SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

[an Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Due Monday, October 31%, 2016

Contents

1

General Information

1.1
1.2
1.3
1.4

Plan
2.1
2.2
2.3
2.4
2.5

Purpose
SCOPE . .
Acronyms, Abbreviations, and States
Overview of Document

Software Description
Test Team
Automated Testing Approach
Testing Tools
Testing Schedule

System Test Description

3.1

3.2

Tests for Functional Requirements
3.1.1 Basic Mechanics.
3.1.2 Imteraction
3.1.3 The Dungeon
3.14 Equipment. 0o
3.1.5 Combat
Tests for Non-Functional Requirements
3.2.1 Look and Feel Requirements
3.2.2 Usability and Humanity Requirements
3.2.3 Performance Requirements
3.2.4 Operational and Environment Requirements
3.2.5 Maintainability Requirements
3.2.6 Security Requirements
3.2.7 Legal Requirements
3.2.8 Health and Safety Requirements

Tests for Proof of Concept

4.1
4.2
4.3
4.4
4.5

Static Testing
Rendering L o
Dungeon Generation
Basic Movement
Score File

10
12
15
16
17
17
18
20
23
24
25
26
27

4.6 Line of Sight System
Comparison to Existing Implementation

Unit Testing Plan
6.1 Unit Testing of Internal Functions
6.2 Unit Testing of Output Files

Appendix
7.1 Symbolic Parameters oL
7.2 Usability Survey Questions

List of Tables

1 Revision History
2 Table of Abbreviations and Acronyms
3 Table of Definitions
4 Table of States
5 Symbolic Parameter Table

List of Figures

1 Source and Test Relationship

i

32

34
34
35

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup

10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2
10/24/16 0.3 Added Section 1

10/26/16 0.4 Added PoC tests

10/26/16 0.4.1 Added Test Template

10/30/16 0.5 Added Non-Functional Req. Tests
10/30/16 0.5.1 Added Bibliography

10/31/16 0.6 Added Names to Test Template
10/31/16 0.7 Proofread and Editing

iii

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. Interested stakeholders are
welcome to view and critique this paper to gain confidence in the success of
the final product. After reviewing the document, the reader should under-
stand the strategy, focus, and motivation behind the efforts of the Rogue++
testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to
be comprehensive by providing context behind critical decisions, motivating
the inclusion of particular features by referring to the existing Rogue im-
plementation, and offering a large variety of tests for various purposes and
hierarchical units. Aside from the implementation, the report will also dis-
cuss a relevant component from the requirements elicitation process (and its
relevance to the testing effort).

1.3 Acronyms, Abbreviations, and States

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

CSV Comma-Separated Value
FSM Finite State Machine
GUI Graphical User Interface
IM Instant Messenger

LoS Line of Sight

PoC Proof of Concept

VPS Virtual Private Server

Table 3: Table of Definitions

Term

Definition

Amulet of Yen-
dor

Boost

Frame
Libtcod

Monochrome
Luminance
Permadeath
Player Character
Rogue

Roguelike

Slack

An item located on the deepest level of the dungeon
that enables the player character to ascend through
the levels and complete the game

C++ utility library that includes a comprehensive
unit testing framework

An instantaneous “snapshot” of the GUI screen
Graphics library that specializes in delivering a
roguelike experience

The brightness of a given colour (with respect to the
average sensitivity of the human eye)

Feature of roguelike games whereby a character
death will end the game

Primary game character that is controlled by the
user in Rogue Reborn

The original UNIX game developer in 1980 that ini-
tiated the roguelike genre

Genre of video games characterized by ASCII graph-
ics, procedurally-generated levels, and permadeath
An online communication platform specializing in
team and project coordination

Table 4: Table of States

State

Definition

Developer State

Fresh State
Gameplay State
Generic State
High Score State

Menu State
Seasoned State

The file system state corresponding to the latest
source code revision and compilation from the Git-
Lab repository

The file system state corresponding to a “fresh”
Rogue Reborn installation

Any application state that reflects the actual game-
play

The file system state corresponding to a functional
(working) installation of Rogue Reborn

Any application state that reflects the top high
scores screen

Any application state that reflects the opening menu
The file system state corresponding to an installation
of Rogue Reborn that already contains several high
score records

1.4 Overview of Document

The early sections of the report will describe the testing environment and
the logistic components of the Rogue Reborn testing effort, including the
schedule and work allocation. Next, a suite of tests will be discussed with
respect to the functional requirements, non-functional requirements, and the
PoC demonstration. Upon discussing the relevance of this project to the
original Rogue, a variety of unit testing strategies will be given followed by
a sample usability survey to gauge the interest and opinion of the Rogue
Reborn game. A breakdown of the sections is listed below:

61 Brief overview of the report contents

62 Project logistics and the software testing environment

§3 Description of system-level integration tests (based on requirements)

64 Explanation of test plans that were inspired by the PoC demonstra-

tion

65 Comparison of the existing Rogue to the current project in the con-
text of testing

66 Outline of the approach to be implemented for unit testing

67 Appendix for symbolic parameters and the usability survey

2 Plan

2.1 Software Description

Initially, a large component of the testing implementation involved the
usage of Boost. In general, Boost is regarded as an industry standard C++
utility library and comes packaged with a great deal of documentation (Gen-
nadiy Rozental and Raffi Enficiaud, 2016). However, this is a double-edged
sword — Boost is heavy, globally encompassing, and requires plentiful effort
to properly setup. The Boost library is suitable for projects spanning years
with dedicated testing and QA teams. Unfortunately, this is not the present
condition of the Rogue Reborn project, and with the project nearing com-
pletion over the next month, the Rogue++ team agreed that it would be
unwise to start using Boost.

Instead, an alternative solution has been proposed: native test cases can
be written in C++ to perform exactly the required tasks and nothing extra.
The details of this implementation will be explained in the following sections.

2.2 Test Team

All members of the Rogue++ team will take part in the testing procedure.
While Mikhail and Tan were assigned the roles of Project Manager and C++
Expert respectively, Ori was given the title of Testing Expert. Testing will
be primarily monitored and maintained by Ori although every team member
will contribute to the testing facilities. The logic behind this rationale is
that it would be desirable for the team member who wrote class C' to write
the unit tests for the same class C'. Due to the dependency structure of
the project’s design, there will be cases where a unit test for one class will
encompass a partial system test for another class. These instances can be
extrapolated from the class inheritance diagram.

2.3 Automated Testing Approach

There has been considerable effort expended towards automating project
infrastructure components. In the real world, any task that can be auto-
mated, should be automated. The steps that have been performed to reduce
manual labour are as follows:

e Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the GitLab repository. Every run is logged and its history may
be accessed at any time.

e Write a special makefile that produces 2 executables:

1. The Rogue Reborn game executable
2. The project test suite.

The details of this process will be described in the following sub-section.

e The team’s primary method of communication is Slack: a cross-platform
and programmer-friendly IM. The Rogue++ team hooked the GitLab
project repository to the team’s Slack channel such that whenever the
repository detects activity, a notification is sent to the channel. This
method greatly improves the team’s awareness about each other’s con-
tributions and also facilitates communication about project-related in-
quiries.

2.4 Testing Tools

The special makefile discussed above utilizes a phenomenon of C++ to
perform the necessary steps. First, it places all source files into a dedi-
cated folder to distinguish them between program files and test files; this is
mandatory since there is an important relationship between the source and
test classes. Consider the diagram below:

Figure 1: Source and Test Relationship

Source Test

As the diagram depicts, there are classes that are shared between both
final programs. In fact, the vast majority of classes fall in the center and are
required by both the game executable as well as the testing component. The
files that are necessary for the tests but not for the source are, obviously,
testing-related files that contain the test case implementations. At the time
of writing, there is only one file required by the source code that is not
required by the test code: the source program entry (i.e. the C++ file that
contains main()).

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the make command. From
there, simply running Test.exe will trigger all of the pre-written tests.

There is also a plan to implement a Python script on the GitLab pipeline
that will cause the build to fail if any of the tests do not pass. It should
be noted that, if a build fails, the pipeline not only reports the failure, but
also logs the location of the failure down to the specific test case. This
will hopefully expedite the debugging process and lead to more responsible
development further into the project timeline.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a powerful analy-
sis tool that tests the amount of memory a C++ program utilizes and de-
tects memory allocation errors such as memory leaks (Valgrind Developers,
2016). C++, unlike Java and other high level languages, does not include
a built-in garbage collector (otherwise there would be nothing left!) to give
programmers total control over their application lifetime. Consequently, it
is a common mistake to accidentally leave unreferenced objects in memory
and cause a memory leak in the program.

At the time of writing, the Rogue Reborn application occupies approx-
imately 1 MB of RAM during peak execution. Although this is a minute
quantity, memory leaks are representative of a larger issue: incorrect code!
By using Valgrind, the Rogue++ team will be able to detect the presence of
these errors and indicate the direction of the next crucial bug fix.

2.5 Testing Schedule

The Gantt Chart can be accessed at this location.

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Basic Mechanics

New Game Start - Functional Test # 1

Type: Dynamic / Manual / Black Box
Initial State: Fresh State
Input: A new game is started.
Output: The program is started.

Ezecution: Either double-clicking the .exe or via terminal:

./RogueReborn. exe.

Save Game - Functional Test # 2

Type: Dynamic / Manual / Black Box
Initial State: Gameplay State
Input: Save command is given or the save key is pressed.

Output: A message indicating that the game has been saved is
displayed to the user in the status area.

Execution: A user will play the game and trigger the input sequence.
Note that this process can be verified by the Test # 3.

Load game - Functional Test # 3

Type: Dynamic / Manual / Black Box
Initial State: Gameplay State
Input: Load command is given or the save key is pressed.

Output: A message indicating that the game has been loaded is
displayed to the user in the status area. The data model
(level, player, monsters, etc.) is also updated to reflect
the state changes.

Execution: A user will play the game and trigger the input sequence
to load and verify that it is in fact the same state that
was previously saved.

Starting Statistics - Functional Test # 4

Type: Dynamic / Automatic / Black Box
Initial State: Generic State
Input: A new game is started.

Output: The player character has the default starting equipment
and statistics.

Execution: 'This feature can be tested by analyzing the save file
since it records all the necessary information about the
player character.

Help Command - Functional Test # 5

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Gameplay State

The “help” command is given or the “help” key is
pressed.

The user is displayed a screen with a list of possible
actions and other information.

A user play the game and trigger the input sequence to
display the “help” menu.

3.1.2 Interaction

Detailer Player Information - Functional Test # 6

Type:
Initial State:
Input:

Output:

Execution:

Dynamic / Manual / Black Box
Gameplay State
N/A

Details about the player (level, health, known status
effects, current depth, etc.) are displayed at the bottom
of the screen in the area known as the Info Bar.

Rogue Reborn playtesters will be asked to answer basic
questions about their player character at random
intervals throughout the game. To answer these
questions, the user must refer to the Info Bar.

10

Environment Inspection - Functional Test # 7

Type:
Initial State:

Input:

Output:

FEzecution:

Dynamic / Manual / Black Box
Gameplay State

The “look” key or command, and then an environment
aspect character.

After the input is supplied, a brief description of the
environment aspect is displayed. This can be limited to
several words (e.g. “This is an Emu”).

Players will be told about the “look” key before their
session and will have to employ it in order to gain
information about their surroundings.

Pass Turn - Functional Test # 8

Type:
Initial State:
Input:

Output:

Execution:

Dynamic / Manual / Black Box
Gameplay State
The “wait” key or command is pressed.

All entities but the player engage in a turn by
performing an action (as dictated by their respective Al).

Players will be asked to skip their turn several times
once an enemy is located (this tactic is used to ensure
the player character delivers the first strike in a combat
sequence).

11

Trap Activation - Functional Test # 9

Type: Dynamic / Manual / Black Box
Initial State: Gameplay State

Input: A dungeon level that can generate traps (this only
occurs at deeper levels).

Output: A message and a message describing the effect of the
trap.

Ezecution: Players will be asked to report the traps they encounter
and the effect that was bestowed upon them upon
activation.

3.1.3 The Dungeon

Staircase Guarantee - Functional Test # 10

Type: Dynamic / Automatic / Black Box
Initial State: Developer State
Input: A set of randomly generated dungeon levels.

Output: An indication of whether or not each dungeon contains a
downwards staircase.

FEzecution: Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if no staircase is discovered, a flag is raised.

12

Level Accessibility - Functional Test # 11

Type

Initial State:
Input:

Output:

Ezxecution:

: Dynamic / Automatic / White Box
Developer State
A set of randomly generated dungeon levels.

An indication of whether or not every dungeon level
forms a strongly connected component.

Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if the number of discovered blocks is not equal to
the number of blocks in the level, a flag is raised.

Line of Sight - Functional Test # 12

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Gameplay State

The player character is somewhere in the dungeon that
is recognizable (i.e. not hidden) and is not blind.

Visibility that depends on the player character’s
surroundings. If the player character is in a room, they
should be able to view the entire room. If the player
character is in a corridor, the player should only be able
to view in surroundings within VIEW_DISTANCE of
their location.

Users will be asked to assess the visibility standards.
Note that this is a bug-prone feature since many
exceptions exist in the realm of the player character’s
current setting.

13

Amulet of Yendor - Functional Test # 13

Type: Dynamic / Automatic / White Box
Initial State: Developer State
Input: Levels generated with a depth of FINAL LEVEL

Output: An indication of whether or not all generated levels
contain the Amulet of Yendor on a reachable tile within
the level.

Ezecution: Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if no Amulet is encountered, a flag is raised.

Searching & Finding - Functional Test # 14

Type: Dynamic / Manual / Black Box

Initial State: The player character in a dungeon beside a hidden door
or passage.

Input: The player character activates the “search” command to
search for adjacent hidden environment features.

Output: The door or passage is either revealed or remains hidden.

Ezecution: Playtesters will be told before the game begins to
occasionally look out for hidden doors; once discovered,
the playtesters will document the number of searches
that were required to reveal the hidden element.

14

3.1.4 Equipment

Inventory Tracking - Functional Test # 15

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Gameplay State

New users are instructed to play the game with no
special requirements.

No users experiences a situation where the inventory
screen does not represent their actual possessions.

Users will be asked to laboriously maintain their
inventory on a piece of paper and compare their copy to
that of the game at various time intervals.

Identification & Naming - Functional Test # 16

Type:
Initial State:

Input:

Output:

Execution:

Dynamic / Manual / Black Box
Gameplay State

Users are instructed to pronounce the names of all items
they collect.

Users are unable to pronounce items they have yet to
identify.

Users will be asked to pronounce the generated names to
the best of their ability to ensure they are nonsensical.

15

Armor & Deterioration - Functional Test # 17

Type:
Initial State:
Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Gameplay State
Users are assured that their armor is invincible.

Users should complain that their armor loses
effectiveness over time.

Aquators and traps possess the capability to destroy
player armor. Users should begin to encounter such
setbacks (starting at level 6) and report their findings.

3.1.5 Combat

Monster AI - Functional Test # 18

Type:
Initial State:

Input:

Output:

Execution:

Dynamic / Automatic / White Box
Developer State

The position of the player character is transmitted to all
monsters in a dungeon level.

All aggressive monsters will calculate their respective
paths and make progress towards the player character.

An automatic script will be created to generate a level,
spawn several monsters in the level, and then simulate a
player character somewhere on the map. From there, a
traceback log of monster paths could be created and
analyzed by having the player simulation repeatedly skip
their turn.

16

Monster Attack Pattern - Functional Test # 19

Type: Dynamic / Automatic / Black Box
Initial State: Developer State
Input: No target for monsters to attack.
Output: Monsters aimlessly wandering around.

Execution: Similar to test # 18, a level could be generated and
populated with monsters; however, no player character
location will be supplied to the level.

3.2 Tests for Non-Functional Requirements

3.2.1 Look and Feel Requirements

Aesthetic Similarity Check - Non-Functional Test # 1

Type: Dynamic / Manual / Black Box
Initial State: Generic State

Input: Users are asked to rate the aesthetic similarity between
Rogue and Rogue Reborn.

Output: A numeric quantity between 0 and 10, where 0 indicates
that the graphics are entirely disjoint and 10 indicates
that the graphics are virtually indistinguishable.

FExecution: A random sample of users will be asked to play Rogue
and the Rogue Reborn variant for
PLAYTEST_SHORT_TIME minutes. Afterwards, they
will be asked to judge the graphical similarity of the
games based on the aforementioned scale.

17

3.2.2 Usability and Humanity Requirements

Interest Gauge Check - Non-Functional Test # 2

Type:

Initial State:
Input:
Output:

Ezecution:

Dynamic / Manual / Black Box
Generic State
New users are instructed to play Rogue Reborn.

The quantity of time the user willingly decides to play
the game.

A random sample of users who are unfamiliar with
Rogue will be asked to play Rogue Reborn until they feel
bored (or MAXIMUM_ENTERTAINMENT TIME has
expired). Once the user indicates that they are no longer
interested in the game, their playing time will be
recorded.

English Mechanics Check - Non-Functional Test # 3

Type:
Initial State:
Input:

Output:

Execution:

Static / Manual / White Box
Developer State
Rogue Reborn source code.

An approximation of the English spelling, punctuation,
and grammar mistakes that are visible through the GUI.

All strings in the Rogue Reborn source code will be
concatenated with a newline delimiter and outputted to
a text file. A modern edition of Microsoft Word from
(Microsoft Corporation) will be used to open this
generated text file, and a developer will manually correct
all of the indicated errors that are potentially associated
with a GUI output.

18

Key Comfort Check - Non-Functional Test # 4

Type:
Initial State:

Input:

Output:

FEzecution:

Dynamic / Manual / Black Box
Generic State

Users are asked to rate the intuitiveness of the Rogue
Reborn key bindings.

A numeric quantity between 0 and 10, where 0 indicates
that the key bindings are extremely confusing and 10
indicates that the key bindings are perfectly natural.

A random sample of users who are inexperienced with
the roguelike genre will be asked to play Rogue Reborn
for SHORT TIME minutes without viewing the in-game
help screen. Next, the key bindings will be revealed, and
the users will continue to play the game for an additional
PLAYTEST _SHORT_TIME minutes. Afterwards, they
will be asked to judge the quality of the key bindings
based on the aforementioned scale

19

3.2.3 Performance Requirements

Response Delay Check - Non-Functional Test # 5

Type:
Initial State:
Input:

Output:

Ezecution:

Dynamic / Automatic / White Box
Generic State
Users are instructed to play Rogue Reborn.

A log of occurrences that indicate events where a
computation that was initiated by a user input took an
excessive quantity of time to execute.

A random sample of experienced users will be asked to
play a special version of Rogue Reborn for

PLAYTEST MEDIUM_RANGE minutes. This edition
will utilize a StopWatch implementation to measure the
execution time of a computation, and if the computation
exceeds RESPONSE_SPEED milliseconds, the user
action and the associated timestamp will be recorded in
a log file.

20

Overflow Avoidance Check - Non-Functional Test # 6

Type: Static / Manual / White Box
Initial State: Developer State
Input: Rogue Reborn source code.

Output: All declarations of integer-typed variables.

Execution: All occurrences of lines that match REGEX INTEGER
(i.e., integer declarations) in the Rogue Reborn source
code will be outputted to a file. A group of Rogue+-+
developers will then review these declarations together
and alter them if deemed necessary to avoid integer
overflow issues.

21

Crash Collection Check - Non-Functional Test # 7

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Generic State

Playtesters are instructed to play Rogue Reborn for at
least PLAYTEST LONG_TIME hours.

A collection of crash occurrences along with a detailed
description of the failure environment.

All Rogue Reborn playtesters will be required to play
the game for at least PLAYTEST_LONG_TIME hours in
total (spanned over multiple sessions if desired). Every
time the application crashes, the playtester must record
the incident along with a description of the visible GUI
state and the steps required to reproduce the failure.
After this data has been collected, the Rogue++ team
will address every crash occurrence by either resolving
the issue or confidently declaring that the event is
irreproducible.

22

Score Overflow Check - Non-Functional Test # 8

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Dynamic / White Box
High Score State

A high score record file containing a large quantity of
entries.

Rogue Reborn GUI displaying the top high scores.

The Rogue Reborn developers will artificially fabricate a
high score record file with at least

HIGH SCORE_CAPACITY + 2 records. The game will
then be played until the high score screen is revealed;
only the top HIGH SCORE_CAPACITY scores should

be displayed.

3.2.4 Operational and Environment Requirements

Processor Compatibility Check - Non-Functional Test # 9

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Fresh State

Users are instructed to install and run Rogue Reborn on
their personal machines.

An indication of whether or not the game is able to
successfully execute.

A random sample of users with computers that are
equipped with Intel x64 processors will be asked to
download the latest Rogue Reborn distribution, perform
any necessary installation, and then run the executable
file. The user will then report if the game was able to
successfully run on their machine.

23

Streamline Distribution Check - Non-Functional Test # 10

Type:
Initial State:
Input:

Output:

Ezecution:

Static / Manual / Black Box
Developer State
Rogue Reborn distribution package.

An indication of whether or not the distribution contains
any files aside from the primary executable and the
associated development licenses.

The public distribution package will be visually
inspected for extraneous files.

3.2.5 Maintainability Requirements

Bug Productivity Check - Non-Functional Test # 11

Type:
Initial State:

Input:

Output:

FEzecution:

Static / Manual / Black Box
Developer State

All ITS issues labeled as bugs in the Rogue Reborn
GitLab repository.

An indication of whether or not all bug reports were
closed within a month of their conception.

The Rogue Reborn GitLab repository will be queried for
all issues concerning bugs (which are denoted by a
“Bug” label). Next, a developer will manually verify
that every closed bug fix request was resolved within a
month of its creation.

24

Linux Compatibility Check - Non-Functional Test # 12

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Fresh State

Users are instructed to run Rogue Reborn on their
personal machine.

An indication of whether the game can successfully
execute.

A random sample of users with computers that use a
modern 64-bit Linux operating system will be asked to
download the latest Rogue Reborn distribution, perform
any necessary installation, and then run the executable
file. The user will then report if the game was able to
successfully run on their machine.

3.2.6 Security Requirements

Illegal Records Check - Non-Functional Test # 13

Type:

Initial State:
Input:
Output:

FEzecution:

Dynamic / Manual / White Box

Seasoned State

A corrupted high score record file.

Rogue Reborn GUI displaying the top high scores.

The Rogue++ team will illegally modify a high score
record file by manually altering or adding values such
that the expected format or value integrity is violated.
These modifications should include negative high score
values, missing text, and incorrect delimiter usage. The
game will then be played until the high score screen is
revealed; all invalid record file contents should be
ignored and amended in the next write to the record file.

25

3.2.7 Legal Requirements

License Presence Check - Non-Functional Test # 14

Type: Static / Manual / Black Box
Initial State: Developer State
Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution is
missing any mandatory license files.

Ezecution: The original Rogue source code hosted by (Holger Weib,
1994) will be reviewed for legal requirements, and the
public distribution package will be visually inspected to
ensure that all mandatory license files are present.

26

3.2.8 Health and Safety Requirements

Seizure Prevention Check - Non-Functional Test # 15

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Developer State

Two screenshots denoting the largest possible luminosity
difference present between consecutive frames.

The difference in luminosity between the two captured
frames.

After identifying the frame pair that is most likely to
induce a seizure, the game will be played to reach the
states that reflect each frame (this should be a brief
process; no clever game model manipulation is required).
At the occurrence of each desired frame, the game screen
will be captured and saved. At this point, the average
monochrome luminance across each frame will be
calculated according to the formula

L =0.299R + 0.587G' + 0.114B

where L is the luminance, R is the red RGB component,
G is the green RGB component, and B is the blue RGB
component (Robert Sedgewick and Kevin Wayne, 2016).
Finally, the absolute value of the luminance difference
can then compared to LUMINOSITY _DELTA.

27

4 Tests for Proof of Concept

4.1 Static Testing

Compile Test - PoC Test # 1

Type:
Initial State:

Static / Automatic / White Box

Developer State

Input: Program source code.
Output: Program executable file.
Ezecution: Run the makefile to verify that the program is able to
successfully compile.
Memory Check - PoC Test # 2
Type: Dynamic / Manual / White Box

Initial State:
Input:
Output:

Execution:

Generic State
A brief but complete playthrough of the game.
Breakdown of program memory usage.

A playtester will briefly play the game while a developer
uses Valgrind’s memcheck utility to verify that program
does not leak memory or utilize uninitialized memory.

28

4.2 Rendering

Render Check - PoC Test # 3

Type: Dynamic / Manual / 1 Box
Initial State: Black
Input: Gameplay State
Output: 30-60 seconds of gameplay.

Ezecution: The player character (along with any dungeon features)
should be depicted at their correct respective location
with the correct glyph. Additionally, the correct player
statistics should be shown along the bottom of the
screen. The dialog box should correctly display the log
and any prompts.

A tester will manually play the game and verify that the GUI text is
correct.

4.3 Dungeon Generation

Dungeon-Gen Check - PoC Test # 4

Type: Dynamic / Manual / Black Box
Initial State: Generic State
Input: Repeated restarts of the game

Output: Level should contain ROOMS PER _LEVEL rooms,
which should form a connected graph.

Ezxecution: A tester will manually start the game, briefly explore the
level to verify correct generation, and then repeat this
process until a sufficient level of confidence is achieved.

29

4.4 Basic Movement

Movement Check - PoC Test # 5

Type:

Initial State:
Input:
Output:

Execution:

Dynamic / Manual / Black Box
Gameplay State
Movement commands

The player character should move about the level
without clipping through walls, failing to walk through
empty space, or jump to a tile that is not adjacent to
their previous position.

A playtester will manually walk through the level and
visually verify correctness.

4.5 Score File

Scoring File Check - PoC Test # 6

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Menu State

Enter a name, quit, restart the game, and then enter
name again, and then quit.

The first name should appear in both the first and
second score screens; the second name should appear in
only the second score screen. Both records should have
correct values for level, cause of death, and collected
gold.

A developer will manually perform the input sequence
above and verify the output. This should be tested both
with and without an initial score file.

30

4.6 Line of Sight System

Line of Sight Check - PoC Test # 7

Type:
Initial State:
Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Gameplay State
Movement commands

Screen should display correct portions of the level with
the correct coloration schemes. This means that the
player should be able to see the entirety of a room they
are in or in the doorway of, and VIEW _DISTANCE
squares away if they are in a corridor. Tiles that the
player has previously explored but cannot currently see
should be displayed in a dark shade of grey; tiles they
have not yet been discovered should remain black and
featureless.

A developer will manually walk through the level,
verifying that the above LoS rules are preserved
(especially in edge cases like the corners of rooms and
doorways).

31

5 Comparison to Existing Implementation

The original Rogue contains an abundance of features, and luckily, is open
source. This means that the vast majority of features in Rogue Reborn can
be tested in accordance to their similarity to the original game. Some exam-
ples of such occurrences are discussed below.

An attempt has been made to replicate nearly one-for-one the items, loot,
and treasure obtainable in the original Rogue. Wands, staffs, rings, potions,
ammunition, weapons, armor and more were all implemented with the same
values and parameters. Regarding the items available for collection, play-
ers of the original game should feel comfortable with the remastered Rogue
Reborn experience. Unlike some contemporary games, the original Rogue
does not specify the effectiveness of an attack (besides its hit or miss), as
does Rogue Reborn. Consequently, a user who is experienced with the orig-
inal game may expect certain behavior out of a weapon or item, and find
a difference in its effectiveness, despite the near one-to-one transition. This
phenomenon could stem from a variety of sources, the most likely of which
being a bug in the new implementation.

Another aspect of the game that was replicated from the original source
code is the dungeon generation. Of course, the modern Rogue Reborn makes
use of a more advanced data structure with several capabilities that were
not available for the C of 1980, but the data structures are still conceptually
similar. The process followed for dungeon generation in 1980 was somewhat
ill-conceived and convoluted. Despite this, its discernible aspects were used
as an inspiration for the algorithm used in Rogue Reborn. While at the end
of the day the two do not follow exactly the same procedure, the end results
are quite close, and the included functional test cases ensure that all prop-
erties of the old Rogue are satisfied in Rogue Reborn.

Another way Rogue Reborn can be compared to the original Rogue is by
its controls. This is a feature that can be automatically tested, and can be
guaranteed to function exactly as intended. Every key in Rogue is mapped
to a specific action, which can be replicated one-for-one in Rogue Reborn.
This kind of relationship allows for the creation of easy, maintainable tests
whose implementation are nearly trivial.

32

The final comparison to be discussed is the software environment. The
original Rogue was executed in the terminal, and still does so on UNIX-like
machines. Rogue Reborn, however, runs in a window handled by [libtcod.
The differences may not be apparent to a standard end-user, but this is
extremely significant for the developers of the application. There are many
dozens of different terminals, each with its own special display characteristics,
features, macros, and more. The different software environment may slightly
alter response time, save and load times, and several other factors, although
these changes can only improve the user experience. The differences between
the terminal Rogue and the libtcod Rogue will be exactly the features the
Rogue++ team will attempt to discover with a solid foundation and tests
and implementation experiments.

33

6 Unit Testing Plan

After examining the Boost library’s utilities for unit testing, it was de-
cided that integrating an existing unit testing framework was not in the
project’s best interests. The Rogue++ team concluded that adding a frame-
work would significantly decrease the amount of work to be done, while at
the same time reducing flexibility and causing potential installation difficul-
ties. As a consequence of this fact, test drivers will be manually written.
Stubs will also be produced when necessary to simulate system components;
since there are no database or network connections, stubs should be kept
minimalistic and clean. It is important to note that additional functions
may be required to construct objects in states suitable for easy testing (e.g.
creating a level or player character with certain known properties rather than
by random generation).

6.1 Unit Testing of Internal Functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions in order to not avoid wasting valuable develop-
ment time. Given that complete code coverage is not a realistic goal, generic
code coverage metrics will not be used. Instead, care will be taken that com-
plex functions are covered by unit test cases. The following list highlights
several examples of internal functions that are solid initial candidates for unit
testing:

e Dungeon Generation Functions - The dungeon generation software
may be algorithmically complex, but it also lends itself to easy auto-
mated verification of properties such as checking the correct number of
rooms, connectedness, compliance with formulas for item generation,
and the presence or absence of certain key features such as the stairs
connecting levels or the Amulet of Yendor in the final level.

e Keyboard Input Functions - As libtcod provides a Key struct that
models keyboard input, it is possible to mock and automate these func-
tions. These functions tend to be fairly complex, but since they return
a pointer to the next desired state (similar to a FSM), their behavior
can be verified with greater ease.

34

e Item Activation Functions - It could be verified that when the
player character, for example, quaffs a Potion of Healing, their health
is increased. Other examples include verifying that a Scroll of Magic-
Mapping reveals the current level, or that a Scroll of Identification
reveals the nature (name) of an item.

e Item Storage Functions - Each item is mapped to a persistent hotkey
in the player character’s inventory. Certain items can also stack with
copies, reducing the amount of inventory space they consume, which
also alters the way they are displayed the user. These factors complicate
the inventory storage structure; however, it is still easily verifiable, and
automated testing can be created to examine edge cases that would be
impractical to test manually.

As the project matures, additional functions may be included as special
testing considerations.

6.2 Unit Testing of Output Files

The only output file for the product is the high score record file which
stores the previous scores in a CSV format. The production and reading
of this file can be unit tested by verifying its contents after writing to it,
and then by supplying a testing version of the file with known contents and
verifying that the game can correctly load the data from the file.

35

References

Gennadiy Rozental and Raffi Enficiaud. Boost Test. http://www.boost.
org/doc/libs/1_62_0/1ibs/test/doc/html/index.html, September
21, 2016. Accessed: October 24, 2016.

Holger Weib. Rogue [GitHub Repository]. https://github.com/weiss/
original-bsd/tree/master/games/rogue, June 1, 1994. Accessed: Oc-
tober 31, 2016.

Microsoft Corporation. Word. https://products.office.com/en-us/
word. Accessed: October 31, 2016.

Robert Sedgewick and Kevin Wayne. Luminance.java. http://introcs.cs.
princeton.edu/java/31ldatatype/Luminance.java.html, August 30,
2016. Accessed: October 30, 2016.

Valgrind Developers. Valgrind. http://valgrind.org/, 2016. Accessed:
October 31, 2016.

36

http://www.boost.org/doc/libs/1_62_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_62_0/libs/test/doc/html/index.html
https://github.com/weiss/original-bsd/tree/master/games/rogue
https://github.com/weiss/original-bsd/tree/master/games/rogue
https://products.office.com/en-us/word
https://products.office.com/en-us/word
http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html
http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html
http://valgrind.org/

7 Appendix

7.1 Symbolic Parameters

Table 5: Symbolic Parameter Table

Parameter Value
ROOMS_PER_LEVEL 9
FINAL_LEVEL 26
HEIGHT_RESOLUTION 400
LUMINOSITY_DELTA 0.5
MINIMUM_ENTERTAINMENT_TIME 20
MINIMUM_RESPONSE_SPEED 30
HIGH_SCORE_CAPACITY 15
PLAYTEST_SHORT_TIME 5
PLAYTEST MEDIUM RANGE 10-20
PLAYTEST_LONG_TIME 3
REGEX_INTEGER (charlint|long) .*(, ;)
START _LEVEL 1
VIEW _DISTANCE 1
WIDTH_RESOLUTION 1280

37

7.2

10.

11.

12.
13.
14.

15.

Usability Survey Questions

. Are there any game features that you were unable to figure out how to

utilize?

How convenient was the help screen?

. Were there any actions in the game that the interface failed to make

clear to you (or even deceived you)?

. What common UI interactions did you find particularly lengthy?
. What aspects of the interface did you find unintuitive?

. How responsive was the interface? Were there any instances where the

game felt slow or sluggish?

Did you find it easy to mentally process all of the events in a given
level?

How effective were the graphics/symbols?

. Would an alternative input device such as a mouse improve the inter-

action with the interface?

Is there any extra functionality you would like to see added to the
interface?

How much experience do you have with the roguelike genre? Did you
find the learning curve of the game shallow or steep?

How helpful was the original Rogue game manual?
How pleasing was the color scheme?
Was the font a comfortable size?

How would you rate the key binding layout on a scale ranging from 1
through 107

38

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and States
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Basic Mechanics
	Interaction
	The Dungeon
	Equipment
	Combat

	Tests for Non-Functional Requirements
	Look and Feel Requirements
	Usability and Humanity Requirements
	Performance Requirements
	Operational and Environment Requirements
	Maintainability Requirements
	Security Requirements
	Legal Requirements
	Health and Safety Requirements

	Tests for Proof of Concept
	Static Testing
	Rendering
	Dungeon Generation
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit Testing of Internal Functions
	Unit Testing of Output Files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

