
SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Due Monday, October 31st, 2016

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and States 2
1.4 Overview of Document . 3

2 Plan 5
2.1 Software Description . 5
2.2 Test Team . 5
2.3 Automated Testing Approach 5
2.4 Testing Tools . 6
2.5 Testing Schedule . 7

3 System Test Description 8
3.1 Tests for Functional Requirements 8

3.1.1 Basic Mechanics . 8
3.1.2 Interaction . 10
3.1.3 The Dungeon . 12
3.1.4 Equipment . 15
3.1.5 Combat . 16

3.2 Tests for Non-Functional Requirements 17
3.2.1 Look and Feel Requirements 17
3.2.2 Usability and Humanity Requirements 18
3.2.3 Performance Requirements 20
3.2.4 Operational and Environment Requirements 23
3.2.5 Maintainability Requirements 24
3.2.6 Security Requirements 25
3.2.7 Legal Requirements . 26
3.2.8 Health and Safety Requirements 27

4 Tests for Proof of Concept 28
4.1 Static Testing . 28
4.2 Rendering . 29
4.3 Dungeon Generation . 29
4.4 Basic Movement . 30
4.5 Score File . 30

i

4.6 Line of Sight System . 31

5 Comparison to Existing Implementation 32

6 Unit Testing Plan 33
6.1 Unit testing of internal functions 33
6.2 Unit testing of output files . 34

7 Appendix 36
7.1 Symbolic Parameters . 36
7.2 Usability Survey Questions . 37

List of Tables

1 Revision History . 1
2 Table of Abbreviations and Acronyms 2
3 Table of Definitions . 2
4 Table of States . 3
5 Symbolic Parameter Table 36

List of Figures

1 Source and Test Relationship 6

ii

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. Interested stakeholders are
welcome to view and critique this paper to gain confidence in the success of
the final product. After reviewing the document, the reader should under-
stand the strategy, focus, and motivation behind the efforts of the Rogue++
testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to
be comprehensive by providing context behind critical decisions, motivating
the inclusion of particular features by referring to the existing Rogue im-
plementation, and offering a large variety of tests for various purposes and
hierarchical units. Aside from the implementation, the report will also dis-
cuss a relevant component from the requirements elicitation process (and its
relevance to the testing effort).

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup
10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2
10/24/16 0.3 Added Section 1
10/26/16 0.4 Added PoC tests
10/26/16 0.4.1 Added Test Template
10/30/16 0.5 Added Non-Functional Req. Tests
10/30/16 0.5.1 Added Bibliography
10/31/16 0.6 Added Names to Test Template

1

1.3 Acronyms, Abbreviations, and States

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

GUI Graphical User Interface
IM Instant Messenger
PoC Proof of Concept
VPS Virtual Private Server

Table 3: Table of Definitions

Term Definition

Amulet of Yen-
dor

An item located on the deepest level of the dungeon
that enables the player character to ascend through
the levels and complete the game

Boost C++ utility library that includes a comprehensive
unit testing framework

Frame An instantaneous “snapshot” of the GUI screen
Libtcod Graphics library that specializes in delivering a

roguelike experience
Monochrome
Luminance

The brightness of a given colour (with respect to the
average sensitivity of the human eye)

Permadeath Feature of roguelike games whereby a character
death will end the game

Player Character Primary game character that is controlled by the
user in Rogue Reborn

Rogue The original UNIX game developer in 1980 that ini-
tiated the roguelike genre

Roguelike Genre of video games characterized by ASCII graph-
ics, procedurally-generated levels, and permadeath

Slack An online communication platform specializing in
team and project coordination

2

Table 4: Table of States

State Definition

Developer State The file system state corresponding to the latest
source code revision and compilation from the Git-
Lab repository

Fresh State The file system state corresponding to a “fresh”
Rogue Reborn installation

Gameplay State Any application state that reflects the actual game-
play

Generic State The file system state corresponding to a functional
(working) installation of Rogue Reborn

High Score State Any application state that reflects the top high
scores screen

Menu State Any application state that reflects the opening menu
Seasoned State The file system state corresponding to an installation

of Rogue Reborn that already contains several high
score records

1.4 Overview of Document

The early sections of the report will describe the testing environment and
the logistic components of the Rogue Reborn testing effort, including the
schedule and work allocation. Next, a suite of tests will be discussed with
respect to the functional requirements, non-functional requirements, and the
PoC demonstration. Upon discussing the relevance of this project to the
original Rogue, a variety of unit testing strategies will be given followed by
a sample usability survey to gauge the interest and opinion of the Rogue
Reborn game. A breakdown of the sections is listed below:

§1 Brief overview of the report contents

§2 Project logistics and the software testing environment

§3 Description of system-level integration tests (based on requirements)

§4 Explanation of test plans that were inspired by the PoC demonstra-
tion

3

§5 Comparison of the existing Rogue to the current project in the con-
text of testing

§6 Outline of the approach to be implemented for unit testing

§7 Appendix for symbolic parameters and the usability survey

4

2 Plan

2.1 Software Description

Initially, a large component of the testing implementation involved the
usage of Boost. In general, Boost is regarded as an industry standard C++
utility library and comes packaged with a great deal of documentation (Gen-
nadiy Rozental and Raffi Enficiaud, 2016). However, this is a double-edged
sword — Boost is heavy, globally encompassing, and requires plentiful effort
to properly setup. The Boost library is suitable for projects spanning years
with dedicated testing and QA teams. Unfortunately, this is not the present
condition of the Rogue Reborn project, and with the project nearing com-
pletion over the next month, the Rogue++ team agreed that it would be
unwise to start using Boost.

Instead, an alternative solution has been proposed: native test cases can
be written in C++ to perform exactly the required tasks and nothing extra.
The details of this implementation will be explained in the following sections.

2.2 Test Team

All members of the Rogue++ team will take part in the testing procedure.
While Mikhail and Ian were assigned the roles of Project Manager and C++
Expert respectively, Ori was given the title of Testing Expert. Testing will
be primarily monitored and maintained by Ori although every team member
will contribute to the testing facilities. The logic behind this rationale is
that it would be desirable for the team member who wrote class C to write
the unit tests for the same class C. Due to the dependency structure of
the project’s design, there will be cases where a unit test for one class will
encompass a partial system test for another class. These instances can be
extrapolated from the class inheritance diagram.

2.3 Automated Testing Approach

There has been considerable effort expended towards automating project
infrastructure components. In the real world, any task that can be auto-
mated, should be automated. The steps that have been performed to reduce
manual labour are as follows:

5

• Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the GitLab repository. Every run is logged and its history may
be accessed at any time.

• Write a special makefile that produces 2 executables:

1. The Rogue Reborn game executable

2. The project test suite.

The details of this process will be described in the following sub-section.

• The team’s primary method of communication is Slack: a cross-platform
and programmer-friendly IM. The Rogue++ team hooked the GitLab
project repository to the team’s Slack channel such that whenever the
repository detects activity, a notification is sent to the channel. This
method greatly improves the team’s awareness about each other’s con-
tributions and also facilitates communication about project-related in-
quiries.

2.4 Testing Tools

The special makefile discussed above utilizes a phenomenon of C++ to
perform the necessary steps. First, it places all source files into a dedi-
cated folder to distinguish them between program files and test files; this is
mandatory since there is an important relationship between the source and
test classes. Consider the diagram below:

Figure 1: Source and Test Relationship

Source Test

6

As the diagram depicts, there are classes that are shared between both
final programs. In fact, the vast majority of classes fall in the center and are
required by both the game executable as well as the testing component. The
files that are necessary for the tests but not for the source are, obviously,
testing-related files that contain the test case implementations. At the time
of writing, there is only one file required by the source code that is not
required by the test code: the source program entry (i.e. the C++ file that
contains main()).

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the make command. From
there, simply running Test.exe will trigger all of the pre-written tests.

There is also a plan to implement a Python script on the GitLab pipeline
that will cause the build to fail if any of the tests do not pass. It should
be noted that, if a build fails, the pipeline not only reports the failure, but
also logs the location of the failure down to the specific test case. This
will hopefully expedite the debugging process and lead to more responsible
development further into the project timeline.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a powerful analy-
sis tool that tests the amount of memory a C++ program utilizes and de-
tects memory allocation errors such as memory leaks (Valgrind Developers,
2016). C++, unlike Java and other high level languages, does not include
a built-in garbage collector (otherwise there would be nothing left!) to give
programmers total control over their application lifetime. Consequently, it
is a common mistake to accidentally leave unreferenced objects in memory
and cause a memory leak in the program.

At the time of writing, the Rogue Reborn application occupies approx-
imately 1 MB of RAM during peak execution. Although this is a minute
quantity, memory leaks are representative of a larger issue: incorrect code!
By using Valgrind, the Rogue++ team will be able to detect the presence of
these errors and indicate the direction of the next crucial bug fix.

2.5 Testing Schedule

The Gantt Chart can be accessed at this location.

7

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Basic Mechanics

New Game Start - Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Fresh State

Input: A new game is started.

Output: The program is started.

Execution: Either double-clicking the .exe or via terminal:

./RogueReborn.exe.

Save Game - Functional Test # 2

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Save command is given or the save key is pressed.

Output: A message indicating that the game has been saved is
displayed to the user in the status area.

Execution: A user will play the game and trigger the input sequence.
Note that this process can be verified by the Test # 3.

8

Load game - Functional Test # 3

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Load command is given or the save key is pressed.

Output: A message indicating that the game has been loaded is
displayed to the user in the status area. The data model
(level, player, monsters, etc.) is also updated to reflect
the state changes.

Execution: A user will play the game and trigger the input sequence
to load and verify that it is in fact the same state that
was previously saved.

Starting Statistics - Functional Test # 4

Type: Dynamic / Automatic / Black Box

Initial State: Generic State

Input: A new game is started.

Output: The player character has the default starting equipment
and statistics.

Execution: This feature can be tested by analyzing the save file
since it records all the necessary information about the
player character.

9

Help Command - Functional Test # 5

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: The “help” command is given or the “help” key is
pressed.

Output: The user is displayed a screen with a list of possible
actions and other information.

Execution: A user play the game and trigger the input sequence to
display the “help” menu.

3.1.2 Interaction

Detailer Player Information - Functional Test # 6

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: N/A

Output: Details about the player (level, health, known status
effects, current depth, etc.) are displayed at the bottom
of the screen in the area known as the Info Bar.

Execution: Rogue Reborn playtesters will be asked to answer basic
questions about their player character at random
intervals throughout the game. To answer these
questions, the user must refer to the Info Bar.

10

Environment Inspection - Functional Test # 7

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: The “look” key or command, and then an environment
aspect character.

Output: After the input is supplied, a brief description of the
environment aspect is displayed. This can be limited to
several words (e.g. “This is an Emu”).

Execution: Players will be told about the “look” key before their
session and will have to employ it in order to gain
information about their surroundings.

Pass Turn - Functional Test # 8

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: The “wait” key or command is pressed.

Output: All entities but the player engage in a turn by
performing an action (as dictated by their respective AI).

Execution: Players will be asked to skip their turn several times
once an enemy is located (this tactic is used to ensure
the player character delivers the first strike in a combat
sequence).

11

Trap Activation - Functional Test # 9

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: A dungeon level that can generate traps (this only
occurs at deeper levels).

Output: A message and a message describing the effect of the
trap.

Execution: Players will be asked to report the traps they encounter
and the effect that was bestowed upon them upon
activation.

3.1.3 The Dungeon

Staircase Guarantee - Functional Test # 10

Type: Dynamic / Automatic / Black Box

Initial State: Developer State

Input: A set of randomly generated dungeon levels.

Output: An indication of whether or not each dungeon contains a
downwards staircase.

Execution: Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if no staircase is discovered, a flag is raised.

12

Level Accessibility - Functional Test # 11

Type: Dynamic / Automatic / White Box

Initial State: Developer State

Input: A set of randomly generated dungeon levels.

Output: An indication of whether or not every dungeon level
forms a strongly connected component.

Execution: Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if the number of discovered blocks is not equal to
the number of blocks in the level, a flag is raised.

Line of Sight - Functional Test # 12

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: The player character is somewhere in the dungeon that
is recognizable (i.e. not hidden) and is not blind.

Output: Visibility that depends on the player character’s
surroundings. If the player character is in a room, they
should be able to view the entire room. If the player
character is in a corridor, the player should only be able
to view in surroundings within VIEW DISTANCE of
their location.

Execution: Users will be asked to assess the visibility standards.
Note that this is a bug-prone feature since many
exceptions exist in the realm of the player character’s
current setting.

13

Amulet of Yendor - Functional Test # 13

Type: Dynamic / Automatic / White Box

Initial State: Developer State

Input: Levels generated with a depth of FINAL LEVEL

Output: An indication of whether or not all generated levels
contain the Amulet of Yendor on a reachable tile within
the level.

Execution: Each generated level will be traversed using a simple
graph discovery algorithm that tours every passable
block; if no Amulet is encountered, a flag is raised.

Searching & Finding - Functional Test # 14

Type: Dynamic / Manual / Black Box

Initial State: The player character in a dungeon beside a hidden door
or passage.

Input: The player character activates the “search” command to
search for adjacent hidden environment features.

Output: The door or passage is either revealed or remains hidden.

Execution: Playtesters will be told before the game begins to
occasionally look out for hidden doors; once discovered,
the playtesters will document the number of searches
that were required to reveal the hidden element.

14

3.1.4 Equipment

Inventory Tracking - Functional Test # 15

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: New users are instructed to play the game with no
special requirements.

Output: No users experiences a situation where the inventory
screen does not represent their actual possessions.

Execution: Users will be asked to laboriously maintain their
inventory on a piece of paper and compare their copy to
that of the game at various time intervals.

Identification & Naming - Functional Test # 16

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Users are instructed to pronounce the names of all items
they collect.

Output: Users are unable to pronounce items they have yet to
identify.

Execution: Users will be asked to pronounce the generated names to
the best of their ability to ensure they are nonsensical.

15

Armor & Deterioration - Functional Test # 17

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Users are assured that their armor is invincible.

Output: Users should complain that their armor loses
effectiveness over time.

Execution: Aquators and traps possess the capability to destroy
player armor. Users should begin to encounter such
setbacks (starting at level 6) and report their findings.

3.1.5 Combat

Monster AI - Functional Test # 18

Type: Dynamic / Automatic / White Box

Initial State: Developer State

Input: The position of the player character is transmitted to all
monsters in a dungeon level.

Output: All aggressive monsters will calculate their respective
paths and make progress towards the player character.

Execution: An automatic script will be created to generate a level,
spawn several monsters in the level, and then simulate a
player character somewhere on the map. From there, a
traceback log of monster paths could be created and
analyzed by having the player simulation repeatedly skip
their turn.

16

Monster Attack Pattern - Functional Test # 19

Type: Dynamic / Automatic / Black Box

Initial State: Developer State

Input: No target for monsters to attack.

Output: Monsters aimlessly wandering around.

Execution: Similar to test # 18, a level could be generated and
populated with monsters; however, no player character
location will be supplied to the level.

3.2 Tests for Non-Functional Requirements

3.2.1 Look and Feel Requirements

Aesthetic Similarity Check - Non-Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Generic State

Input: Users are asked to rate the aesthetic similarity between
Rogue and Rogue Reborn.

Output: A numeric quantity between 0 and 10, where 0 indicates
that the graphics are entirely disjoint and 10 indicates
that the graphics are virtually indistinguishable.

Execution: A random sample of users will be asked to play Rogue
and the Rogue Reborn variant for
PLAYTEST SHORT TIME minutes. Afterwards, they
will be asked to judge the graphical similarity of the
games based on the aforementioned scale.

17

3.2.2 Usability and Humanity Requirements

Interest Gauge Check - Non-Functional Test # 2

Type: Dynamic / Manual / Black Box

Initial State: Generic State

Input: New users are instructed to play Rogue Reborn.

Output: The quantity of time the user willingly decides to play
the game.

Execution: A random sample of users who are unfamiliar with
Rogue will be asked to play Rogue Reborn until they feel
bored (or MAXIMUM ENTERTAINMENT TIME has
expired). Once the user indicates that they are no longer
interested in the game, their playing time will be
recorded.

English Mechanics Check - Non-Functional Test # 3

Type: Static / Manual / White Box

Initial State: Developer State

Input: Rogue Reborn source code.

Output: An approximation of the English spelling, punctuation,
and grammar mistakes that are visible through the GUI.

Execution: All strings in the Rogue Reborn source code will be
concatenated with a newline delimiter and outputted to
a text file. A modern edition of Microsoft Word from
(Microsoft Corporation) will be used to open this
generated text file, and a developer will manually correct
all of the indicated errors that are potentially associated
with a GUI output.

18

Key Comfort Check - Non-Functional Test # 4

Type: Dynamic / Manual / Black Box

Initial State: Generic State

Input: Users are asked to rate the intuitiveness of the Rogue
Reborn key bindings.

Output: A numeric quantity between 0 and 10, where 0 indicates
that the key bindings are extremely confusing and 10
indicates that the key bindings are perfectly natural.

Execution: A random sample of users who are inexperienced with
the roguelike genre will be asked to play Rogue Reborn
for SHORT TIME minutes without viewing the in-game
help screen. Next, the key bindings will be revealed, and
the users will continue to play the game for an additional
PLAYTEST SHORT TIME minutes. Afterwards, they
will be asked to judge the quality of the key bindings
based on the aforementioned scale

19

3.2.3 Performance Requirements

Response Delay Check - Non-Functional Test # 5

Type: Dynamic / Automatic / White Box

Initial State: Generic State

Input: Users are instructed to play Rogue Reborn.

Output: A log of occurrences that indicate events where a
computation that was initiated by a user input took an
excessive quantity of time to execute.

Execution: A random sample of experienced users will be asked to
play a special version of Rogue Reborn for
PLAYTEST MEDIUM RANGE minutes. This edition
will utilize a StopWatch implementation to measure the
execution time of a computation, and if the computation
exceeds RESPONSE SPEED milliseconds, the user
action and the associated timestamp will be recorded in
a log file.

20

Overflow Avoidance Check - Non-Functional Test # 6

Type: Static / Manual / White Box

Initial State: Developer State

Input: Rogue Reborn source code.

Output: All declarations of integer-typed variables.

Execution: All occurrences of lines that match REGEX INTEGER
(i.e., integer declarations) in the Rogue Reborn source
code will be outputted to a file. A group of Rogue++
developers will then review these declarations together
and alter them if deemed necessary to avoid integer
overflow issues.

21

Crash Collection Check - Non-Functional Test # 7

Type: Dynamic / Manual / Black Box

Initial State: Generic State

Input: Playtesters are instructed to play Rogue Reborn for at
least PLAYTEST LONG TIME hours.

Output: A collection of crash occurrences along with a detailed
description of the failure environment.

Execution: All Rogue Reborn playtesters will be required to play
the game for at least PLAYTEST LONG TIME hours in
total (spanned over multiple sessions if desired). Every
time the application crashes, the playtester must record
the incident along with a description of the visible GUI
state and the steps required to reproduce the failure.
After this data has been collected, the Rogue++ team
will address every crash occurrence by either resolving
the issue or confidently declaring that the event is
irreproducible.

22

Score Overflow Check - Non-Functional Test # 8

Type: Dynamic / Dynamic / White Box

Initial State: High Score State

Input: A high score record file containing a large quantity of
entries.

Output: Rogue Reborn GUI displaying the top high scores.

Execution: The Rogue Reborn developers will artificially fabricate a
high score record file with at least
HIGH SCORE CAPACITY + 2 records. The game will
then be played until the high score screen is revealed;
only the top HIGH SCORE CAPACITY scores should
be displayed.

3.2.4 Operational and Environment Requirements

Processor Compatibility Check - Non-Functional Test # 9

Type: Dynamic / Manual / Black Box

Initial State: Fresh State

Input: Users are instructed to install and run Rogue Reborn on
their personal machines.

Output: An indication of whether or not the game is able to
successfully execute.

Execution: A random sample of users with computers that are
equipped with Intel x64 processors will be asked to
download the latest Rogue Reborn distribution, perform
any necessary installation, and then run the executable
file. The user will then report if the game was able to
successfully run on their machine.

23

Streamline Distribution Check - Non-Functional Test # 10

Type: Static / Manual / Black Box

Initial State: Developer State

Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution contains
any files aside from the primary executable and the
associated development licenses.

Execution: The public distribution package will be visually
inspected for extraneous files.

3.2.5 Maintainability Requirements

Bug Productivity Check - Non-Functional Test # 11

Type: Static / Manual / Black Box

Initial State: Developer State

Input: All ITS issues labeled as bugs in the Rogue Reborn
GitLab repository.

Output: An indication of whether or not all bug reports were
closed within a month of their conception.

Execution: The Rogue Reborn GitLab repository will be queried for
all issues concerning bugs (which are denoted by a
“Bug” label). Next, a developer will manually verify
that every closed bug fix request was resolved within a
month of its creation.

24

Linux Compatibility Check - Non-Functional Test # 12

Type: Dynamic / Manual / Black Box

Initial State: Fresh State

Input: Users are instructed to run Rogue Reborn on their
personal machine.

Output: An indication of whether the game can successfully
execute.

Execution: A random sample of users with computers that use a
modern 64-bit Linux operating system will be asked to
download the latest Rogue Reborn distribution, perform
any necessary installation, and then run the executable
file. The user will then report if the game was able to
successfully run on their machine.

3.2.6 Security Requirements

Illegal Records Check - Non-Functional Test # 13

Type: Dynamic / Manual / White Box

Initial State: Seasoned State

Input: A corrupted high score record file.

Output: Rogue Reborn GUI displaying the top high scores.

Execution: The Rogue++ team will illegally modify a high score
record file by manually altering or adding values such
that the expected format or value integrity is violated.
These modifications should include negative high score
values, missing text, and incorrect delimiter usage. The
game will then be played until the high score screen is
revealed; all invalid record file contents should be
ignored and amended in the next write to the record file.

25

3.2.7 Legal Requirements

License Presence Check - Non-Functional Test # 14

Type: Static / Manual / Black Box

Initial State: Developer State

Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution is
missing any mandatory license files.

Execution: The original Rogue source code hosted by (Holger Weib,
1994) will be reviewed for legal requirements, and the
public distribution package will be visually inspected to
ensure that all mandatory license files are present.

26

3.2.8 Health and Safety Requirements

Seizure Prevention Check - Non-Functional Test # 15

Type: Dynamic / Manual / Black Box

Initial State: Developer State

Input: Two screenshots denoting the largest possible luminosity
difference present between consecutive frames.

Output: The difference in luminosity between the two captured
frames.

Execution: After identifying the frame pair that is most likely to
induce a seizure, the game will be played to reach the
states that reflect each frame (this should be a brief
process; no clever game model manipulation is required).
At the occurrence of each desired frame, the game screen
will be captured and saved. At this point, the average
monochrome luminance across each frame will be
calculated according to the formula

L = 0.299R + 0.587G + 0.114B

where L is the luminance, R is the red RGB component,
G is the green RGB component, and B is the blue RGB
component (Robert Sedgewick and Kevin Wayne, 2016).
Finally, the absolute value of the luminance difference
can then compared to LUMINOSITY DELTA.

27

4 Tests for Proof of Concept

4.1 Static Testing

Compile Test - PoC Test # 1

Type: Static / Automatic / White Box

Initial State: None

Input: Program Source

Output: Program Executable

Execution: Verify that the program compiles with g++.

Memory Check - PoC Test # 2

Type: Dynamic / Manual / White Box

Initial State: None

Input: A brief but complete playthrough of the game.

Output: Breakdown of program memory usage.

Execution: A tester will briefly play the game, and a developer will
use Valgrind’s memcheck utility to verify that program
does not leak memory or utilize uninitialized memory.

28

4.2 Rendering

Render Check - PoC Test # 3

Type: Dynamic / Manual / l Box

Initial State: Black

Input: Gameplay State

Output: 30-60 seconds of gameplay.

Execution: The player character and any dungeon features should
be shown at the correct location with the correct glyphs.
Correct player statistics will be shown along the bottom.
The dialog box will correctly display the log and any
prompts.

A tester will manually play the game and verify the display is correct.

4.3 Dungeon Generation

Dungeon-Gen Check - PoC Test # 4

Type: Dynamic / Manual / Black Box

Initial State: None

Input: Repeated restarts of the game

Output: Level should contain ROOMS PER LEVEL rooms,
which should form a connected graph.

Execution: A tester will manually start the game, briefly explore the
level to verify correct generation, then repeat this
process until confidence is achieved.

29

4.4 Basic Movement

Movement Check - PoC Test # 5

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Movement commands

Output: Player should move about the level, without clipping
through walls, failing to walk through empty space, or
jump to an unconnected square.

Execution: A tester will manually walk through the level, and
visually verify correctness.

4.5 Score File

Scoring File Check - PoC Test # 6

Type: Dynamic / Manual / Black Box

Initial State: Menu State

Input: Enter name, then quit, restart game, enter name again,
and quit.

Output: 1st name should appear in both the first and second
score screens. The 2nd should appear in the second.
Both should have correct values for level, cause of
death/quit, and gold collected.

Execution: A developer will manually perform the above input, and
verify the output. Should be tested both with and
without an initial score file.

30

4.6 Line of Sight System

LoS Check - PoC Test # 7

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Movement commands

Output: Screen should display correct portions of level, with
correct coloration schemes. This means that the player
should be able to see the entirety of a room they are in
or in the doorway of, and VIEW DISTANCE squares
away if they are in a corridor. Squares that the player
has seen in the past but cannot see currently should be
shown greyed out. Squares they have not seen should be
black and featureless.

Execution: A developer will manually walk through the level,
verifying that the above LoS rules are preserved,
especially in edge cases like the corners of rooms and
doorways.

31

5 Comparison to Existing Implementation

32

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties. Since
we are not using a framework, drivers will be written by hand. Stubs will
be produced when necessary to simulate system components. Since there
are no database or network connections, stubs should hopefully be kept to a
minimum. However, functions may be required to construct objects in states
suitable for easy testing, for example creating a level or player with certain
known properties, rather than by random generation.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. As complete code coverage is not a goal, generic code coverage metrics
will not be used. Instead, care will be taken that complex functions are cov-
ered by unit tests. The following are examples of internal functions that are
initial candidates for unit testing. Other functions will be added as necessary:

• The dungeon generation functions. The work of generating the dun-
geon is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectedness, compli-
ance with formulas for item generation, presence or absence of certain
key features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

• The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

• The item activation functions. For example it could be verified that
when the player drank a potion of healing their health increased (if it
was not at its maximum), that a scroll of magic-mapping is reveals the
level, or that a scroll of identification reveals the nature of an item.

33

• The item storage functions. Each item is mapped to a persistent hotkey
in the player’s inventory. Certain items can stack with copies, reducing
the amount of inventory space they take up, and how they are displayed.
These factors make the inventory fairly complex. It is however easily
verifiable, and automated testing can examine edge cases that would
be impractical to test manually.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can
be unit-tested by verifying its contents after writing to it, and by providing
a testing version of the file with known contents and verifying the function
reads them correctly.

34

References

Gennadiy Rozental and Raffi Enficiaud. Boost Test. http://www.boost.

org/doc/libs/1_62_0/libs/test/doc/html/index.html, September
21, 2016. Accessed: October 24, 2016.

Holger Weib. Rogue [GitHub Repository]. https://github.com/weiss/

original-bsd/tree/master/games/rogue, June 1, 1994. Accessed: Oc-
tober 31, 2016.

Microsoft Corporation. Word. https://products.office.com/en-us/

word. Accessed: October 31, 2016.

Robert Sedgewick and Kevin Wayne. Luminance.java. http://introcs.cs.
princeton.edu/java/31datatype/Luminance.java.html, August 30,
2016. Accessed: October 30, 2016.

Valgrind Developers. Valgrind. http://valgrind.org/, 2016. Accessed:
October 31, 2016.

35

http://www.boost.org/doc/libs/1_62_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_62_0/libs/test/doc/html/index.html
https://github.com/weiss/original-bsd/tree/master/games/rogue
https://github.com/weiss/original-bsd/tree/master/games/rogue
https://products.office.com/en-us/word
https://products.office.com/en-us/word
http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html
http://introcs.cs.princeton.edu/java/31datatype/Luminance.java.html
http://valgrind.org/

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 5: Symbolic Parameter Table

Parameter Value

ROOMS PER LEVEL 9

FINAL LEVEL 26

HEIGHT RESOLUTION 400

LUMINOSITY DELTA 0.5

MINIMUM ENTERTAINMENT TIME 20

MINIMUM RESPONSE SPEED 30

HIGH SCORE CAPACITY 15

PLAYTEST SHORT TIME 5

PLAYTEST MEDIUM RANGE 10-20

PLAYTEST LONG TIME 3

REGEX INTEGER (char|int|long).*(,|;)

START LEVEL 1

VIEW DISTANCE 1

WIDTH RESOLUTION 1280

36

7.2 Usability Survey Questions

1. Is there any game feature you were unable to figure out how to utilize?

2. How helpful was the help screen for you?

3. Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

4. What common UI interactions did you find particularly lengthy?

5. What aspects of the interface did you find unintuitive?

6. How responsive was the interface?

7. How easy was it to see everything that was going on?

8. How effective are the graphics/symbols?

9. Would an alternative input device such as a mouse make interacting
with the interface easier for you?

10. Is there any extra functionality you would like added to the interface?

11. How difficult was it to learn the game? How much experience do you
have with Roguelikes?

12. How helpful was the original game manual?

13. How pleasing was the color scheme?

14. Was the font large enough for easy use?

15. Were you able to learn the hotkeys easily?

37

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and States
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Basic Mechanics
	Interaction
	The Dungeon
	Equipment
	Combat

	Tests for Non-Functional Requirements
	Look and Feel Requirements
	Usability and Humanity Requirements
	Performance Requirements
	Operational and Environment Requirements
	Maintainability Requirements
	Security Requirements
	Legal Requirements
	Health and Safety Requirements

	Tests for Proof of Concept
	Static Testing
	Rendering
	Dungeon Generation
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

