
SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andrem5
Or Almog almogo

Due Monday, October 31st, 2016

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and States 1
1.4 Overview of Document . 2

2 Plan 4
2.1 Software Description . 4
2.2 Test Team . 4
2.3 Automated Testing Approach 4
2.4 Testing Tools . 5
2.5 Testing Schedule . 6

3 System Test Description 7
3.1 Tests for Functional Requirements 7

3.1.1 Basic Mechanics . 7
3.1.2 Interaction . 9

3.2 Tests for Non-Functional Requirements 11
3.2.1 Look and Feel Requirements 11
3.2.2 Usability and Humanity Requirements 12
3.2.3 Performance Requirements 14
3.2.4 Operational and Environment Requirements 16
3.2.5 Maintainability Requirements 17
3.2.6 Security Requirements 18
3.2.7 Legal Requirements . 19
3.2.8 Health and Safety Requirements 20

4 Tests for Proof of Concept 21
4.1 Static Testing . 21
4.2 Rendering . 22
4.3 Dungeon Generation . 22
4.4 Basic Movement . 23
4.5 Score File . 23
4.6 Line of Sight System . 24

5 Comparison to Existing Implementation 25

i

6 Unit Testing Plan 26
6.1 Unit testing of internal functions 26
6.2 Unit testing of output files . 27

7 Appendix 28
7.1 Symbolic Parameters . 28
7.2 Usability Survey Questions . 29

List of Tables

1 Revision History . ii
2 Table of Abbreviations and Acronyms 1
3 Table of Definitions . 2
4 Table of States . 2
5 Symbolic Parameter Table 28

List of Figures

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup
10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2
10/24/16 0.3 Added Section 1
10/26/16 0.4 Added PoC tests
10/26/16 0.4.1 Added Test Template
10/30/16 0.5 Added Non-Functional Req. Tests
10/30/16 0.5.1 Added Bibliography
10/31/16 0.6 Switch PoC to test template

ii

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. After reviewing the document,
the reader should understand the strategy, focus, and motivation behind the
efforts of the Rogue++ testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to be
comprehensive by providing context behind critical decisions, motivating the
inclusion of particular features by referring to the existing Rogue implementa-
tion, and offering a large variety of tests for various purposes and hierarchical
units. Aside from the implementation, the report will also discuss a relevant
component from the requirements elicitation process.

1.3 Acronyms, Abbreviations, and States

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

GUI Graphical User Interface
PoC Proof of Concept

1

Table 3: Table of Definitions

Term Definition

Boost C++ utility library that includes a comprehensive
unit testing framework

Frame An instantaneous “Snapshot” of the GUI screen
Libtcod Graphics library that specializes in emulating a

roguelike experience
Monochrome
Luminance

The brightness of a given colour (with respect to the
average sensitivity of the human eye)

Permadeath Feature of roguelike games whereby a character
death will end the game

Roguelike Genre of video games characterized by ASCII graph-
ics, procedurally-generated levels, and permadeath

Table 4: Table of States

State Definition

Developer State The file system state corresponding to the latest
source code revision from the Git repository

Fresh State The file system state corresponding to a “fresh”
Rogue Reborn installation

Gameplay State Any application state that reflects the actual game-
play

High Score State Any application state that reflects the top high
scores screen

Menu State Any application state that reflects the opening menu
Public Test State The system state corresponding to an installation

of Rogue Reborn that is shared by a subset of the
public game testers

1.4 Overview of Document

The early sections of the report will describe the testing environment
and the logistic components of the Rogue Reborn testing effort, including

2

the schedule and work allocation. Next, a suite of tests will be discussed
with respect to the functional requirements, nonfunctional requirements, and
proof of concept demonstration. Upon discussing the relevance of this project
to the original Rogue, a variety of unit tests will be given followed by a sample
usability survey to guage the interest and opinion of the Rogue Reborn game.
A breakdown of the sections is listed below:

• §1 Brief overview of the report contents

• §2 Project logistics and the software testing environment

• §3 Description of system-level integration tests (based on requirements)

• §4 Explanation of test plans that were inspired by the PoC demonstra-
tion

• §5 Comparison of the existing Rogue to the current project in the con-
text of testing

• §6 Outline of the module-level unit tests

• §7 Appendix for symbolic parameters and the aforementioned usability
survey

3

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the
completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for
this project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

• Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

4

• Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

• The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++
to perform the necessary steps. First, it places all source files into a ded-
icated folder, distinguishing between program files and test files. This is
an absolutely necessary step, as there is an important relationship between
source and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both the
final project and its testing component. The files required by the test which
are not required by the source are, obviously, testing-related files. These are
the files that contain the test case implementations. At the time of writing,
there is actually only one file required by source that is not required by the
test, and that is the source program entry (i.e. the file that contains the
main() method).

5

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the ”make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At the time of
writing this document, it is not yet implemented, but note will be made when
it does. It should be noted that if a build fails, the pipeline not only reports
the failure, but also logs where the failure happened, down to the specific
test case. This will hopefully make debugging a more pleasant experience
later on.

As an extra safety measure, the Rogue++ team will also be utilizing a
tool called Valgrind in the testing procedure. Valgrind is a tool that tests the
amount of memory a C++ program utilizes, and detects memory allocation
errors (such as memory leaks). This is an extremely useful and powerful tool.
C++, unlike Java and other high level languages, does not have a built-in
garbage collector. This is just one of the reasons why it is so much faster
than the rest. A consequence of this, however, is that it is very easy to ac-
cidentally leave behind an object in memory, causing a memory leak in the
program.

At the time of writing, the entire program occupies 1 MB of memory. This
is not much, and even if it was all left behind in a leak, the system would not
be too hindered. However, memory leaks represent only a consequence of a
larger issue: incorrect code! Using Valgrind, we will be able to detect these
kinds of errors, potentially pointing us in the direction of a crucial bugfix.

2.5 Testing Schedule

See Gantt Chart at the following url ... TODO

6

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Basic Mechanics

Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Nothing running.

Input: A new game is started.

Output: The program is started.

Execution: Either double-clicking the .exe or via terminal:
./RogueReborn.exe.

Functional Test # 2

Type: Dynamic / Manual / Black Box

Initial State: Game screen

Input: Save command is given or save key is pressed.

Output: A message saying that the game has been saved is shown
to the user in the status box.

Execution: A user will have to play the game and trigger the input
sequence. This process can be verified to work by the
following test.

7

Functional Test # 3

Type: Dynamic / Manual / Black Box

Initial State: Game screen

Input: Load command is given or save key is pressed.

Output: A message saying that the game has been loaded is
shown to the user in the status box. The data model
(level, player, monsters, etc.) is also updated to reflect
the state changes.

Execution: A user will have to play the game and trigger the input
sequence to load, and verify that it is in fact the same
state that was previously saved.

Functional Test # 4

Type: Dynamic / Automatic / Black Box

Initial State: Nothing running

Input: A new game is started.

Output: The player has the default starting gear and statistics.

Execution: This feature can be tested by analyzing a save file. In
the file is listed everything about the player, meaning the
information can be attained from there.

8

Functional Test # 5

Type: Dynamic / Manual / Black Box

Initial State: Game screen

Input: The ”help” command is given or the ”help” key is
pressed.

Output: The user is shown a screen with a list of possible actions
and other information

Execution: Players will be given the game with no instructions or
guide. The usefulness and accessibility of the help screen
will be judged by their performance after having seen the
help screen.

3.1.2 Interaction

Functional Test # 6

Type: Type / ManAut / Color Box

Initial State: InitState

Input: Input

Output: Output

Execution: Execution

9

Functional Test # 7

Type: Type / ManAut / Color Box

Initial State: InitState

Input: Input

Output: Output

Execution: Execution

Functional Test # 8

Type: Type / ManAut / Color Box

Initial State: InitState

Input: Input

Output: Output

Execution: Execution

Functional Test # 9

Type: Type / ManAut / Color Box

Initial State: InitState

Input: Input

Output: Output

Execution: Execution

10

3.2 Tests for Non-Functional Requirements

3.2.1 Look and Feel Requirements

Non-Functional Test # 1

Type: Dynamic / Manual / Black Box

Initial State: Public Test State

Input: Users are asked to rate the aesthetic similarity between
Rogue and Rogue Reborn.

Output: A numeric quantity between 0 and 10, where 0 indicates
that the graphics are entirely disjoint and 10 indicates
that the graphics are virtually indistinguishable.

Execution: A random sample of users will be asked to play Rogue
and the Rogue Reborn variant for
PLAYTEST SHORT TIME minutes a piece.
Afterwards, they will be asked to judge the graphical
similarity of the games based on the aforementioned
scale.

11

3.2.2 Usability and Humanity Requirements

Non-Functional Test # 2

Type: Dynamic / Manual / Black Box

Initial State: Public Test State

Input: New users are instructed to play Rogue Reborn.

Output: The quantity of time the user willingly decides to play
the game.

Execution: A random sample of users who are unfamiliar with
Rogue will be asked to play Rogue Reborn until they feel
bored (or MAXIMUM ENTERTAINMENT TIME has
expired). Once they indicate that they no longer wish to
play, their playing time will be recorded.

Non-Functional Test # 3

Type: Static / Manual / White Box

Initial State: Developer State

Input: Rogue Reborn source code.

Output: An approximation of the English spelling, punctuation,
and grammar mistakes that can be visible from the GUI.

Execution: All strings in the Rogue Reborn source code will be
concatenated with a newline delimiter and placed in a
text file. A modern edition of Microsoft Word will be
used to open this generated text file, and a developer can
then manually correct all indicated errors that are
potentially associated with a GUI output.

12

Non-Functional Test # 4

Type: Dynamic / Manual / Black Box

Initial State: Public Test State

Input: Users are asked to rate the intuitiveness of the Rogue
Reborn key bindings.

Output: A numeric quantity between 0 and 10, where 0 indicates
that the key bindings are extremely confusing and 10
indicates that the key bindings are perfectly natural.

Execution: A random sample of users who are inexperienced with
the roguelike genre will be asked to play Rogue Reborn
for SHORT TIME minutes without viewing the key
binding help screen. Next, the key bindings will be
revealed and the users will continue to play for an
additional PLAYTEST SHORT TIME minutes.
Afterwards, they will be asked to judge the quality of the
key bindings based on the aforementioned scale

13

3.2.3 Performance Requirements

Non-Functional Test # 5

Type: Dynamic / Automatic / White Box

Initial State: Public Test State

Input: Users are instructed to play Rogue Reborn.

Output: A log of occurrences where a computation that was
initiated by a user input took an excessive quantity of
time to execute.

Execution: A random sample of experienced users will be asked to
play a special version of Rogue Reborn for
PLAYTEST MEDIUM RANGE minutes. This version
will use a StopWatch implementation to measure the
execution time of a computation, and if such a
computation exceeds RESPONSE SPEED milliseconds,
the user action and timestamp will be recorded in a log
file.

14

Non-Functional Test # 6

Type: Static / Manual / White Box

Initial State: Developer State

Input: Rogue Reborn source code.

Output: All declarations of integer-typed variables.

Execution: A recursive grep command will be used to capture all
lines in the Rogue Reborn source code that match
REGEX INTEGER (i.e., integer declarations). A group
of Rogue++ developers can review these declarations
together and alter them if deemed necessary to avoid
integer overflow issues.

Non-Functional Test # 7

Type: Dynamic / Manual / Black Box

Initial State: Public Test State

Input: Playtesters are instructed to play Rogue Reborn for at
least PLAYTEST LONG TIME hours.

Output: A collection of crash occurrences along with descriptions
that explain how the failure occurred.

Execution: All Rogue Reborn playtesters will be required to play
the game for at least PLAYTEST LONG TIME hours in
total (spanned over multiple sessions if desired). If the
application crashes during any time, the user must
record the incident along with a description of the visible
GUI state and the steps required to reproduce the
failure. The Rogue++ team must address each crash by
either resolving the issue or confidently declaring that
the event is irreproducible.

15

Non-Functional Test # 8

Type: Dynamic / Manual / White Box

Initial State: High Score State

Input: A high score record file containing a large quantity of
entries.

Output: Screen denoting the top high scores.

Execution: The Rogue Reborn developers will artificially fabricate a
high score record file with at least
HIGH SCORE CAPACITY + 2 records. One round of
the game will be played, and when the high score screen
is revealed, only the top HIGH SCORE CAPACITY
scores should be displayed.

3.2.4 Operational and Environment Requirements

Non-Functional Test # 9

Type: Dynamic / Manual / Black Box

Initial State: Fresh State

Input: Users are instructed to run Rogue Reborn on their
personal machine.

Output: An indication of whether the game can successfully
execute.

Execution: A random sample of users with computers that are
equipped with Intel x64 processors will be asked to
download the latest Rogue Reborn distribution and
attempt to run the executable. The user will then report
if the game successfully runs on their machine.

16

Non-Functional Test # 10

Type: Static / Manual / Black Box

Initial State: Developer State

Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution contains
any files aside from the primary executable and the
associated licenses.

Execution: The public distribution package will be visually
inspected for extraneous files.

3.2.5 Maintainability Requirements

Non-Functional Test # 11

Type: Static / Manual / Black Box

Initial State: Developer State

Input: All ITS issues labeled as bugs in the Rogue Reborn
GitLab repository.

Output: A list of all bug reports and their corresponding
resolution date (if closed).

Execution: The Rogue Reborn GitLab repository will be queried for
all issues concerning bugs (which are denoted by a
“Bug” label). A developer can then manually verify that
every closed bug fix request was resolved within a month
of its creation.

17

Non-Functional Test # 12

Type: Dynamic / Manual / Black Box

Initial State: Fresh State

Input: Users are instructed to run Rogue Reborn on their
personal machine.

Output: An indication of whether the game can successfully
execute.

Execution: A random sample of users with computers that use a
modern 64-bit Linux operating system will be asked to
download the latest Rogue Reborn distribution and
attempt to run the executable. The user will then report
if the game successfully runs on their machine.

3.2.6 Security Requirements

Non-Functional Test # 13

Type: Dynamic / Manual / White Box

Initial State: High Score State

Input: A corrupted high score record file.

Output: Screen denoting the top HIGH SCORE CAPACITY
(valid) high scores.

Execution: The Rogue++ team will illegally modify a high score
record file by manually altering or adding values such
that the expected format or value integrity is violated.
These modifications should include negative high score
values, missing text, and incorrect delimiter usage. The
game will then be executed to reach the High Score
State, where invalid record file contents should be
ignored and amended in the next write to the file.

18

3.2.7 Legal Requirements

Non-Functional Test # 14

Type: Static / Manual / Black Box

Initial State: Developer State

Input: Rogue Reborn distribution package.

Output: An indication of whether or not the distribution is
missing any mandatory license files.

Execution: The original Rogue source code (as referenced on the
Rogue Reborn GitLab homepage) will be reviewed for
legal requirements, and the public distribution package
will be visually inspected to ensure that all license files
are present.

19

3.2.8 Health and Safety Requirements

Non-Functional Test # 15

Type: Static / Manual / Black Box

Initial State: Developer State

Input: Two screenshots denoting the largest possible luminosity
difference present between two consecutive frames.

Output: The difference in luminosity between the two captured
frames.

Execution: After identifying the frame pair that is most likely to
induce a seizure, the game will be played to reach the
states that reflect each frame (this should be a brief
process; no clever game model manipulation is required).
At the occurrence of each desired frame, the game screen
will be captured. At this point, the average monochrome
luminance across each frame will be calculated according
to

L = 0.299R + 0.587G + 0.114B

where L is the luminance, R is the red RGB component,
G is the green RGB component, and B is the blue RGB
component (?). Finally, the absolute value of the
luminance difference can then compared to
LUMINOSITY DELTA.

20

4 Tests for Proof of Concept

4.1 Static Testing

Proof of Concept Test # 1

Type: Static / Automatic / White Box

Initial State: None

Input: Program Source

Output: Program Executable

Execution: Verify that the program compiles with g++.

Proof of Concept Test # 2

Type: Dynamic / Manual / White Box

Initial State: None

Input: A brief but complete playthrough of the game.

Output: Breakdown of program memory usage.

Execution: A tester will briefly play the game, and a developer will
use Valgrind’s memcheck utility to verify that program
does not leak memory or utilize uninitialized memory.

21

4.2 Rendering

Proof of Concept Test # 3

Type: Dynamic / Manual / l Box

Initial State: Black

Input: Gameplay State

Output: 30-60 seconds of gameplay.

Execution: The player character and any dungeon features should
be shown at the correct location with the correct glyphs.
Correct player statistics will be shown along the bottom.
The dialog box will correctly display the log and any
prompts.

A tester will manually play the game and verify the display is correct.

4.3 Dungeon Generation

Proof of Concept Test # 4

Type: Dynamic / Manual / Black Box

Initial State: None

Input: Repeated restarts of the game

Output: Level should contain ROOMSPER LEVEL rooms, which
should form a connected graph.

Execution: A tester will manually start the game, briefly explore the
level to verify correct generation, then repeat this
process until confidence is achieved.

22

4.4 Basic Movement

Proof of Concept Test # 5

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Movement commands

Output: Player should move about the level, without clipping
through walls, failing to walk through empty space, or
jump to an unconnected square.

Execution: A tester will manually walk through the level, and
visually verify correctness.

4.5 Score File

Proof of Concept Test # 6

Type: Dynamic / Manual / Black Box

Initial State: Menu State

Input: Enter name, then quit, restart game, enter name again,
and quit.

Output: 1st name should appear in both the first and second
score screens. The 2nd should appear in the second.
Both should have correct values for level, cause of
death/quit, and gold collected.

Execution: A developer will manually perform the above input, and
verify the output. Should be tested both with and
without an initial score file.

23

4.6 Line of Sight System

Proof of Concept Test # 7

Type: Dynamic / Manual / Black Box

Initial State: Gameplay State

Input: Movement commands

Output: Screen should display correct portions of level, with
correct coloration schemes. This means that the player
should be able to see the entirety of a room they are in
or in the doorway of, and VIEW DISTANCE squares
away if they are in a corridor. Squares that the player
has seen in the past but cannot see currently should be
shown greyed out. Squares they have not seen should be
black and featureless.

Execution: A developer will manually walk through the level,
verifying that the above LoS rules are preserved,
especially in edge cases like the corners of rooms and
doorways.

24

5 Comparison to Existing Implementation

25

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties. Since
we are not using a framework, drivers will be written by hand. Stubs will
be produced when necessary to simulate system components. Since there
are no database or network connections, stubs should hopefully be kept to a
minimum. However, functions may be required to construct objects in states
suitable for easy testing, for example creating a level or player with certain
known properties, rather than by random generation.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. As complete code coverage is not a goal, generic code coverage metrics
will not be used. Instead, care will be taken that complex functions are cov-
ered by unit tests. The following are examples of internal functions that are
initial candidates for unit testing. Other functions will be added as necessary:

• The dungeon generation functions. The work of generating the dun-
geon is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectedness, compli-
ance with formulas for item generation, presence or absence of certain
key features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

• The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

• The item activation functions. For example it could be verified that
when the player drank a potion of healing their health increased (if it
was not at its maximum), that a scroll of magic-mapping is reveals the
level, or that a scroll of identification reveals the nature of an item.

26

• The item storage functions. Each item is mapped to a persistent hotkey
in the player’s inventory. Certain items can stack with copies, reducing
the amount of inventory space they take up, and how they are displayed.
These factors make the inventory fairly complex. It is however easily
verifiable, and automated testing can examine edge cases that would
be impractical to test manually.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can
be unit-tested by verifying its contents after writing to it, and by providing
a testing version of the file with known contents and verifying the function
reads them correctly.

27

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 5: Symbolic Parameter Table

Parameter Value

ROOMS PER LEVEL 9

FINAL LEVEL 26

HEIGHT RESOLUTION 400

LUMINOSITY DELTA 0.5

MINIMUM ENTERTAINMENT TIME 20

MINIMUM RESPONSE SPEED 30

HIGH SCORE CAPACITY 15

PLAYTEST SHORT TIME 5

PLAYTEST MEDIUM RANGE 10-20

PLAYTEST LONG TIME 3

REGEX INTEGER (char|int|long).*(,|;)

START LEVEL 1

VIEW DISTANCE 1

WIDTH RESOLUTION 1280

28

7.2 Usability Survey Questions

1. Is there any game feature you were unable to figure out how to utilize?

2. How helpful was the help screen for you?

3. Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

4. What common UI interactions did you find particularly lengthy?

5. What aspects of the interface did you find unintuitive?

6. How responsive was the interface?

7. How easy was it to see everything that was going on?

8. How effective are the graphics/symbols?

9. Would an alternative input device such as a mouse make interacting
with the interface easier for you?

10. Is there any extra functionality you would like added to the interface?

11. How difficult was it to learn the game? How much experience do you
have with Roguelikes?

12. How helpful was the original game manual?

13. How pleasing was the color scheme?

14. Was the font large enough for easy use?

15. Were you able to learn the hotkeys easily?

29

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and States
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Basic Mechanics
	Interaction

	Tests for Non-Functional Requirements
	Look and Feel Requirements
	Usability and Humanity Requirements
	Performance Requirements
	Operational and Environment Requirements
	Maintainability Requirements
	Security Requirements
	Legal Requirements
	Health and Safety Requirements

	Tests for Proof of Concept
	Static Testing
	Rendering
	Dungeon Generation
	Basic Movement
	Score File
	Line of Sight System

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

