
1.2 The Stakeholders . 1

1.2.1 The Client . 1
1.2.2 The Customers . 2
1.2.3 Other Stakeholders . 2

1.3 Mandated Constraints . 2
1.4 Naming Conventions and Terminology 2
1.5 Relevant Facts and Assumptions 4

2 Functional Requirements 5
2.1 The Scope of the Work and the Product 5

2.1.1 The Context of the Work 5
2.1.2 Work Partitioning . 5
2.1.3 Individual Product Use Cases 6

2.2 Functional Requirements . 7
2.2.1 Basic mechanics . 7
2.2.2 Interaction . 7
2.2.3 The Dungeon . 8
2.2.4 Equipment . 8
2.2.5 Combat . 9

3 Non-functional Requirements 10
3.1 Look and Feel Requirements 10

3.1.1 Appearance Requirements 10
3.1.2 Style Requirements . 10

3.2 Usability and Humanity Requirements 10
3.2.1 Ease of Use Requirements 10
3.2.2 Personalization and Internationalization Requirements 11
3.2.3 Learning Requirements 11
3.2.4 Understandability and Politeness Requirements 11
3.2.5 Accessibility Requirements 11

3.3 Performance Requirements . 12
3.3.1 Speed and Latency Requirements 12
3.3.2 Safety-Critical Requirements 12
3.3.3 Precision or Accuracy Requirements 12

i

3.3.4 Reliability and Availability Requirements 13
3.3.5 Robustness or Fault-Tolerance Requirements 13
3.3.6 Capacity Requirements 13
3.3.7 Scalability or Extensibility Requirements 13
3.3.8 Longevity Requirements 14

3.4 Operational and Environmental Requirements 14
3.4.1 Expected Physical Environment 14
3.4.2 Requirements for Interfacing with Adjacent Systems . . 14
3.4.3 Productization Requirements 15
3.4.4 Release Requirements 15

3.5 Maintainability and Support Requirements 15
3.5.1 Maintenance Requirements 15
3.5.2 Supportability Requirements 16
3.5.3 Adaptability Requirements 16

3.6 Security Requirements . 16
3.6.1 Access Requirements 16
3.6.2 Integrity Requirements 16
3.6.3 Privacy Requirements 17
3.6.4 Audit Requirements 17
3.6.5 Immunity Requirements 17

3.7 Cultural Requirements . 17
3.8 Legal Requirements . 17

3.8.1 Compliance Requirements 17
3.8.2 Standards Requirements 17

3.9 Health and Safety Requirements 18

4 Project Issues 19
4.1 Open Issues . 19
4.2 Off-the-Shelf Solutions . 19
4.3 New Problems . 19
4.4 Tasks . 19
4.5 Migration to the New Product 20
4.6 Risks . 20
4.7 Costs . 21
4.8 User Documentation and Training 21
4.9 Waiting Room . 21
4.10 Ideas for Solutions . 22

ii

5 Appendix 25
5.1 Symbolic Parameters . 25

List of Tables

1 Revision History . iii
2 Symbolic Parameter Table 25

List of Figures

Table 1: Revision History

Date Version Notes

09/28/16 0.1 Initial Setup
10/02/16 0.1.5 Continued Setup
10/07/16 0.2 Added Project Drivers
10/07/16 0.3 Added Functional Requirements and

Risks
10/09/16 0.4 Added Non-Functional Requirements
10/10/16 0.5 Added 4.1-4.5
10/11/16 0.6 Added 4.9,4.10, and 2.1.*
10/11/16 0.7 Proofread and Editing
10/11/16 0.8 Additional Editing

iii

This document describes the requirements for the Rogue Reborn project.
The template for the Software Requirements Specification (SRS) is a subset of
the Volere template (Robertson and Robertson, 2012). For the convenience
of the readers, the sections pertaining to the non-functional requirements
have been expanded into their respective subsections in accordance with the
Volere template.

1 Project Drivers

1.1 The Purpose of the Project

The goal of the Rogue Reborn project is to produce a reimplementation
of the original Rogue computer game, originally developed by Michael Toy,
Glenn Wichman, and Ken Arnold in 1980 (Petri Kuittinen, 2001). This
project was undertaken as a consequence of Rogue’s historical significance,
as it is the namesake of the roguelike game genre. The motivation behind the
remake is characterized by the poor condition of the original source code: it
was not written with readability in mind and was designed for extremely low-
performance systems that required unusual design patterns. Additionally, the
source code was written in an old version of C, which hinders compilation and
the possibility of feature extensions. In response to these issues, the Rogue
Reborn project aims to develop a fresh copy of the game in a modern language
with contemporary design principles, comprehensive documentation, and a
full test suite. The intended audience for this document includes all the
stakeholders of the project, especially Dr. Smith and the SFWRENG 3XA3
teaching assistants (TAs).

1.2 The Stakeholders

1.2.1 The Client

The primary client of the project is Dr. Spencer Smith. Dr. Smith
is responsible for commissioning the project, overseeing its production, and
specifying all documentation requirements. He will also be evaluating the
final product and the progress showcased throughout the intermediate mile-
stones.

1

1.2.2 The Customers

The customers of the project are simply the players of the Rogue Reborn
game. It is expected that the majority of this population will be players
of the original game, in addition to the players and developers of the later
roguelike games. Since the roguelike community has a strong open-source
tradition, it is possible that a modern, well-documented Rogue remake could
serve as a valuable starting point or inspiration for projects created by other
teams in the future.

1.2.3 Other Stakeholders

The other stakeholders in the Rogue Reborn project include the play
testers of the game and the SFWRENG 3XA3 TAs. Specifically, play testers
will be recruited to judge the game before its initial release and provide
feedback with respect to any discovered bugs and questionable design deci-
sions. On the other hand, the SFWRENG 3XA3 TAs will guide the project
development process and incrementally evaluate the success of the project.

1.3 Mandated Constraints

As a constraint imposed by the project client, there are a number of
deadlines the project will be expected to meet throughout the course of its
development. In particular, the functionality of the final project will be
demonstrated on November the 30th, 2016 and the final draft of the project
documentation must be produced by December 8th, 2016. Another con-
straint involves replicating the gameplay of the original product without any
significant adaptations; this restricts the potential development platforms,
as the interface for the original Rogue is extremely ill-suited to touch-input
environments such as phones and tablets.

1.4 Naming Conventions and Terminology

Listed below is a glossary of uncommon terms that are used throughout
the document.

• Amulet of Yendor: Item that is generated on the FINAL LEVEL
level of the game. Acquiring this item grants the player character the
ability to ascend the levels and reach the surface to finish the game.

2

• Cursed Equipment: Equipment that, once used, reveals itself to be
harmful to the player character. This type of equipment is typically
difficult to remove.

• Dungeon: A stack of FINAL LEVEL floors (levels); it forms the game
world in Rogue.

• Experience: A positive integer value that is increased by defeating
monsters; sufficient quantities of experience will cause the player char-
acter to level up.

• Gold: A positive integer value that serves as the primary basis for
measuring a user’s score. Gold coins contribute to this quantity and
are found throughout the dungeon.

• Hitpoints: A positive integer value that measures the health of a
character or monster (the amount of “damage” the entity can endure
before death).

• Item Identification: A common feature of roguelike games whereby
item names are randomly associated with an effect at the beginning
of each game. These items can be identified by the player by simply
using the item and observing their effect (item names are consistent
throughout a single game). For example, blue potions may be potions
of healing in one game, but in the next game, they could be sleeping
gas. Item identification also refers to the act of determining whether
or not a given item is cursed.

• Level: A positive integer denoting either the floor of the dungeon
or to the player character’s experience level (which determines their
maximum hitpoints).

• Libtcod: A.K.A. “The Doryen Library”, libtcod is a popular graphics
library designed for the development of roguelike games. It includes
bindings for C, C#, C++, Lua, and Python (Lib).

• Permadeath: A feature of roguelikes where the game must be restarted
from the beginning upon character death.

3

• Rogue: The name of the 1980 computer game as well as the reference
to the player character (the term “player character” will always be
explicitly stated in the presence of ambiguity).

• Roguelike: A genre of games similar to Rogue. Membership in the
roguelike genre is characterized by procedurally-generated environments,
demanding difficulty, and permadeath features (Slash).

• Searching: An action that can be performed by the player character
to reveal adjacent invisible features (such as traps or hidden doors).

• Strength: An attribute of the player character; determines the like-
lihood of the player character successfully landing a hit with a melee
weapon and how much damage it will inflict on the enemy.

1.5 Relevant Facts and Assumptions

It is assumed players will be utilizing the product in a 64-bit Linux en-
vironment, equipped with a keyboard and a monitor that exhibits a display
resolution of at least WIDTH RESOLUTION x HEIGHT RESOLUTION
pixels. Players are also assumed to be moderately familiar with roguelike
games, as no extra material describing the game mechanics is provided with
the Rogue Reborn distribution. Note that this decision is made in the interest
of creating an exploratory and curious atmosphere about the game.

4

2 Functional Requirements

2.1 The Scope of the Work and the Product

2.1.1 The Context of the Work

The context of the work has vastly changed since the original Rogue re-
lease in 1980. Firstly, computers have advanced by an immense margin.
In the 1980’s, computers were mostly an alien concept and there were few
and far between. Today, computers play an irreplaceable role in our society
and have received full adoption from the general population. Consequently,
computers have seen exposure to an extremely large diversity of industries
and academic subjects, and the user market has exploded to unprecedented
heights.

From an economic perspective, the video game industry has grown tremen-
dously into a international multi-billion dollar industry. The task of devel-
oping the next blockbuster game has expanded to cover entire studios of
professional graphic artists, writers, and programmers. Several popular ti-
tles have also outgrown their medium and penetrated the book and cinematic
markets. Now, the humble Rogue is faced with many giants in the field, and
while none capture the same magic as the original dungeon crawler, there
are certainly successful in their own regards.

The final contextual aspect to consider is the thematic inspirations of
Rogue. Rogue takes place in a realm of fantasy, inspired by the high-fantasy
settings of Dungeons and Dragons, which itself has drawn much from various
narratives, such as Tolkien’s The Lord of the Rings, The Hobbit, and The
Silmarillion. Since the release of Rogue, many modern pieces in the same
thematic genre have been released, such as George R. R. Martin’s A Song
of Ice and Fire, and the collective works of R.A. Salvatore. The influence of
these new works can be found in extensions over the original Rogue, such as
Moria from 1983.

2.1.2 Work Partitioning

This is not quite what this section is for, see ”volere Template16” in the
course repo for more information - CM
The work required to complete this project has been partitioned between the

5

Rogue++ team of Ian, Mikhail, and Or. Each member has been assigned a
highly-cohesive, loosely-coupled segment of the code to be written. It was
unanimously agreed upon that each person is to present their API to the rest
of the team as soon as it is ready. This API materializes as a C++ header
file which other modules can interpret and use.

• Ian is responsible for the game state control, flow, and graphics. This
includes handling user input, rendering graphics, and displaying menus
and high scores.

• Mikhail is responsible for most player-tangibles. This includes eating,
quaffing potions, handling weaponry, as well as using armor, rings,
wands, and scrolls. This work will also transfer over to monster ac-
tions, which Mikhail will also actively develop.

• Or is responsible for dungeon and feature generation. This includes
generating room, corridor, wall, and door locations, in addition to han-
dling vision and the placement of treasure and traps.

2.1.3 Individual Product Use Cases

The product will have one primary use: playing the game. This is the
most direct path to completion of the objective (to supply entertainment to
the user), and will suffice for the majority of the project customers. However,
another subset of the Rogue Reborn consumer market may use the product
in a different way. During the 1980’s, a group of college students built a
piece of software with one goal: beat the original Rogue game (Rog, 1985).
Now, with the ever-growing advancements in artificial intelligence (AI) of
today’s modern world, it is well within the realm of possibility that a similar
AI could be designed for the Rogue Reborn edition. One could even argue
that if a new AI system were to be designed to beat Rogue, its designers may
feel tempted to seek out this new Rogue Reborn version, as it can supply a
well-documented API to facilitate system interaction.

6

2.2 Functional Requirements

This section will specify the functional requirements of the Rogue Reborn
project. These requirements are organized in cascading, logical segments to
conquer their numerous, scattered, and interdependent nature.

2.2.1 Basic mechanics

FR.1 The user shall be able to start a new game.
FR.2 The user shall be able to save the current game by name.
FR.3 The user shall be able to load previous games by name.
FR.4 The user shall be able to quit the game.
FR.5 The player character must always start with a default set of at-

tributes.
FR.6 The user shall always see the player character’s statistics.
FR.7 The game shall wait until the user takes an action before it manipu-

lates the environment.
FR.8 The game shall be able to display a help menu.

2.2.2 Interaction

FR.9 The user shall be able to view detailed information about the player
character.

FR.10 The user shall be able to view detailed information about the sur-
rounding environment.

FR.11 The player character shall be able to pass their turn.
FR.12 The player character shall be able to walk to adjacent cells.
FR.13 The player character shall be able to open and close doors.
FR.14 The player character shall be able to fall under status effects.
FR.15 The player character shall activate a trap every time they walk onto

the cell with the trap.

7

2.2.3 The Dungeon

FR.16 The player character shall begin at level START LEVEL.
FR.17 The game shall generate each dungeon level as it is needed.
FR.18 Each level shall have a downwards staircase.
FR.19 Each level shall contain a combination of rooms, corridors, monsters,

treasure, and (optionally) traps.
FR.20 The user shall be able to view the environment within

VIEW DISTANCE cells away (diagonals included) from the location
of the player character.

FR.21 If the player character is in a room, the user shall be able to view the
entire room the player character is occupying.

FR.22 The user must be able to see the outline of dungeon areas that were
previously explored.

FR.23 The player character shall be able to search for hidden doors and
traps/

FR.24 The player character shall not be able to see hidden doors without
explicitly searching for them.

FR.25 The Amulet of Yendor shall be generated in level FINAL LEVEL.

2.2.4 Equipment

FR.26 The game shall maintain an inventory of the player character’s col-
lected items.

FR.27 The player character shall be able to view the inventory.
FR.28 The game shall limit the player character’s inventory based on the

weight of its contents.
FR.29 The player character shall be able to add, drop, use, hold, throw, and

remove objects from their inventory.
FR.30 Scrolls, rings, and wands shall have meaningless names until they are

identified.
FR.31 Scrolls, rings, and wands shall be usable.
FR.32 The player character shall be able to identify items.
FR.33 The player character shall not be able to remove cursed items.
FR.34 The player character’s armor shall be able to deteriorate.

8

2.2.5 Combat

FR.35 Each monster shall be able to calculate a plan of action during their
turn.

FR.36 Monsters shall only attack the player (not other monsters).
FR.37 The player character shall be able to defeat every monster.
FR.38 The player character shall restore lost health over a time interval if

they are not engaged in combat.
FR.39 Armor shall reduce the damage taken by the player character.

9

3 Non-functional Requirements

3.1 Look and Feel Requirements

3.1.1 Appearance Requirements

Non-Functional Requirement # 1

Description: The Rogue Reborn UI shall closely resemble
the original Rogue UI.

Rationale: The new game should be visually similar to
the old game.

Fit Criterion: The new UI must have similar locations for
all GUI elements and must use ASCII
symbols for all graphical components.

3.1.2 Style Requirements

There are no significant requirements that are applicable to this category.

3.2 Usability and Humanity Requirements

3.2.1 Ease of Use Requirements

Non-Functional Requirement # 2

Description: The Rogue Reborn game shall be fun and
entertaining.

Rationale: Games are developed for enjoyment purposes.

Fit Criterion: The game must be able to hold the interest
of a new user for at least
MAXIMUM ENTERTAINMENT TIME
minutes.

10

3.2.2 Personalization and Internationalization Requirements

Non-Functional Requirement # 3

Description: The Rogue Reborn game shall target an
anglophone audience.

Rationale: The game will be developed and tested by an
anglophone population.

Fit Criterion: All game text must be written in English and
should be free of any grammar or spelling
mistakes.

3.2.3 Learning Requirements

Non-Functional Requirement # 4

Description: The Rogue Reborn game shall be easy to
learn and play.

Rationale: Users may prematurely lose interest in the
game if the controls are difficult or
frustrating.

Fit Criterion: The game must use an intuitive keyboard
layout and possess an in-game mechanism to
view all key bindings.

3.2.4 Understandability and Politeness Requirements

There are no significant requirements that are applicable to this category.

3.2.5 Accessibility Requirements

As the original is entirely a turn-based game, it is accessible to individ-
uals with physical disabilities affecting their manual dexterity. This project

11

will maintain that feature. The original uses a native terminal which has
effective integration with screen-reading programs used by individuals with
visual disabilities. As libtcod uses a graphical terminal, this feature has been
dropped. In addition, no special effort will be made to integrate mice or
unusual input devices.

3.3 Performance Requirements

3.3.1 Speed and Latency Requirements

Non-Functional Requirement # 5

Description: The Rogue Reborn game shall appear
responsive to user input.

Rationale: Slow update times may induce frustration.

Fit Criterion: On average, the game UI must be updated
within at least RESPONSE SPEED
milliseconds of a visible user action.

3.3.2 Safety-Critical Requirements

There are no significant requirements that are applicable to this category.

3.3.3 Precision or Accuracy Requirements

Non-Functional Requirement # 6

Description: The Rogue Reborn game shall use integer
types with an appropriate level of precision.

Rationale: Integer overflow may cause unexpected
behaviour.

Fit Criterion: All integer values in the game with an
unknown upper bound must be at least 32
bits in size.

12

3.3.4 Reliability and Availability Requirements

Non-Functional Requirement # 7

Description: The Rogue Reborn game shall not crash
under normal operating circumstances.

Rationale: Frequent crashes may frustrate users and
diminish their experience.

Fit Criterion: Every reproducible event that causes the
game to crash must be documented,
root-caused, and resolved.

3.3.5 Robustness or Fault-Tolerance Requirements

There are no significant requirements that are applicable to this category.

3.3.6 Capacity Requirements

Non-Functional Requirement # 8

Description: The Rogue Reborn game shall be able to
record the high scores of up to
HIGH SCORE CAPACITY users.

Rationale: Allows for a variety of users to directly
compete against one another.

Fit Criterion: The game must be able to load and display
the high scores of
HIGH SCORE CAPACITY previous
performances.

3.3.7 Scalability or Extensibility Requirements

There are no significant requirements that are applicable to this category.

13

3.3.8 Longevity Requirements

There are no significant requirements that are applicable to this category.

3.4 Operational and Environmental Requirements

3.4.1 Expected Physical Environment

Non-Functional Requirement # 9

Description: The Rogue Reborn game shall successfully
run on any modern laptop or desktop
computer with an Intel x64 processor.

Rationale: Most potential users will have access to this
hardware environment.

Fit Criterion: The game must display stable behaviour on a
computer with an Intel x64 processor
(equipped with a keyboard, mouse, and
monitor).

3.4.2 Requirements for Interfacing with Adjacent Systems

There are no significant requirements that are applicable to this category.

14

3.4.3 Productization Requirements

Non-Functional Requirement # 10

Description: The Rogue Reborn game shall be distributed
as a compressed folder containing a single
executable file along with any necessary
licenses.

Rationale: This is a simple approach to the distribution
process.

Fit Criterion: The game must be distributed as a folder
containing a collection of applicable licenses
in addition to a single executable file that is
able to run on a fresh system without any
external dependencies.

3.4.4 Release Requirements

There are no significant requirements that are applicable to this category.

3.5 Maintainability and Support Requirements

3.5.1 Maintenance Requirements

Non-Functional Requirement # 11

Description: All reported bugs shall be resolved within a
month of their submission.

Rationale: Immediately concentrating effort on
subcritical bugs may distract developers.

Fit Criterion: Every incident featured in the GitLab ITS
must be closed within a month of its creation.

15

3.5.2 Supportability Requirements

There are no significant requirements that are applicable to this category.

3.5.3 Adaptability Requirements

Non-Functional Requirement # 12

Description: The Rogue Reborn game shall successfully
run on a modern 64-bit Linux operating
system.

Rationale: It is assumed that the product testers and
consumers will have access to a 64-bit Linux
operating system.

Fit Criterion: The game must display stable behaviour on a
64-bit Ubuntu distribution.

3.6 Security Requirements

3.6.1 Access Requirements

There are no significant requirements that are applicable to this category.

3.6.2 Integrity Requirements

Non-Functional Requirement # 13

Description: The Rogue Reborn game shall verify the
validity of the saved high score file before
displaying its contents.

Rationale: Malicious users may attempt to inject false
records into this file.

Fit Criterion: The game must display no previous high
scores if it detects a flaw in the records file.

16

3.6.3 Privacy Requirements

There are no significant requirements that are applicable to this category.

3.6.4 Audit Requirements

There are no significant requirements that are applicable to this category.

3.6.5 Immunity Requirements

There are no significant requirements that are applicable to this category.

3.7 Cultural Requirements

There are no significant requirements that are applicable to this category,
since Rogue Reborn does not modify any cultural aspects from the original
Rogue.

3.8 Legal Requirements

3.8.1 Compliance Requirements

Non-Functional Requirement # 14

Description: The Rogue Reborn game shall be distributed
with an accompanying LICENSE.txt file.

Rationale: This license must be distributed with
projects that are a modification of the
original Rogue source code.

Fit Criterion: The corresponding LICENSE.txt file is
included in the distribution package.

3.8.2 Standards Requirements

There are no significant requirements that are applicable to this category.

17

../../LICENSE.txt
../../LICENSE.txt

3.9 Health and Safety Requirements

Non-Functional Requirement # 15

Description: The Rogue Reborn game shall not contain
visual sequences that are likely to trigger
seizures.

Rationale: Individuals with photosensitive epilepsy may
feel disoriented, uncomfortable, or unwell
(Epilepsy Society).

Fit Criterion: The average luminosity of the game UI
cannot change by more than
LUMINOSITY DELTA between two
successive frames.

18

4 Project Issues

4.1 Open Issues

The most pressing issue is whether or not this product will support a
Windows 10 port. Currently, the development team has experienced issues
with linking with the libtcod library on Windows. Another issue concerns
whether the Rogue Reborn save files will be compatible with the original
Rogue save files; this is an expensive feature with respect to the value it adds
to the project.

4.2 Off-the-Shelf Solutions

The Rogue++ team has chosen to use the libtcod library for this project as
an off-the-shelf solution for some problems in the product. Libtcod provides
a high-level, cross-platform abstraction over rendering and user input, as well
as a number of utilities such as line-drawing and pathfinding. There are also
a number of Rogue ports for various platforms, including a variation that
utilizes graphical tiles in the game to enhance the visual experience.

4.3 New Problems

As long as the project requirements are satisfied, especially the health
and safety requirements, the product should not adversely affect the user.
There may also be future issues involving the deploying the project, as the
Rogue++ team has not tested the executable without building the source
files locally; this could potentially require a partial rewrite of the project.
Finally, it may also be possible for the game to corrupt the user’s files in
some manner while attempting to save or load a game.

4.4 Tasks

As outlined by the project client, the project is split into a number of
development phases. An early proof of concept will be produced first, fol-
lowed by a test plan for the product, and then the final development and
documentation. This proof of concept phase will consist largely on laying
the foundation for the various systems in the product. For example, basic

19

combat will be presented in the proof of concept, but more advanced com-
bat such as thrown/ranged weapons and monster abilities will be left for a
later development cycle. The full development should consist largely of pop-
ulating these systems, creating tests, and adding more advanced features.
Development tasks within a phase will be partitioned among team members
as the team leader sees fit. For more detail on the proof of concept and other
aspects of the development consult the Development Plan document.

4.5 Migration to the New Product

Migration to the new product should not be an issue for users of the
original Rogue. While it is an open issue whether save files will be compatible
across versions, this is unlikely to be a major issue for users since a single
Rogue adventure rarely last longer than a few hours. Next, it is a goal of the
project that the user interface of the product should be unchanged from the
original; this is meant to facilitate the learning process of migrating users.
Users that are unfamiliar with the original may find the product (particularly
the user interface) slightly confusing, but since Rogue was released over 30
years ago, there are a number of resources available online to help explain the
UI and the basic gameplay. On a final note, it is the intention of this project
for the product to be available in a format that can be simply compiled by
any 64-bit Linux system with a (GNU) C++ compiler. This will streamline
the installation process and encourage more developers to try their hand at
understanding the code.

4.6 Risks

• Computer Usage Risks: There are several risks associated with com-
puter usage. This is often a subject matter that is discussed thoroughly
in an office environment where computers see frequent usage.

– When using a computer, there is an ergonomic risk involved. Im-
proper operation of the computer can lead to aches in various
parts of the body, including the back, neck, hands, and chest.

– There is also a significant risk of eye aches, along with other vision
problems.

– Repetitive motion is another factor that could cause discomfort
when using a computer.

20

• Offensive Content: The game draws heavily from the fantasy realm,
including themes of violence, fear, and witchcraft. While these elements
are only displayed in a textual context, certain cultures and societies
may find such elements offensive or disturbing.

• Anger: The Rogue Reborn game is not easy. Frustration could easily
overcome the user, especially when they have made significant progress
into the game. Anger management issues are widespread, and evidence
of anger due to video games is easily found (Gary W. Giumetti and
Patrick M. Markey, 2007).

4.7 Costs

The cost of this project is extremely limited. Given that the original
game is open source, there are no paid licensing concerns. In addition, all
of the software used in the Rogue Reborn project is free to use without
attribution. The only potential costs involved is the electricity required to
run the development machines.

4.8 User Documentation and Training

If a modern user attempted to play the original Rogue, they would not
have an easy time: the controls and the interface are unintuitive and foreign.
Luckily for the user, the final product will feature an in-game help menu
to aid newer players in becoming acquainted with the game (this menu’s
primary purpose will be to inform the user of the controls). After reviewing
the menu, the user should be capable of playing the game and discovering
the rest of the game’s functionalities for themselves.

4.9 Waiting Room

The waiting room prescribes objectives, requirements, and features that
could be implemented in future iterations. The following is a list of such
features, for which consideration was given but time could not allow for:

• More Monsters: The original Rogue has 1 monster for every letter
of the English alphabet. This is a very small number, especially when

21

compared to modern video games. By using different colours or a tile-
set (see 4.10), it is possible to achieve a far greater number of enemies
to challenge the user.

• Infinite Descent: The concept of a never-ending game is not by any
means original. When dungeon levels are generated on the fly, this
would not be difficult to implement either. Currently, the “best” game
performance is the one that accomplishes the end goal in the fewest
moves while obtaining the most gold along the way. With infinite
descent, the best run would eliminate the end goal from the equation,
turning the objective of the game into a strict function of acquired
wealth. As the player descends, the levels would become progressively
more difficult and generate more gold for the player to collect as a
reward for their progress.

• Seed Sharing: A seed is a sequence of bits that dictate which num-
bers the pseudo-random number generator will create. If two separate
pseudo-random number generators use the same seed for instantiation,
they will generate the same sequence of numbers. Consequently, this
yields the ability to generate the same dungeons from a single seed.
This could be used for more accurately comparing the competence of
Rogue players, as some dungeons may be naturally more difficult or
longer.

As a side note, for this feature to work, the dungeon generation must
not rely on the state of the player for surely different players may take
on the same dungeon in different ways.

4.10 Ideas for Solutions

• Graphics: Modern video games have engaging animations, special
effects, life-like detail, and an overall immersive user experience. In
contrast, Rogue’s peak graphical experience is an ASCII symbol sur-
rounded by some capital letters; there is no question that graphics are
a primary bottleneck for attracting users. For this reason, it would be
wise to inquire about using a tile-set for graphics (a capability of libt-
cod). Using a 16x16, 32x32, or even 64x64 tileset could vastly improve
the graphical user experience.

22

• Language Translations: The project is presently written in English,
but support for more languages is a reasonable feature to consider.
Having more language support would increase accessibility to more
users and encourage community engagement.

• Tutorial Mode: For better or for worse, Rogue is a difficult game.
It is frustrating and hard to understand, yet the reward at the end is
arguably worth the effort. As such, overcoming the initial play barrier
is critical. Introducing a tutorial mode may prove to be extremely
beneficial for new players learning the ropes.

23

References

[Libtcod] Overview. https://bitbucket.org/libtcod/libtcod/. Ac-
cessed: 2016-10-07.

An expert system outperforms mere mortals as it conquers the feared Dun-
geons of Doom. Scientific American, 252:18–21, February 1985. Accessed:
2016-10-11.

Epilepsy Society. Photosensitive epilepsy. https://www.epilepsysociety.
org.uk/photosensitive-epilepsy#.V_pneOArKCg. Accessed: 2016-10-
09.

Gary W. Giumetti and Patrick M. Markey. Violent video games and anger
as predictors of aggression. Journal of Research in Personality, 2007. Ac-
cessed: 2016-10-11.

Petri Kuittinen. Rogue - Exploring the Dungeons of Doom
(1980). https://web.archive.org/web/20071217100401/http:

//users.tkk.fi/~eye/roguelike/rogue.html, 2001. Accessed: 2016-
10-07.

James Robertson and Suzanne Robertson. Volere Requirements Specification
Template. Atlantic Systems Guild Limited, 16 edition, 2012.

Slash. What is a Roguelike. http://www.roguetemple.com/

roguelike-definition/. Accessed: 2016-10-07.

24

https://bitbucket.org/libtcod/libtcod/
https://www.epilepsysociety.org.uk/photosensitive-epilepsy#.V_pneOArKCg
https://www.epilepsysociety.org.uk/photosensitive-epilepsy#.V_pneOArKCg
https://web.archive.org/web/20071217100401/http://users.tkk.fi/~eye/roguelike/rogue.html
https://web.archive.org/web/20071217100401/http://users.tkk.fi/~eye/roguelike/rogue.html
http://www.roguetemple.com/roguelike-definition/
http://www.roguetemple.com/roguelike-definition/

5 Appendix

5.1 Symbolic Parameters

Table 2: Symbolic Parameter Table

Parameter Value

FINAL LEVEL 26

WIDTH RESOLUTION 1280

HEIGHT RESOLUTION 400

VIEW DISTANCE 2

START LEVEL 1

MINIMUM ENTERTAINMENT TIME 20

MINIMUM RESPONSE SPEED 30

HIGH SCORE CAPACITY 15

LUMINOSITY DELTA 0.5

25

	Project Drivers
	The Purpose of the Project
	The Stakeholders
	The Client
	The Customers
	Other Stakeholders

	Mandated Constraints
	Naming Conventions and Terminology
	Relevant Facts and Assumptions

	Functional Requirements
	The Scope of the Work and the Product
	The Context of the Work
	Work Partitioning
	Individual Product Use Cases

	Functional Requirements
	Basic mechanics
	Interaction
	The Dungeon
	Equipment
	Combat

	Non-functional Requirements
	Look and Feel Requirements
	Appearance Requirements
	Style Requirements

	Usability and Humanity Requirements
	Ease of Use Requirements
	Personalization and Internationalization Requirements
	Learning Requirements
	Understandability and Politeness Requirements
	Accessibility Requirements

	Performance Requirements
	Speed and Latency Requirements
	Safety-Critical Requirements
	Precision or Accuracy Requirements
	Reliability and Availability Requirements
	Robustness or Fault-Tolerance Requirements
	Capacity Requirements
	Scalability or Extensibility Requirements
	Longevity Requirements

	Operational and Environmental Requirements
	Expected Physical Environment
	Requirements for Interfacing with Adjacent Systems
	Productization Requirements
	Release Requirements

	Maintainability and Support Requirements
	Maintenance Requirements
	Supportability Requirements
	Adaptability Requirements

	Security Requirements
	Access Requirements
	Integrity Requirements
	Privacy Requirements
	Audit Requirements
	Immunity Requirements

	Cultural Requirements
	Legal Requirements
	Compliance Requirements
	Standards Requirements

	Health and Safety Requirements

	Project Issues
	Open Issues
	Off-the-Shelf Solutions
	New Problems
	Tasks
	Migration to the New Product
	Risks
	Costs
	User Documentation and Training
	Waiting Room
	Ideas for Solutions

	Appendix
	Symbolic Parameters

