SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

[an Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Due Monday, October 31%, 2016

Contents

1

General Information

1.1 Purpose e
1.2 Scope
1.3 Acronyms, Abbreviations, and States
1.4 Overview of Document

Plan

2.1 Software Description
22 Test Team oo
2.3 Automated Testing Approach
2.4 Testing Tools
2.5 Testing Schedule L.

System Test Description

3.1 Tests for Functional Requirements
3.1.1 Areaof Testingl
3.1.2 Areaof Testing2

3.2 Tests for Non-Functional Requirements
3.2.1 Look and Feel Requirements
3.2.2 Usability and Humanity Requirements
3.2.3 Performance Requirements
3.2.4 Operational and Environment Requirements
3.2.5 Maintainability Requirements
3.2.6 Security Requirements
3.2.7 Legal Requirements
3.2.8 Health and Safety Requirements

Tests for Proof of Concept

4.1 Static Testing
4.2 Basic Movement
4.3 ScoreFile
4.4 Line of Sight System

Comparison to Existing Implementation

18
18
18
19
19

20

Unit Testing Plan 21

6.1 Unit testing of internal functions 21
6.2 Unit testing of output files 21
Appendix 24
7.1 Symbolic Parameterso oL 24
7.2 Usability Survey Questions 25

List of Tables

Ol W N+~

Revision History
Table of Abbreviations and Acronyms
Table of Definitions
Table of States
Symbolic Parameter Table 24

List of Figures

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup

10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2

10/24/16 0.3 Added Section 1

10/26/16 0.4 Added PoC tests

10/26/16 0.4.1 Added Test Template

10/30/16 0.5 Added Non-Functional Req. Tests
10/30/16 0.5.1 Added Bibliography

i

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. After reviewing the document,
the reader should understand the strategy, focus, and motivation behind the
efforts of the Rogue++ testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to be
comprehensive by providing context behind critical decisions, motivating the
inclusion of particular features by referring to the existing Rogue implementa-
tion, and offering a large variety of tests for various purposes and hierarchical
units. Aside from the implementation, the report will also discuss a relevant
component from the requirements elicitation process.

1.3 Acronyms, Abbreviations, and States

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

GUI Graphical User Interface
PoC Proof of Concept

Table 3: Table of Definitions

Term Definition

Boost C++ utility library that includes a comprehensive
unit testing framework

Frame An instantaneous “Snapshot” of the GUI screen

Libtcod Graphics library that specializes in emulating a
roguelike experience

Monochrome The brightness of a given colour (with respect to the

Luminance average sensitivity of the human eye)

Permadeath Feature of roguelike games whereby a character
death will end the game

Roguelike Genre of video games characterized by ASCII graph-
ics, procedurally-generated levels, and permadeath

Table 4: Table of States
State Definition

Developer State
Fresh State

Gameplay State
High Score State

Menu State
Public Test State

The file system state corresponding to the latest
source code revision from the Git repository

The file system state corresponding to a “fresh”
Rogue Reborn installation

Any application state that reflects the actual game-
play

Any application state that reflects the top high
scores screen

Any application state that reflects the opening menu
The system state corresponding to an installation
of Rogue Reborn that is shared by a subset of the
public game testers

1.4 Overview of Document

The early sections of the report will describe the testing environment
and the logistic components of the Rogue Reborn testing effort, including

the schedule and work allocation. Next, a suite of tests will be discussed
with respect to the functional requirements, nonfunctional requirements, and
proof of concept demonstration. Upon discussing the relevance of this project
to the original Rogue, a variety of unit tests will be given followed by a sample
usability survey to guage the interest and opinion of the Rogue Reborn game.
A breakdown of the sections is listed below:

e 51 Brief overview of the report contents

62 Project logistics and the software testing environment

63 Description of system-level integration tests (based on requirements)

64 Explanation of test plans that were inspired by the PoC demonstra-
tion

65 Comparison of the existing Rogue to the current project in the con-
text of testing

66 Outline of the module-level unit tests

87 Appendix for symbolic parameters and the aforementioned usability
survey

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the
completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C' to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for
this project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

e Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

e Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

e The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++
to perform the necessary steps. First, it places all source files into a ded-
icated folder, distinguishing between program files and test files. This is
an absolutely necessary step, as there is an important relationship between
source and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both the
final project and its testing component. The files required by the test which
are not required by the source are, obviously, testing-related files. These are
the files that contain the test case implementations. At the time of writing,
there is actually only one file required by source that is not required by the
test, and that is the source program entry (i.e. the file that contains the
main() method).

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the "make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At the time of
writing this document, it is not yet implemented, but note will be made when
it does. It should be noted that if a build fails, the pipeline not only reports
the failure, but also logs where the failure happened, down to the specific
test case. This will hopefully make debugging a more pleasant experience
later on.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a tool that tests
the amount of memory a C++ program utilizes, and detects errors such
as memory leaks. This is an extremely useful and powerful tool. C++,
unlike Java and other high level languages, does not have a built-in garbage
collector. Garbage collectors are to be implemented by the user. Due to this,
it is easy to accidentally leave behind an object or two, causing a memory leak
in the program. Valgrind detects this, and will provide useful information
during development and testing.

2.5 Testing Schedule
See Gantt Chart at the following url ... TODO

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testingl

Functional Test # 1

Type:

Initial State:
Input:
Output:

Ezecution:

Dynamic / Manual / Black Box
Menu screen
Alphanumeric keyboard interrupts

Valid characters that are pressed will appear on the
screen beside the character name prompt

Typing the name of the character on the keyboard

3.1.2 Area of Testing2

3.2 Tests for Non-Functional Requirements

3.2.1 Look and Feel Requirements

Non-Functional Test # 1

Type:
Initial State:

Input:

Output:

Execution:

Dynamic / Manual / Black Box
Public Test State

Users are asked to rate the aesthestic similarity between
Rogue and Rogue Reborn.

A numeric quantity between 0 and 10, where 0 indicates
that the graphics are entirely disjoint and 10 indicates
that the graphics are virtually indistinguishable.

A random sample of users will be asked to play Rogue
and the Rogue Reborn variant for
PLAYTEST_SHORT_TIME minutes a piece.
Afterwards, they will be asked to judge the graphical
similarity of the games based on the aforementioned
scale.

3.2.2 Usability and Humanity Requirements

Non-Functional Test # 2

Type:
Initial State:

Dynamic / Manual / Black Box

Public Test State

Input: New users are instructed to play Rogue Reborn.
Output: The quantity of time the user willingly decides to play
the game.

Ezecution: A random sample of users who are unfamiliar with
Rogue will be asked to play Rogue Reborn until they feel
bored (or MAXIMUM_ENTERTAINMENT _TIME has
expired). Once they indicate that they no longer wish to
play, their playing time will be recorded.

Non-Functional Test # 3
Type: Static / Manual / White Box

Initial State:
Input:

Output:

Execution:

Developer State
Rogue Reborn source code.

An approximation of the English spelling, punctuation,
and grammar mistakes that can be visible from the GUI.

All strings in the Rogue Reborn source code will be
concatenated with a newline delimiter and placed in a
text file. A modern edition of Microsoft Word will be
used to open this generated text file, and a developer can
then manually correct all indicated errors that are
potentially associated with a GUI output.

Non-Functional Test # 4

Type:
Initial State:

Input:

Output:

FEzecution:

Dynamic / Manual / Black Box
Public Test State

Users are asked to rate the intuitiveness of the Rogue
Reborn key bindings.

A numeric quantity between 0 and 10, where 0 indicates
that the key bindings are extremely confusing and 10
indicates that the key bindings are perfectly natural.

A random sample of users who are inexperienced with
the roguelike genre will be asked to play Rogue Reborn
for SHORT TIME minutes without viewing the key
binding help screen. Next, the key bindings will be
revealed and the users will continue to play for an
additional PLAYTEST SHORT _TIME minutes.
Afterwards, they will be asked to judge the quality of the
key bindings based on the aforementioned scale

10

3.2.3 Performance Requirements

Non-Functional Test # 5

Type:
Initial State:
Input:

Output:

Ezecution:

Dynamic / Automatic / White Box
Public Test State
Users are instructed to play Rogue Reborn.

A log of occurrences where a computation that was
initiated by a user input took an excessive quantity of
time to execute.

A random sample of experienced users will be asked to
play a special version of Rogue Reborn for

PLAYTEST MEDIUM_RANGE minutes. This version
will use a StopWatch implementation to measure the
execution time of a computation, and if such a
computation exceeds RESPONSE_SPEED milliseconds,
the user action and timestamp will be recorded in a log
file.

11

Non-Functional Test # 6

Type:
Initial State:

Static / Manual / White Box

Developer State

Input: Rogue Reborn source code.
Output: All declarations of integer-typed variables.

Ezecution: A recursive grep command will be used to capture all
lines in the Rogue Reborn source code that match
REGEX_INTEGER (i.e., integer declarations). A group
of Rogue++ developers can review these declarations
together and alter them if deemed necessary to avoid
integer overflow issues.

Non-Functional Test # 7
Type: Dynamic / Manual / Black Box

Initial State:

Input:

Output:

Execution:

Public Test State

Playtesters are instructed to play Rogue Reborn for at
least PLAYTEST_LONG_TIME hours.

A collection of crash occurrences along with descriptions
that explain how the failure occurred.

All Rogue Reborn playtesters will be required to play
the game for at least PLAYTEST LONG _TIME hours in
total (spanned over multiple sessions if desired). If the
application crashes during any time, the user must
record the incident along with a description of the visible
GUI state and the steps required to reproduce the
failure. The Rogue++ team must address each crash by
either resolving the issue or confidently declaring that
the event is irreproducible.

12

Non-Functional Test # 8

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / White Box
High Score State

A high score record file containing a large quantity of
entries.

Screen denoting the top high scores.

The Rogue Reborn developers will artificially fabricate a
high score record file with at least

HIGH SCORE_CAPACITY + 2 records. One round of
the game will be played, and when the high score screen

is revealed, only the top HIGH_SCORE_CAPACITY
scores should be displayed.

3.2.4 Operational and Environment Requirements

Non-Functional Test # 9

Type:
Initial State:

Input:

Output:

Ezxecution:

Dynamic / Manual / Black Box
Fresh State

Users are instructed to run Rogue Reborn on their
personal machine.

An indication of whether the game can successfully
execute.

A random sample of users with computers that are
equipped with Intel x64 processors will be asked to
download the latest Rogue Reborn distribution and
attempt to run the executable. The user will then report
if the game successfully runs on their machine.

13

Non-Functional Test # 10

Type:
Initial State:
Input:

Output:

Ezecution:

Static / Manual / Black Box
Developer State
Rogue Reborn distribution package.

An indication of whether or not the distribution contains
any files aside from the primary executable and the
associated licenses.

The public distribution package will be visually
inspected for extraneous files.

3.2.5 Maintainability Requirements

Non-Functional Test # 11

Type:
Initial State:

Input:

Output:

FEzecution:

Static / Manual / Black Box
Developer State

All ITS issues labeled as bugs in the Rogue Reborn
GitLab repository.

A list of all bug reports and their corresponding
resolution date (if closed).

The Rogue Reborn GitLab repository will be queried for
all issues concerning bugs (which are denoted by a
“Bug” label). A developer can then manually verify that
every closed bug fix request was resolved within a month
of its creation.

14

Non-Functional Test # 12

Type:
Initial State:

Input:

Output:

Ezecution:

Dynamic / Manual / Black Box
Fresh State

Users are instructed to run Rogue Reborn on their
personal machine.

An indication of whether the game can successfully
execute.

A random sample of users with computers that use a
modern 64-bit Linux operating system will be asked to
download the latest Rogue Reborn distribution and
attempt to run the executable. The user will then report
if the game successfully runs on their machine.

3.2.6 Security Requirements

Non-Functional Test # 13

Type:

Initial State:
Input:
Output:

FEzecution:

Dynamic / Manual / White Box
High Score State
A corrupted high score record file.

Screen denoting the top HIGH SCORE_CAPACITY
(valid) high scores.

The Rogue++ team will illegally modify a high score
record file by manually altering or adding values such
that the expected format or value integrity is violated.
These modifications should include negative high score
values, missing text, and incorrect delimiter usage. The
game will then be executed to reach the High Score
State, where invalid record file contents should be
ignored and amended in the next write to the file.

15

3.2.7 Legal Requirements

Non-Functional Test # 14

Type:
Initial State:
Input:

Output:

Ezxecution:

Static / Manual / Black Box
Developer State
Rogue Reborn distribution package.

An indication of whether or not the distribution is
missing any mandatory license files.

The original Rogue source code (as referenced on the
Rogue Reborn GitLab homepage) will be reviewed for
legal requirements, and the public distribution package
will be visually inspected to ensure that all license files
are present.

16

3.2.8 Health and Safety Requirements

Non-Functional Test # 15

Type:
Initial State:

Input:

Output:

Ezecution:

Static / Manual / Black Box
Developer State

Two screenshots denoting the largest possible luminosity
difference present between two consecutive frames.

The difference in luminosity between the two captured
frames.

After identifying the frame pair that is most likely to
induce a seizure, the game will be played to reach the
states that reflect each frame (this should be a brief
process; no clever game model manipulation is required).
At the occurrence of each desired frame, the game screen
will be captured. At this point, the average monochrome
luminance across each frame will be calculated according
to

L =0.299R + 0.587G' + 0.114B

where L is the luminance, R is the red RGB component,
G is the green RGB component, and B is the blue RGB
component (Robert Sedgewick and Kevin Wayne, 2016).
Finally, the absolute value of the luminance difference
can then compared to LUMINOSITY _DELTA.

17

4 Tests for Proof of Concept

4.1 Static Testing

Proof of Concept Test # 1

Type: Static / Automatic / White Box
Initial State: None
Input: Program Source

Output: Program Executable

Execution: Verify that the program compiles with g+-+

1. test-id2

Type: Dynamic/Manual/Automatic

Initial State: None

Input: 30-60 seconds of gameplay

Output: Breakdown of program memory usage.

How test will be performed: Use valgrind memcheck utility to verify
that program does not leak memory or utilize uninitialized memory.

4.2 Basic Movement

1. test-id1l

Type: Dynamic/Manual
Initial State: Normal playstate
Input: Movement commands

Output: Player should move about the level, without clipping through
walls or failing to walk through empty space

18

4.3

4.4

How test will be performed: A developer will manually walk through
the level

Score File

. test-id1

Type: Dynamic/Manual
Initial State: Main menu

Input: Enter name, then quit, restart game, enter name again, and
quit.

Output: 1st name should appear in both the first and second score
screens. The 2nd should appear in the second. Both should have
correct values for level, cause of death/quit, and gold collected.

How test will be performed: A developer will manually perform the
above input, and verify the output.

Line of Sight System

. test-id1

Type: Dynamic/Manual
Initial State: Normal playstate
Input: Movement commands

Output: Screen should display correct portions of level, with correct
coloration schemes. This means that the player should be able to see
the entirety of a room they are in or in the doorway of, and only their
adjacent squares if they are in a corridor. Squares that the player has
seen in the past but cannot see currently should be shown greyed out.
Squares they have not seen should be black and featureless.

How test will be performed: A developer will manually walk through
the level, verifying that the above LoS rules are preserved, especially
in edge cases like the corners of rooms and doorways.

19

5 Comparison to Existing Implementation

20

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties. Since
we are not using a framework, drivers will be written by hand. Stubs will be
produced when necessary to simulate system components.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. As complete code coverage is not a goal, generic code coverage metrics
will not be used. Instead, care will be taken that complex functions are cov-
ered by unit tests. The following are examples of internal functions that are
initial candidates for unit testing. Other functions will be added as necessary:

e The dungeon generation functions. The work of generating the dungeon
is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectness, compliance
with formulas for item generation, presence or absence of certain key
features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

e The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

e The item activation functions. For example it could be verified that
when the player drank a potion of healing their health increased (if it
was not at its maximum), that a scroll of magic-mapping is reveals the
level, or that a scroll of identification reveals the nature of an item.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can

21

be unit-tested by verifying its contents after writing to it, and by providing
a testing version of the file with known contents and verifying the function
reads them correctly.

22

References
Robert Sedgewick and Kevin Wayne. Luminance.java. http://introcs.cs.

princeton.edu/java/31ldatatype/Luminance. java.html, August 30,
2016. Accessed: October 30, 2016.

23

http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html
http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 5: Symbolic Parameter Table

Parameter Value
FINAL_LEVEL 26
HEIGHT_RESOLUTION 400
LUMINOSITY_DELTA 0.5
MINIMUM_ENTERTAINMENT _TIME 20
MINIMUM_RESPONSE_SPEED 30
HIGH_SCORE_CAPACITY 15
PLAYTEST_SHORT_TIME 5
PLAYTEST_MEDIUM_RANGE 10-20
PLAYTEST LONG_TIME 3
REGEX_INTEGER (char|int|long) .*(, ;)
START_LEVEL 1
VIEW_DISTANCE 2
WIDTH_RESOLUTION 1280

24

7.2

10.

11.

12.
13.
14.

15.

Usability Survey Questions

. Is there any game feature you were unable to figure out how to utilize?

How helpful was the help screen for you?

Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

What common Ul interactions did you find particularly lengthy?

. What aspects of the interface did you find unintuitive?

How responsive was the interface?
How easy was it to see everything that was going on?

How effective are the graphics/symbols?

. Would an alternative input device such as a mouse make interacting

with the interface easier for you?
Is there any extra functionality you would like added to the interface?

How difficult was it to learn the game? How much experience do you
have with Roguelikes?

How helpful was the original game manual?
How pleasing was the color scheme?
Was the font large enough for easy use?

Were you able to learn the hotkeys easily?

25

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and States
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Non-Functional Requirements
	Look and Feel Requirements
	Usability and Humanity Requirements
	Performance Requirements
	Operational and Environment Requirements
	Maintainability Requirements
	Security Requirements
	Legal Requirements
	Health and Safety Requirements

	Tests for Proof of Concept
	Static Testing
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

