
SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Due Monday, October 31st, 2016

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 2

2 Plan 3
2.1 Software Description . 3
2.2 Test Team . 3
2.3 Automated Testing Approach 3
2.4 Testing Tools . 4
2.5 Testing Schedule . 5

3 System Test Description 6
3.1 Tests for Functional Requirements 6

3.1.1 Area of Testing1 . 6
3.1.2 Area of Testing2 . 6

3.2 Tests for Non-Functional Requirements 6
3.2.1 Area of Testing1 . 6
3.2.2 Area of Testing2 . 6

4 Tests for Proof of Concept 7
4.1 Static Testing . 7
4.2 Basic Movement . 8
4.3 Score File . 8
4.4 Line of Sight System . 8

5 Comparison to Existing Implementation 10

6 Unit Testing Plan 11
6.1 Unit testing of internal functions 11
6.2 Unit testing of output files . 11

7 Appendix 13
7.1 Symbolic Parameters . 13
7.2 Usability Survey Questions . 14

i

List of Tables

1 Revision History . ii
2 Table of Abbreviations and Acronyms 1
3 Table of Definitions . 2
4 Symbolic Parameter Table 13

List of Figures

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup
10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2
10/24/16 0.3 Added Section 1
10/26/16 0.4 Added PoC tests
10/26/16 0.4.1 Added Test Template

ii

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. After reviewing the document,
the reader should understand the strategy, focus, and motivation behind the
efforts of the Rogue++ testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to be
comprehensive by providing context behind critical decisions, motivating the
inclusion of particular features by referring to the existing Rogue implementa-
tion, and offering a large variety of tests for various purposes and hierarchical
units. Aside from the implementation, the report will also discuss a relevant
component from the requirements elicitation process.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

PoC Proof of Concept

1

Table 3: Table of Definitions

Term Definition

Boost C++ utility library that includes a comprehensive unit
testing framework

Libtcod Graphics library that specializes in emulating a rogue-
like experience

Permadeath Feature of roguelike games whereby a character death
will end the game

Roguelike Genre of video games characterized by ASCII graphics,
procedurally-generated levels, and permadeath

1.4 Overview of Document

The early sections of the report will describe the testing environment
and the logistic components of the Rogue Reborn testing effort, including
the schedule and work allocation. Next, a suite of tests will be discussed
with respect to the functional requirements, nonfunctional requirements, and
proof of concept demonstration. Upon discussing the relevance of this project
to the original Rogue, a variety of unit tests will be given followed by a sample
usability survey to guage the interest and opinion of the Rogue Reborn game.
A breakdown of the sections is listed below:

§1 Brief overview of the report contents

§2 Project logistics and the software testing environment

§3 Description of system-level integration tests (based on requirements)

§4 Explanation of test plans that were inspired by the PoC demonstration

§5 Comparison of the existing Rogue to the current project in the context
of testing

§6 Outline of the module-level unit tests

§7 Appendix for symbolic parameters and the aforementioned usability
survey

2

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the
completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for
this project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

• Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

3

• Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

• The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++
to perform the necessary steps. First, it places all source files into a ded-
icated folder, distinguishing between program files and test files. This is
an absolutely necessary step, as there is an important relationship between
source and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both the
final project and its testing component. The files required by the test which
are not required by the source are, obviously, testing-related files. These are
the files that contain the test case implementations. At the time of writing,
there is actually only one file required by source that is not required by the
test, and that is the source program entry (i.e. the file that contains the
main() method).

4

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the ”make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At the time of
writing this document, it is not yet implemented, but note will be made when
it does. It should be noted that if a build fails, the pipeline not only reports
the failure, but also logs where the failure happened, down to the specific
test case. This will hopefully make debugging a more pleasant experience
later on.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a tool that tests
the amount of memory a C++ program utilizes, and detects errors such
as memory leaks. This is an extremely useful and powerful tool. C++,
unlike Java and other high level languages, does not have a built-in garbage
collector. Garbage collectors are to be implemented by the user. Due to this,
it is easy to accidentally leave behind an object or two, causing a memory leak
in the program. Valgrind detects this, and will provide useful information
during development and testing.

2.5 Testing Schedule

See Gantt Chart at the following url ... TODO

5

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testing1

Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Menu screen

Input: Alphanumeric keyboard interrupts

Output: Valid characters that are pressed will appear
on the screen beside the character name
prompt

Execution: Typing the name of the character on the
keyboard

3.1.2 Area of Testing2

...

3.2 Tests for Non-Functional Requirements

3.2.1 Area of Testing1

3.2.2 Area of Testing2

...

6

Non-Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Gameplay screen

Input: Game model

Output: Graphical display

Execution: Visual inspection

4 Tests for Proof of Concept

4.1 Static Testing

Proof of Concept Test # 1

Type: Static / Automatic / White Box

Initial State: None

Input: Program Source

Output: Program Executable

Execution: Verify that the program compiles with g++

1. test-id2

Type: Dynamic/Manual/Automatic

Initial State: None

Input: 30-60 seconds of gameplay

Output: Breakdown of program memory usage.

How test will be performed: Use valgrind memcheck utility to verify
that program does not leak memory or utilize uninitialized memory.

7

4.2 Basic Movement

1. test-id1

Type: Dynamic/Manual

Initial State: Normal playstate

Input: Movement commands

Output: Player should move about the level, without clipping through
walls or failing to walk through empty space

How test will be performed: A developer will manually walk through
the level

4.3 Score File

1. test-id1

Type: Dynamic/Manual

Initial State: Main menu

Input: Enter name, then quit, restart game, enter name again, and
quit.

Output: 1st name should appear in both the first and second score
screens. The 2nd should appear in the second. Both should have
correct values for level, cause of death/quit, and gold collected.

How test will be performed: A developer will manually perform the
above input, and verify the output.

4.4 Line of Sight System

1. test-id1

Type: Dynamic/Manual

Initial State: Normal playstate

Input: Movement commands

8

Output: Screen should display correct portions of level, with correct
coloration schemes. This means that the player should be able to see
the entirety of a room they are in or in the doorway of, and only their
adjacent squares if they are in a corridor. Squares that the player has
seen in the past but cannot see currently should be shown greyed out.
Squares they have not seen should be black and featureless.

How test will be performed: A developer will manually walk through
the level, verifying that the above LoS rules are preserved, especially
in edge cases like the corners of rooms and doorways.

9

5 Comparison to Existing Implementation

10

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties. Since
we are not using a framework, drivers will be written by hand. Stubs will be
produced when necessary to simulate system components.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. As complete code coverage is not a goal, generic code coverage metrics
will not be used. Instead, care will be taken that complex functions are cov-
ered by unit tests. The following are examples of internal functions that are
initial candidates for unit testing. Other functions will be added as necessary:

• The dungeon generation functions. The work of generating the dungeon
is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectness, compliance
with formulas for item generation, presence or absence of certain key
features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

• The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

• The item activation functions. For example it could be verified that
when the player drank a potion of healing their health increased (if it
was not at its maximum), that a scroll of magic-mapping is reveals the
level, or that a scroll of identification reveals the nature of an item.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can

11

be unit-tested by verifying its contents after writing to it, and by providing
a testing version of the file with known contents and verifying the function
reads them correctly.

12

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 4: Symbolic Parameter Table

Parameter Value

FINAL LEVEL 26

WIDTH RESOLUTION 1280

HEIGHT RESOLUTION 400

VIEW DISTANCE 2

START LEVEL 1

MINIMUM ENTERTAINMENT TIME 20

MINIMUM RESPONSE SPEED 30

HIGH SCORE CAPACITY 15

LUMINOSITY DELTA 0.5

13

7.2 Usability Survey Questions

1. Is there any game feature you were unable to figure out how to utilize?

2. How helpful was the help screen for you?

3. Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

4. What common UI interactions did you find particularly lengthy?

5. What aspects of the interface did you find unintuitive?

6. How responsive was the interface?

7. How easy was it to see everything that was going on?

8. How effective are the graphics/symbols?

9. Would an alternative input device such as a mouse make interacting
with the interface easier for you?

10. Is there any extra functionality you would like added to the interface?

11. How difficult was it to learn the game? How much experience do you
have with Roguelikes?

12. How helpful was the original game manual?

13. How pleasing was the color scheme?

14. Was the font large enough for easy use?

15. Were you able to learn the hotkeys easily?

14

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Non-Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Proof of Concept
	Static Testing
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

