SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

[an Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Due Monday, October 31%, 2016

Contents

1

General Information

1.1 Purpose e
1.2 Scope
1.3 Acronyms, Abbreviations, and States
1.4 Overview of Document

Plan

2.1 Software Description
22 Test Team oo
2.3 Automated Testing Approach
2.4 Testing Tools
2.5 Testing Schedule L.

System Test Description

3.1 Tests for Functional Requirements
3.1.1 Basic Mechanics.
3.1.2 Imteraction o
3.1.3 The Dungeon
3.14 Equipment. 0o
3.1.5 Combat

3.2 Tests for Non-Functional Requirements
3.2.1 Look and Feel Requirements
3.2.2 Usability and Humanity Requirements
3.2.3 Performance Requirements
3.2.4 Operational and Environment Requirements
3.2.5 Maintainability Requirements
3.2.6 Security Requirements
3.2.7 Legal Requirements
3.2.8 Health and Safety Requirements

Tests for Proof of Concept

4.1 Static Testingo
4.2 Rendering L
4.3 Dungeon Generation
4.4 Basic Movement Lo
4.5 Score File

4.6 Line of Sight System
Comparison to Existing Implementation

Unit Testing Plan
6.1 Unit testing of internal functions
6.2 Unit testing of output files

Appendix
7.1 Symbolic Parameters oL
7.2 Usability Survey Questions

List of Tables

Revision History
Table of Abbreviations and Acronyms
Table of Definitions
Table of States
Symbolic Parameter Table

O > W N+~

List of Figures

i

29

30
30
31

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. After reviewing the document,
the reader should understand the strategy, focus, and motivation behind the
efforts of the Rogue++ testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to be
comprehensive by providing context behind critical decisions, motivating the
inclusion of particular features by referring to the existing Rogue implementa-
tion, and offering a large variety of tests for various purposes and hierarchical
units. Aside from the implementation, the report will also discuss a relevant
component from the requirements elicitation process.

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup

10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2
10/24/16 0.3 Added Section 1

10/26/16 0.4 Added PoC tests

10/26/16 0.4.1 Added Test Template

10/30/16 0.5 Added Non-Functional Req. Tests
10/30/16 0.5.1 Added Bibliography

10/31/16 0.6 Switch PoC to Test Template
10/31/16 0.7 Add Name to Test Template

1.3 Acronyms, Abbreviations, and States

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

GUI Graphical User Interface
PoC Proof of Concept

Table 3: Table of Definitions

Term Definition

Boost C++ utility library that includes a comprehensive
unit testing framework

Frame An instantaneous “Snapshot” of the GUI screen

Libtcod Graphics library that specializes in emulating a
roguelike experience

Monochrome The brightness of a given colour (with respect to the

Luminance average sensitivity of the human eye)

Permadeath Feature of roguelike games whereby a character
death will end the game

Roguelike Genre of video games characterized by ASCII graph-

ics, procedurally-generated levels, and permadeath

Table 4: Table of States

State

Definition

Developer State
Fresh State
Gameplay State
Generic State
High Score State

Menu State
Seasoned State

The file system state corresponding to the latest
source code revision from the Git repository

The file system state corresponding to a “fresh”
Rogue Reborn installation

Any application state that reflects the actual game-
play

The file system state corresponding to a functional
installation of Rogue Reborn

Any application state that reflects the top high
scores screen

Any application state that reflects the opening menu
The system state corresponding to an installation
of Rogue Reborn that already contains several high
score records

1.4 Overview of Document

The early sections of the report will describe the testing environment
and the logistic components of the Rogue Reborn testing effort, including
the schedule and work allocation. Next, a suite of tests will be discussed
with respect to the functional requirements, nonfunctional requirements, and
proof of concept demonstration. Upon discussing the relevance of this project
to the original Rogue, a variety of unit tests will be given followed by a sample
usability survey to guage the interest and opinion of the Rogue Reborn game.
A breakdown of the sections is listed below:

tion

61 Brief overview of the report contents
62 Project logistics and the software testing environment
63 Description of system-level integration tests (based on requirements)

64 Explanation of test plans that were inspired by the PoC demonstra-

e 55 Comparison of the existing Rogue to the current project in the con-
text of testing

e 36 Outline of the module-level unit tests

e 57 Appendix for symbolic parameters and the aforementioned usability
survey

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the
completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C' to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for
this project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

e Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

e Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

e The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++
to perform the necessary steps. First, it places all source files into a ded-
icated folder, distinguishing between program files and test files. This is
an absolutely necessary step, as there is an important relationship between
source and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both the
final project and its testing component. The files required by the test which
are not required by the source are, obviously, testing-related files. These are
the files that contain the test case implementations. At the time of writing,
there is actually only one file required by source that is not required by the
test, and that is the source program entry (i.e. the file that contains the
main() method).

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the "make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At the time of
writing this document, it is not yet implemented, but note will be made when
it does. It should be noted that if a build fails, the pipeline not only reports
the failure, but also logs where the failure happened, down to the specific
test case. This will hopefully make debugging a more pleasant experience
later on.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a tool that tests the
amount of memory a C++ program utilizes, and detects memory allocation
errors (such as memory leaks). This is an extremely useful and powerful tool.
C++, unlike Java and other high level languages, does not have a built-in
garbage collector. This is just one of the reasons why it is so much faster
than the rest. A consequence of this, however, is that it is very easy to ac-
cidentally leave behind an object in memory, causing a memory leak in the
program.

At the time of writing, the entire program occupies 1 MB of memory. This
is not much, and even if it was all left behind in a leak, the system would not
be too hindered. However, memory leaks represent only a consequence of a
larger issue: incorrect code! Using Valgrind, we will be able to detect these
kinds of errors, potentially pointing us in the direction of a crucial bugfix.

2.5 Testing Schedule
See Gantt Chart at the following url ... TODO

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Basic Mechanics

New game start - Functional Test # 1

Type:

Initial State:

Dynamic / Manual / Black Box

Nothing running.

Input: A new game is started.
Output: The program is started.
Ezecution: Either double-clicking the .exe or via terminal:
./RogueReborn.exe.
Save game - Functional Test # 2
Type: Dynamic / Manual / Black Box

Initial State:
Input:
Output:

FEzecution:

Game screen
Save command is given or save key is pressed.

A message saying that the game has been saved is shown to the
user in the status box.

A user will have to play the game and trigger the input
sequence. This process can be verified to work by the following
test.

Load game - Functional Test # 3

Type:
Initial State:
Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Game screen
Load command is given or save key is pressed.

A message saying that the game has been loaded is shown to
the user in the status box. The data model (level, player,
monsters, etc.) is also updated to reflect the state changes.

A user will have to play the game and trigger the input
sequence to load, and verify that it is in fact the same state
that was previously saved.

New game starting statistics - Functional Test # 4

Type:

Initial State:
Input:
Output:

Ezecution:

Dynamic / Automatic / Black Box

Nothing running.

A new game is started.

The player has the default starting gear and statistics.

This feature can be tested by analyzing a save file. In the file is
listed everything about the player, meaning the information can
be attained from there.

Help command - Functional Test # 5

Type:
Initial State:
Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Game screen
The "help” command is given or the "help” key is pressed.

The user is shown a screen with a list of possible actions and
other information

Players will be given the game with no instructions or guide.
The usefulness and accessibility of the help screen will be
judged by their performance after having seen the help screen.

3.1.2 Interaction

Detailer player information - Functional Test # 6

Type:
Initial State:
Input:

Output:

Execution:

Dynamic / Manual / Black Box
Game screen.
None.

Details about the player (such as level, health, known status
effects, current depth, etc.) are displayed at the bottom of the
screen, in the area known as the ”Info bar”.

At random points during the playtest, players will be asked to
answer basic questions about their player. To answer these
questions, the player will have to refer to the info bar.

10

Environment inspection - Functional Test # 7

Type: Dynamic / Manual / Black Box
Initial State: Game screen.

Input: The "look” key or command, and then an environment aspect
character.

Output: After the input is supplied, a brief description of the
environment aspect is supplied. This can be limited to a word
or two (i.e. ”This is an Emu”).

Ezecution: Players will be told about the "look” key before starting, and
will have to employ it to get to know their surroundings.

Pass turn - Functional Test # 8

Type: Dynamic / Manual / Black Box
Initial State: Game screen.

Input: The player wishes to skip his turn. This is usually the case if an
enemy is about to move perpendicularly to the player’s
pre-determined projectile path, which will place the enemy in
the direction of the player’s projectile.

Output: All entities but the player act, performing whatever action their
AT has instructed them to perform.

Ezecution: Players will be asked to skip their turn several times once an
enemy is spotted.

11

Trap activation - Functional Test # 9

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Game screen.

A dungeon level that can generate traps (This only occurs in
the deeper levels).

A message and effect describing what the trap has done.

Players will be asked to report any trap they come across and
the effect it has bestowed upon them.

3.1.3 The Dungeon

Staircase guarantee - Functional Test # 10

Type:

Initial State:
Input:
Output:

Ezxecution:

Dynamic / Automatic / Black Box

Nothing running.

A randomly generated dungeon (preferably many).
An assertion that all contain a downwards staircase.

The algorithm for this is rather straight-forward; it is a simple
BFS or DFS touring every passable block in the dungeon.

12

Connectedness & Reachability - Functional Test # 11

Type:
Initial State:
Input:

Output:

Ezxecution:

Dynamic / Automatic / White Box
Nothing running.
A randomly generated dungeon (preferably many).

An assertion that the dungeon is connected and all tile are
reachable from one-another.

Again, another simple algorithm. A BFS or DFS can acquire a
list of all passable tiles in the dungeon, which can be compared
to the list provided by the source-code. If the two lists match,
then the assertion is true.

Line of Sight - Functional Test # 12

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Game screen.

Player is somewhere in the dungeon that is recognizable (i.e.
not hidden), and player is not blind.

Visibility dependent on surroundings. If in a room, the player
should be able to see the entire room. If in a corridor, the
player should only be able to see in a 3x3 square centered on
the player.

Players will be asked to assess the visibility standards. This is a
bug-prone feature, as many exceptions exist in the realm of
”"What is the player on?”.

13

Amulet of Yendor - Functional Test # 13

Type:
Initial State:

Dynamic / Automatic / White Box

Nothing running.

Input: Levels generated with a depth of 26
Output: A correct assertion that all levels generated contain the amulet
somewhere on the level.
Execution: Tt only takes a double-nested for-loop to make sure that

somewhere in the level, on a passable tile, the amulet exists.
Any since we already know that every passable tile is reachable,
we know that the amulet is as well.
Searching & Finding - Functional Test # 14

Type: Dynamic / Manual / Black Box

Initial State:
Input:
Output:

Ezecution:

Player in the dungeon beside a hidden door/passage.
The player activates the "search” command to look around.
The door or passage is either revealed or stays hidden.

Players will be told before the game begins to occasionally look
out for hidden doors, as they are normally fairly hard to find.
Once found, players will document the number of searches they
needed to uncover the hidden door.

14

3.1.4 Equipment

Inventory tracking - Functional Test # 15

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Game screen.

New players are instructed to play the game with no special
requirements.

No player experiences a situation in which their inventory is
mis-represented. All items collected by the player should be
kept track of and indexed.

Players will be asked to maintain, on a piece of paper, their
inventory, and at the end of the game compare their copy to
that of the game.

Identification & Naming - Functional Test # 16

Type:
Initial State:

Input:

Output:

Execution:

Dynamic / Manual / Black Box
Game screen.

Players are instructed to pronounce the names of all items they
collect.

Players are not able to pronounce items they have yet to
identify.

To test the terribleness of the randomly-generated names,
players will be asked to try and pronounce them. While some
may succeed, the names will all be utterly nonsensical.

15

Armor & Deterioration - Functional Test # 17

Type: Dynamic / Manual / Black Box
Initial State: Game screen.

Input: Players are assured that no bad thing could happen to their
armor.

Output: Players should complain that their armor is somehow being
damaged.

Execution: Aquators and traps are able to destroy player armor.
Approximately at level 6, players will start finding such
setbacks, and report their results.

3.1.5 Combat

Monster AI - Functional Test # 18

Type: Dynamic / Automatic / White Box
Initial State: Nothing running.
Input: A target position to chase, given to all monsters in the dungeon.

Output: (Most) monsters calculating ideal paths towards the target
specified. Some monsters have a different expected behavior.

Ezecution: An automatic script can easily be created to generate a level,
plant some monsters in it, and simulate a player character
somewhere on the map. Then, a traceback log of monster paths
could be created and analyzed, by having the player simulation
always skip its turn. This way enemies will have a non-moving
target to path to.

16

Monster attack pattern - Functional Test # 19

Type: Dynamic / Automatic / Black Box
Initial State: Nothing running.
Input: No target for monsters to attack.

Output: Monsters roaming around pointlessly, waiting for something to

do.

Ezecution: Like the previous test, a level could be generated and populated
with enemies. Unlike the previous test case, however, no player
will be supplied in this level. Monsters should aimlessly wander
the halls of the dungeon and find no meaning or purpose.

3.2 Tests for Non-Functional Requirements

3.2.1 Look and Feel Requirements

Aesthetic Similarity Check - Non-Functional Test # 1

Type: Dynamic / Manual / Black Box
Initial State: Generic State

Input: Users are asked to rate the aesthetic similarity between Rogue
and Rogue Reborn.

Output: A numeric quantity between 0 and 10, where 0 indicates that
the graphics are entirely disjoint and 10 indicates that the
graphics are virtually indistinguishable.

Execution: A random sample of users will be asked to play Rogue and the
Rogue Reborn variant for PLAYTEST SHORT TIME minutes.
Afterwards, they will be asked to judge the graphical similarity
of the games based on the aforementioned scale.

17

3.2.2 Usability and Humanity Requirements

Interest Gauge Check - Non-Functional Test # 2

Type:
Initial State:
Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Generic State
New users are instructed to play Rogue Reborn.

The quantity of time the user willingly decides to play the
game.

A random sample of users who are unfamiliar with Rogue will
be asked to play Rogue Reborn until they feel bored (or
MAXIMUM_ENTERTAINMENT _TIME has expired). Once
the user indicates that they are no longer interested in the
game, their playing time will be recorded.

English Mechanics Check - Non-Functional Test # 3

Type:
Initial State:
Input:

Output:

Execution:

Static / Manual / White Box
Developer State
Rogue Reborn source code.

An approximation of the English spelling, punctuation, and
grammar mistakes that are visible through the GUI.

All strings in the Rogue Reborn source code will be
concatenated with a newline delimiter and outputted to a text
file. A modern edition of Microsoft Word from (?) will be used
to open this generated text file, and a developer will manually
correct all of the indicated errors that are potentially associated
with a GUI output.

18

Key Comfort Check - Non-Functional Test # 4

Type:
Initial State:

Input:

Output:

FEzecution:

Dynamic / Manual / Black Box
Generic State

Users are asked to rate the intuitiveness of the Rogue Reborn
key bindings.

A numeric quantity between 0 and 10, where 0 indicates that
the key bindings are extremely confusing and 10 indicates that
the key bindings are perfectly natural.

A random sample of users who are inexperienced with the
roguelike genre will be asked to play Rogue Reborn for
SHORT TIME minutes without viewing the in-game help
screen. Next, the key bindings will be revealed, and the users
will continue to play the game for an additional

PLAYTEST _SHORT _TIME minutes. Afterwards, they will be
asked to judge the quality of the key bindings based on the
aforementioned scale

19

3.2.3 Performance Requirements

Response Delay Check - Non-Functional Test # 5

Type: Dynamic / Automatic / White Box
Initial State: Generic State
Input: Users are instructed to play Rogue Reborn.

Output: A log of occurrences that indicate events where a computation
that was initiated by a user input took an excessive quantity of
time to execute.

Execution: A random sample of experienced users will be asked to play a
special version of Rogue Reborn for
PLAYTEST MEDIUM_RANGE minutes. This edition will
utilize a StopWatch implementation to measure the execution
time of a computation, and if the computation exceeds
RESPONSE_SPEED milliseconds, the user action and the
associated timestamp will be recorded in a log file.

Overflow Avoidance Check - Non-Functional Test # 6

Type: Static / Manual / White Box
Initial State: Developer State
Input: Rogue Reborn source code.

Output: All declarations of integer-typed variables.

Ezecution: All occurrences of lines that match REGEX_INTEGER (i.e.,
integer declarations) in the Rogue Reborn source code will be
outputted to a file. A group of Rogue++ developers will then
review these declarations together and alter them if deemed
necessary to avoid integer overflow issues.

20

Crash Collection Check - Non-Functional Test # 7

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Generic State

Playtesters are instructed to play Rogue Reborn for at least
PLAYTEST_LONG_TIME hours.

A collection of crash occurrences along with a detailed
description of the failure environment.

All Rogue Reborn playtesters will be required to play the game
for at least PLAYTEST_LONG_TIME hours in total (spanned
over multiple sessions if desired). Every time the application
crashes, the playtester must record the incident along with a
description of the visible GUI state and the steps required to
reproduce the failure. After this data has been collected, the
Rogue++ team will address every crash occurrence by either
resolving the issue or confidently declaring that the event is
irreproducible.

Score Overflow Check - Non-Functional Test # 8

Type:

Initial State:
Input:
Output:

Ezecution:

Dynamic / Dynamic / White Box

High Score State

A high score record file containing a large quantity of entries.
Rogue Reborn GUI displaying the top high scores.

The Rogue Reborn developers will artificially fabricate a high
score record file with at least HIGH SCORE_CAPACITY + 2
records. The game will then be played until the high score
screen is revealed; only the top HIGH SCORE_CAPACITY
scores should be displayed.

21

3.2.4 Operational and Environment Requirements

Processor Compatibility Check - Non-Functional Test # 9

Type: Dynamic / Manual / Black Box
Initial State: Fresh State

Input: Users are instructed to install and run Rogue Reborn on their
personal machines.

Output: An indication of whether or not the game is able to successfully
execute.

Ezecution: A random sample of users with computers that are equipped
with Intel x64 processors will be asked to download the latest
Rogue Reborn distribution, perform any necessary installation,
and then run the executable file. The user will then report if
the game was able to successfully run on their machine.

Streamline Distribution Check - Non-Functional Test # 10

Type: Static / Manual / Black Box
Initial State: Developer State
Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution contains any
files aside from the primary executable and the associated
development licenses.

FExecution: The public distribution package will be visually inspected for
extraneous files.

22

3.2.5 Maintainability Requirements

Bug Productivity Check - Non-Functional Test # 11

Type:
Initial State:

Input:

Output:

Ezecution:

Static / Manual / Black Box
Developer State
All ITS issues labeled as bugs in the Rogue Reborn GitLab

repository.

An indication of whether or not all bug reports were closed
within a month of their conception.

The Rogue Reborn GitLab repository will be queried for all
issues concerning bugs (which are denoted by a “Bug” label).
Next, a developer will manually verify that every closed bug fix
request was resolved within a month of its creation.

Linux Compatibility Check - Non-Functional Test # 12

Type:
Initial State:

Input:

Output:

Execution:

Dynamic / Manual / Black Box
Fresh State

Users are instructed to run Rogue Reborn on their personal
machine.

An indication of whether the game can successfully execute.

A random sample of users with computers that use a modern
64-bit Linux operating system will be asked to download the
latest Rogue Reborn distribution, perform any necessary
installation, and then run the executable file. The user will then
report if the game was able to successfully run on their machine.

23

3.2.6 Security Requirements

Illegal Records Check - Non-Functional Test # 13

Type:

Initial State:
Input:
Output:

Execution:

Dynamic / Manual / White Box

Seasoned State

A corrupted high score record file.

Rogue Reborn GUI displaying the top high scores.

The Rogue++ team will illegally modify a high score record file
by manually altering or adding values such that the expected
format or value integrity is violated. These modifications should
include negative high score values, missing text, and incorrect
delimiter usage. The game will then be played until the high
score screen is revealed; all invalid record file contents should be
ignored and amended in the next write to the record file.

3.2.7 Legal Requirements

License Presence Check - Non-Functional Test # 14

Type:
Initial State:
Input:

Output:

Execution:

Static / Manual / Black Box
Developer State
Rogue Reborn distribution package.

An indication of whether or not the distribution is missing any
mandatory license files.

The original Rogue source code hosted by (?) will be reviewed
for legal requirements, and the public distribution package will
be visually inspected to ensure that all mandatory license files

are present.

24

3.2.8 Health and Safety Requirements

Seizure Prevention Check - Non-Functional Test # 15

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Developer State

Two screenshots denoting the largest possible luminosity
difference present between consecutive frames.

The difference in luminosity between the two captured frames.

After identifying the frame pair that is most likely to induce a
seizure, the game will be played to reach the states that reflect
each frame (this should be a brief process; no clever game
model manipulation is required). At the occurrence of each
desired frame, the game screen will be captured and saved. At
this point, the average monochrome luminance across each
frame will be calculated according to the formula

L =0.299R 4 0.587G + 0.114B

where L is the luminance, R is the red RGB component, G is
the green RGB component, and B is the blue RGB component
(7). Finally, the absolute value of the luminance difference can
then compared to LUMINOSITY_DELTA.

25

4 Tests for Proof of Concept

4.1 Static Testing

Compile Test - PoC Test # 1

Type:
Initial State:

Static / Automatic / White Box

None

Input: Program Source
Output: Program Executable
Execution: Verify that the program compiles with g+-+.
Memory Check - PoC Test # 2
Type: Dynamic / Manual / White Box

Initial State:
Input:
Output:

FEzecution:

None
A brief but complete playthrough of the game.
Breakdown of program memory usage.

A tester will briefly play the game, and a developer will use
Valgrind’s memcheck utility to verify that program does not
leak memory or utilize uninitialized memory.

26

4.2 Rendering

Render Check - PoC Test # 3

Type:

Initial State:
Input:
Output:

Execution:

Dynamic / Manual / 1 Box
Black

Gameplay State

30-60 seconds of gameplay.

The player character and any dungeon features should be
shown at the correct location with the correct glyphs. Correct
player statistics will be shown along the bottom. The dialog
box will correctly display the log and any prompts.

A tester will manually play the game and verify the display is correct.

4.3 Dungeon Generation

Dungeon-Gen Check - PoC Test # 4

Type:

Initial State:
Input:
Output:

FEzecution:

Dynamic / Manual / Black Box
None
Repeated restarts of the game

Level should contain ROOMS PER_LEVEL rooms, which
should form a connected graph.

A tester will manually start the game, briefly explore the level
to verify correct generation, then repeat this process until
confidence is achieved.

27

4.4 Basic Movement

Movement Check - PoC Test # 5

Type:

Initial State:
Input:
Output:

FEzecution:

Dynamic / Manual / Black Box
Gameplay State
Movement commands

Player should move about the level, without clipping through
walls, failing to walk through empty space, or jump to an
unconnected square.

A tester will manually walk through the level, and visually
verify correctness.

4.5 Score File

Scoring File Check - PoC Test # 6

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Menu State

Enter name, then quit, restart game, enter name again, and
quit.

1st name should appear in both the first and second score
screens. The 2nd should appear in the second. Both should
have correct values for level, cause of death/quit, and gold
collected.

A developer will manually perform the above input, and verify
the output. Should be tested both with and without an initial
score file.

28

4.6 Line of Sight System

LoS Check - PoC Test # 7

Type:
Initial State:
Input:

Output:

Execution:

Dynamic / Manual / Black Box
Gameplay State
Movement commands

Screen should display correct portions of level, with correct
coloration schemes. This means that the player should be able
to see the entirety of a room they are in or in the doorway of,
and VIEW_DISTANCE squares away if they are in a corridor.
Squares that the player has seen in the past but cannot see
currently should be shown greyed out. Squares they have not
seen should be black and featureless.

A developer will manually walk through the level, verifying that
the above LoS rules are preserved, especially in edge cases like
the corners of rooms and doorways.

29

5 Comparison to Existing Implementation

The original Rogue is feature-full, and luckily, open source. This means
that many, if not all of the features in Rogue++ can be tested in accordance
with their similarity to the original game. Some examples are discussed be-
low.

An attempt has been made to replicate nearly one-for-one the items, loot,
and treasure obtainable in the original Rogue. Wands, staffs, rings, potions,
ammunition, weapons, armor and more were all copied over with the same
values in place. Regarding the items available for collection, players of the
original game should feel right at home with the new Rogue++. Unlike
some more modern games, the original Rogue does not specify how effective
an attack is besides hit or miss, as does Rogue++-. This means that a player
experienced with the original game may expect certain behavior out of a
weapon or item, and find a difference in its effectiveness, despite the near
one-to-one transition. This could stem from a variety of sources, perhaps
most likely of which is a piece of code that does something unexpected, in
an unexpected place.

Another aspect of the game that was replicated as the source-code de-
scribes is dungeon generation. Of course, today we are using a more ad-
vanced data structure, with several capabilities that were not available for
the C of 1980, but the idea behind the data structure is the same. The pro-
cess followed for dungeon generation in 1980 was somewhat ill-conceived and
convoluted. Despite this its discernible aspects were used as inspiration for
the algorithm used in Rogue++. So while at the end of the day the two do
not follow the same algorithm, the end result is close enough, and test cases
are included to make sure that all properties of the old Rogue are satisfied
in Rogue++.

30

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties. Since
we are not using a framework, drivers will be written by hand. Stubs will
be produced when necessary to simulate system components. Since there
are no database or network connections, stubs should hopefully be kept to a
minimum. However, functions may be required to construct objects in states
suitable for easy testing, for example creating a level or player with certain
known properties, rather than by random generation.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. As complete code coverage is not a goal, generic code coverage metrics
will not be used. Instead, care will be taken that complex functions are cov-
ered by unit tests. The following are examples of internal functions that are
initial candidates for unit testing. Other functions will be added as necessary:

e The dungeon generation functions. The work of generating the dun-
geon is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectedness, compli-
ance with formulas for item generation, presence or absence of certain
key features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

e The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

e The item activation functions. For example it could be verified that
when the player drank a potion of healing their health increased (if it
was not at its maximum), that a scroll of magic-mapping is reveals the
level, or that a scroll of identification reveals the nature of an item.

31

e The item storage functions. Each item is mapped to a persistent hotkey
in the player’s inventory. Certain items can stack with copies, reducing
the amount of inventory space they take up, and how they are displayed.
These factors make the inventory fairly complex. It is however easily
verifiable, and automated testing can examine edge cases that would
be impractical to test manually.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can
be unit-tested by verifying its contents after writing to it, and by providing
a testing version of the file with known contents and verifying the function
reads them correctly.

32

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 5: Symbolic Parameter Table

Parameter Value
ROOMS_PER_LEVEL 9
FINAL_LEVEL 26
HEIGHT_RESOLUTION 400
LUMINOSITY_DELTA 0.5
MINIMUM_ENTERTAINMENT_TIME 20
MINIMUM_RESPONSE_SPEED 30
HIGH_SCORE_CAPACITY 15
PLAYTEST_SHORT_TIME 5
PLAYTEST MEDIUM RANGE 10-20
PLAYTEST_LONG_TIME 3
REGEX_INTEGER (char|int|long).*(,|;)
START_LEVEL 1
VIEW _DISTANCE 1
WIDTH_RESOLUTION 1280

33

7.2

10.

11.

12.
13.
14.

15.

Usability Survey Questions

. Is there any game feature you were unable to figure out how to utilize?

How helpful was the help screen for you?

Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

What common Ul interactions did you find particularly lengthy?

. What aspects of the interface did you find unintuitive?

How responsive was the interface?
How easy was it to see everything that was going on?

How effective are the graphics/symbols?

. Would an alternative input device such as a mouse make interacting

with the interface easier for you?
Is there any extra functionality you would like added to the interface?

How difficult was it to learn the game? How much experience do you
have with Roguelikes?

How helpful was the original game manual?
How pleasing was the color scheme?
Was the font large enough for easy use?

Were you able to learn the hotkeys easily?

34

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and States
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Basic Mechanics
	Interaction
	The Dungeon
	Equipment
	Combat

	Tests for Non-Functional Requirements
	Look and Feel Requirements
	Usability and Humanity Requirements
	Performance Requirements
	Operational and Environment Requirements
	Maintainability Requirements
	Security Requirements
	Legal Requirements
	Health and Safety Requirements

	Tests for Proof of Concept
	Static Testing
	Rendering
	Dungeon Generation
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

