
SE 3XA3: Test Plan
Rogue Reborn

Team #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Due Monday, October 31th, 2016

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 1

2 Plan 1
2.1 Software Description . 1
2.2 Test Team . 2
2.3 Automated Testing Approach 2
2.4 Testing Tools . 3
2.5 Testing Schedule . 3

3 System Test Description 4
3.1 Tests for Functional Requirements 4

3.1.1 Area of Testing1 . 4
3.1.2 Area of Testing2 . 4

3.2 Tests for Nonfunctional Requirements 4
3.2.1 Area of Testing1 . 4
3.2.2 Area of Testing2 . 5

4 Tests for Proof of Concept 5
4.1 Area of Testing1 . 5
4.2 Area of Testing2 . 5

5 Comparison to Existing Implementation 6

6 Unit Testing Plan 6
6.1 Unit testing of internal functions 6
6.2 Unit testing of output files . 7

7 Appendix 8
7.1 Symbolic Parameters . 8
7.2 Usability Survey Questions? 8

i

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 1
4 Symbolic Parameter Table 8

List of Figures

Table 1: Revision History

Date Version Notes

10/21/16 0.1 Initial Setup
10/24/16 0.2 Add Unit Testing and Usability Survey

ii

This document ...

1 General Information

1.1 Purpose

1.2 Scope

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

Abbreviation1 Definition1
Abbreviation2 Definition2

Table 3: Table of Definitions

Term Definition

Term1 Definition1
Term2 Definition2

1.4 Overview of Document

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the

1

completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for this
project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

• Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

• Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

• The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++ to
perform the necessary steps. First, it places all source files into a dedicated
folder, distinguishing between program files and test files. This is an abso-
lutely necessary step, as there is an important relationship between source
and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both
the final project and its testing component. The files required by the test
which are not required by the source are, obviously, testing-related files.
These are the files that contain the test case implementations. At the time
of writing, there is actually only one file required by source that is not
required by the test, and that is the source program entry (i.e. the file that
contains the main() method).

The entire procedure of file collection, compilation, and separate linking is
handled by the makefile, and is triggered by the ”make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At this time of
writing this is not yet implemented, but note will be made when it does. It
should be noted that if a build fails, the pipeline not only reports the
failure, but also logs where the failure happened, down to the specific test
case. This will hopefully make debugging a more pleasant experience later
on.

3

2.5 Testing Schedule

See Gantt Chart at the following url ... TODO

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testing1

Title for Test

1. test-id1
Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

2. test-id2
Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3.1.2 Area of Testing2

...

3.2 Tests for Nonfunctional Requirements

3.2.1 Area of Testing1

Title for Test

4

1. test-id1
Type:

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2
Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3.2.2 Area of Testing2

...

4 Tests for Proof of Concept

4.1 Area of Testing1

Title for Test

1. test-id1
Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

2. test-id2
Type: Functional, Dynamic, Manual, Static etc.

Initial State:

5

Input:

Output:

How test will be performed:

4.2 Area of Testing2

...

5 Comparison to Existing Implementation

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product.
We concluded that adding a framework would not make the work
significantly easier, while reducing our flexibility and adding installation
difficulties.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time
unnecessarily. The following are examples of internal functions that are
good candidates for unit testing:

• The dungeon generation functions. The work of generating the
dungeon is complex, but it is also easy to automate verification of
dungeon properties such as a correct number of rooms, connectness,
compliance with formulas for item generation, presence or absence of
certain key features such as the stairs connecting levels or the Amulet
of Yendor in the final level.

• The keyboard input functions. As libtcod provides a Key struct
which models keyboard input, we can mock/automate these
functions. They are fairly complex, and since they return a pointer to
the next desired state (similar to a finite state machine) we can easily
verify their behavior.

6

• Some of the item activation functions. For example it could be
verified that when the player drank a potion of healing their health
increased (if it was not at its maximum), when a scroll of
magic-mapping is read the level was revealed, or that a scroll of
identification reveals the nature of an item.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file
can be unit-tested by verifying its contents after writing to it, and by
providing a testing version of the file with known contents and verifying the
function reads them correctly.

7

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 4: Symbolic Parameter Table

Parameter Value

FINAL LEVEL 26

WIDTH RESOLUTION 1280

HEIGHT RESOLUTION 400

VIEW DISTANCE 2

START LEVEL 1

MINIMUM ENTERTAINMENT TIME 20

MINIMUM RESPONSE SPEED 30

HIGH SCORE CAPACITY 15

LUMINOSITY DELTA 0.5

7.2 Usability Survey Questions?

• Is there any game feature you were unable to figure out how to utilize?

• How helpful was the help screen for you?

• Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

• What common UI interactions did you find particularly lengthy?

• What aspects of the interface did you find unintuitive?

8

• How responsive was the interface?

• How easy was it to see everything that was going on?

• How effective are the graphics/symbols?

• Would an alternative input device such as a mouse make interacting
with the interface easier for you?

9

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

