
s

Table 1: Revision History

Date Developer(s) Change

09/23/2016 Or Created outline .tex
09/25/2016 Ian Added Meeting Plan, Team Roles, and Proof

of Concept Plan
09/25/2016 Mikhail Added Communication Plan and Technology
09/26/2016 Mikhail Added Git Workflow Plan
09/30/2016 Mikhail Edited and Proofread Document
09/30/2016 Or Added Coding Style & Project Schedule
09/30/2016 Or Fixed typos
... ... ...

1



SE 3XA3: Development Plan

Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Friday, September 30, 2016

The Rogue Reborn project aims to rewrite the classic video game Rogue
in a modern programming language using contemporary software development
techniques. The purpose of this document is to outline the development plan
of the project. Included below are the strategies for team coordination and
work partitioning, details of the technology and development process, and an
overview of the project schedule including details of the requirements for the
proof of concept deadline.

1 Team Meeting Plan

Team meetings will be held on a weekly basis in Thode library at 3:30
PM every Wednesday. These weekly meetings will be chaired by the team
leader whose will be responsible for developing and enforcing a rough meeting
agenda. Although this agenda will not be posted, it will be briefly outlined
for the participants of the meeting. In addition, full meeting minutes will not
be recorded; however, the meeting scribe will be responsible for recording the
outcomes of the meeting discussions. These transcripts will be posted to the
team Git repository. If a team member cannot attend the meeting, a brief
summary of the meeting (including a reference to the Git commit) will be posted
to the team Slack channel by the meeting scribe. Any changes to the meeting
format, location, or time will also be posted to the team Slack channel by the
meeting chair.

2 Team Communication Plan

Team communications will be distributed across several social platforms.
This way, conversations can be grouped together according to the degree of

2



formality and desired visibility. Specifically, Slack will be used to exchange
informal messages for purposes such as conveying meeting times or briefly dis-
cussing topics. Team members will be required to check this service at least once
per day in order to facilitate quicker response times and encourage more open
communication. Next, the GitLab ITS will serve as an official means of tracking
bugs, reporting issues, and announcing any other code correction requests. All
other communications will be performed in person during the lab sessions as
well as the weekly group meeting. Currently, there is no plan to include any
other communication streams as this will most likely dilute the conversations
to a point where accessibility and traceability is sacrificed.

3 Team Member Roles

As of the initial submission of this document, Mikhail is the team leader. As
such, he will be responsible for chairing the meetings, allocating work across the
team, and ensuring that all of the team members are up-to-date with respect
to the project status and deadlines. The other team members will alternate
between fulfilling the role of the meeting scribe. Outside of meetings, various
team members will assume the roles of experts in the project technology area.
In particular, Mikhail will be the Git and LaTeX expert, Ori will be the testing
and Linux environment expert, and Ian will be the C++ and libtcod expert
(more on this library in the Technology section). Expert roles do not constitute
work allocations; rather, they assign accountability for certain portions of the
project and provide a contact for internal questions related to a specific domain.

4 Git Workflow Plan

To minimize the overhead associated with creating, updating, and managing
project files, the Rogue++ team will collaborate using several Git integration
flows. In general, all project source files and documents associated with the
main (stable) development branch will be hosted in a central GitLab repository.
Any developers (or distinguished stakeholders) may clone, view, and modify
this code, given that their changes do not compromise any tested functionality.
Note that it is still acceptable to commit a change to this branch that is not
fully integrated; however, the application must be able to successfully compile
and run. In the event that a prototype demonstration is required, a new branch
will be created to host any temporary changes that will not be merged back into
the main branch. This way, developers are free to adapt existing source code
in any manner they choose in order to showcase their progress to a stakeholder
without violating the integrity of the stable branch.

To create a semantic history of the development process, labels will be used
extensively throughout the course of the Rogue Reborn project. This will enable
stakeholders to oversee the progress of the project more clearly and developers

3



to gauge their own productivity with greater ease. Milestones will also be in-
corporated as a means of measuring the progress of the application against the
goals of the stakeholders. These milestones may also be used internally within
the Rogue++ team to coordinate feature implementation or debug deadlines. If
done correctly, this system will allow for more efficient communication between
the involved parties and improve the visibility of the entire development cycle.

5 Proof of Concept Demonstration Plan

To demonstrate the feasibility of the project, a proof of concept (PoC) will
be developed. The PoC will demonstrate the following features:

• Basic dungeon generation, including rooms, corridors, and placement of
gold, items, monsters, and traps

• Line of sight and pathfinding implementation

• Non-functional items and traps

• Minimum viable monster AI

• Basic movement and very simple environmental interaction (acquiring
items, basic combat)

If there are no issues implementing the features above, it shall be assumed
that there are no fundamental flaws with the requirements or architectural de-
sign of the project. Several major features of the project have been excluded
from this demonstration (advanced item manipulation and traps, hidden pas-
sageways, complex monster AI, etc.) because the PoC is otherwise too am-
bitious. As long as the underlying code is well-architectured, the more so-
phisticated features of the application should be able to flow out of the PoC
foundation.

On a positive note, it is unlikely that a straight-forward implementation of
the PoC features will prove to be unusually difficult. However, implementing
these features in a sufficiently extensible manner (so that they can be reused
without readjustment) will undoubtedly be more challenging. It is also impor-
tant to realize that the reverse-engineering process of the algorithms for various
features from the original source will also incur significant effort. From a test-
ing perspective, the Rogue++ development team is relatively new to testing
frameworks. As such, writing unit and integration tests may initially take some
additional time. At this point in time, the project is planned to be solely de-
veloped in a Linux environment; all of the required library dependencies have
been installed and a test application of the game is successfully compiling and
on all of the developers’ machines.

4



6 Technology

The technology behind the Rogue Reborn project was selected to facilitate
a productive development process and a powerful user experience. At its very
core, C++ will serve as the primary programming language for this application.
This decision was heavily influenced by the superior performance benefits and
community support behind the language, not to mention its prevalence in the
professional game developer industry. Another factor that motivated the use
of C++ was its compatibility with libtcod : a lightweight graphics library that
offers a simple interface to draw ASCII-style art and collect user input. For
these reasons, the development team believes that developing a C++ project
would yield the best experience from both a technical and practical perspective.

With respect to the environment of the technology, the Rogue++ team
agreed to use Linux as the primary development platform (attempting to achieve
cross-platform portability from the start could significantly hinder progress).
Otherwise, every team member is free to use a text editor of their choice: im-
posing a constraint on an IDE could result in unnecessary complications and
may interfere with productivity during the early coding stages. To gain confi-
dence in the correctness and versatility of the code, the Boost Test framework
will be heavily utilized to perform unit testing across the project. This library
was selected on the merits of its superb documentation, simple approach to
test creation, and robust assertion support. On a final note, the Rogue Reborn
documentation will be generated using two tools. Specifically, all design docu-
mentation will be generated using LaTeX, while all source code documentation
will be delegated to the Doxygen tool.

7 Coding Style

In any large-scale project, it is vital for all members to be on the same page.
This is especially true for a software project, where every team member must
be able to read, understand, and analyze everyone else’s code. The Rogue++
project will be utilizing Google’s C++ Style Guide to format and organize the
source code. Google offers style guides that span dozens of programming lan-
guages and are a professional standard used in every corner of the software
industry. Despite its excellence, the team will implement one change to the
guide.

Google’s C++ Style Guide calls for inline comments describing classes, func-
tions, methods, and file contents. While this is a noble goal (and is most defi-
nitely necessary), this job has been delegated elsewhere. As mentioned before,
the Rogue++ team will be using the Doxygen tool for documenting the source
code structure. Doxygen will effectively encapsulate the design-documentation
sphere. The only real difference this will make is the addition of Doxygen’s
documentation syntax on top of Google’s comment standard.

5

https://google.github.io/styleguide/cppguide.html


8 Project Schedule

Over the course of a one-hour meeting, the Rogue++ team decided on an
overarching timeline for the development of the project. The timeline consists
of several components, tasks, and deadlines that occasionally overlap. This
timeline exists as a way of benchmarking the project’s completeness; a guideline,
not a rulebook. It will be wise to refer back to this schedule at least once a week
(most likely during the weekly meetings), update the project status accordingly,
and assess any complications that could arise. The schedule will be created in
the form of a Gantt chart (soon to be made available). Listed below are the
deadlines that were established in the previous team meeting:

Table 2: Project Deadlines

Requirements Document Sept 26 Oct 7
Milestone 1 (Rev -1) Oct 10 Oct 14 (Break)
Technology Exploration Oct 17 Oct 21
Test Plan + Boost Integration Oct 24 Oct 28
Design Document Oct 31 Nov 11
Revision 0 (Milestone 2) Oct 21 Nov 19
Revision 1 Fixes (Milestone 3) Nov 18 Nov 30
Final Design Document Nov 26 Dec 7

9 Project Review

6


	Team Meeting Plan
	Team Communication Plan
	Team Member Roles
	Git Workflow Plan
	Proof of Concept Demonstration Plan
	Technology
	Coding Style
	Project Schedule
	Project Review

