Table 1: Revision History

Date Developer(s) Change
09/23/2016 Or Create outline .tex
09/25/2016 Ian Add Meeting Plan, Team Roles, and Proof of
Concept Plan
09/25/2016 Mikhail Added Communication Plan and Technology
Mikhail Added Git Workflow Plan

09/26/2016




SE 3XA3: Development Plan
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Friday, September 30, 2016

Rogue is a classic video game, originally developed in 1980. This project
aims to rewrite Rogue using modern software development techniques and a
modern language. This document outlines the development plan for this project.
Incuded below are plans for how team members will coordinate, and divide
work; what technology will be used and the project code style; and the project
schedule, with details for the requirements for the Proof of Concept deadline.

1 Team Meeting Plan

Meetings will be held once weekly, in Thode library at 3:30pm on Wednesday.
These weekly meetings will be chaired by the team leader. The team leader will
be responsible for developing a rough meeting agenda and ensuring the meeting
follows the agenda. This agenda will no be posted but will be briefly outlined
to the meeting participants. Full minutes will not be recorded, but the meeting
scribe will record the outcomes of the meeting. Any such outcomes will be
posted to the team git repository. If a team member cannot make the meeting,
a brief summary of the meeting and links to its outcomes will be posted in the
team slack channel by the meeting scribe. Any changes to the meeting format,
location, or time will be posted to the team slack channel by the meeting chair.

2 Team Communication Plan

Team communications will be distributed across several social platforms.
This way, conversations can be grouped together according to the degree of
formality and desired visibility. Specifically, Slack will be used to exchange
informal messages for purposes such as conveying meeting times or briefly dis-
cussing topics. Team members will be required to check this service at least once



per day in order to facilitate quicker response times and encourage more open
communication. Next, the GitLab ITS will serve as an official means of tracking
bugs, reporting issues, and announcing any other code correction request. All
other communications will be performed in person during the lab sessions as
well as the weekly group meeting. Currently, there is no plan to include any
other communication streams as this will most likely dilute the conversations
to a point where accessibility and traceability is sacrificed.

3 Team Member Roles

Mikhail will be the team leader. The team leader is responsible for chairing
the meetings, allocating work to the team members, and ensuring that all team
members are up-to-date about the project status and deadlines. The other team
members will alternate fulfilling the role of meeting scribe. Outside of meetings,
various team members will fill the role of experts in the project technology.
Mikhail will git LaTeX expert, Ori testing/Git expert, and Ian C++/libtcod
expert. Expert roles don’t constitute work allocations, but rather an indication
of who should make sure to be up-to-date on portions of the project and who
questions should be directed to.

4 Git Workflow Plan

To minimize the overhead associated with creating, updating, and managing
project files, the Rogue++ team will collaborate using several Git integration
flows. In general, all project source files and documents associated with the
main (stable) development branch will be hosted in a central GitLab repository.
Any developers (or distinguished stakeholders) may clone, view, and modify
this code, given that their changes do not compromise any tested functionality.
Note that it is still acceptable to commit a change to this branch that is not
fully integrated; however, the application must be able to successfully compile
and run. In the event that a prototype demonstration is required, a new branch
will be created to host any temporary changes that will not be merged back into
the main branch. This way, developers are free to adapt existing source code
in any manner they choose in order to showcase their progress to a stakeholder
without violating the integrity of the stable branch.

To create a semantic history of the development process, labels will be used
extensively throughout the course of the Rogue Reborn project. This will enable
stakeholders to oversee the progress of the project more clearly and developers
to gauge their own productivity with greater ease. Milestones will also be in-
corporated as a means of measuring the progress of the application against the
goals of the stakeholders. These milestones will also be used internally within
the Rogue++ team to coordinate feature implementation or debug deadlines. If
done correctly, this system will allow for more efficient communication between



the involved parties and improve the visibility of the entire development cycle.

5 Proof of Concept Demonstration Plan

To demonstrate the feasibity of the project, a proof of concept will be de-
veloped. The PoC will demonstrate the following features:

e Basic dungeon generation, including rooms, corridors, and placement of
gold, items, monsters, and traps

e Line of sight and pathfinding implementation
e Non-functional items and traps implemented
e Minimum viable monster Al

e Basic movement and very simple environmental interaction (picking up
items, basic combat)

If there are no issues implementing the above features, it is assumed there
are no fundamental flaws with the requirements or architectural design of the
project. There are major features of the project that are touched by the above
(advanced item manipulation, traps, hidden passageways, and complex mon-
sters) but these have been left out of the PoC as too ambitious. So long as the
underlying code is well architectured, these more complex features should flow
out of the PoC foundation.

It is unlikely that a straight-forward implementation of the PoC features will
prove unusually difficult. It may however be somewhat difficult to implement
these features in sufficiently extensible manner that they can be reused without
readjustment. The reverse-engineering of the algorithms for various features
from the original source is likely to prove difficult. In addition integrating tests
into the implementation may prove difficult as no team member has much ex-
perience with testing or testing frameworks. At this time the project is planned
to only be developed for Linux systems, so portability is not expected to be
an issue. The required dependencies have already been installed, with a test
application running, so that should remain a non-issue going forward.

6 Technology

The technology behind the Rogue Reborn project was selected to facilitate
a productive development process and a powerful user experience. At its very
core, C++ will serve as the primary programming language for this application.
This decision was heavily influenced by the superior performance benefits and
community support behind the language, not to mention its prevalence in the
professional game developer industry. Another factor that motivated the use



of C4++ was its compatibility with libtcod: a lightweight graphics library that
offers a simple interface to draw ASCII-style art and collect user input. For
these reasons, the development team believes that developing a C++ project
would yield the best experience from both a technical and practical perspective.

With respect to the environment of the technology, the Rogue++ team
agreed to use Linux as the primary development platform (attempting to achieve
cross-platform portability from the start could significantly hinder progress).
Otherwise, every team member is free to use a text editor of their choice: im-
posing a constraint on an IDE could result in unnecessary complications and
may interfere with productivity during the early coding stages. To gain confi-
dence in the correctness and versatility of the code, the Boost Test framework
will be heavily utilized to perform unit testing across the project. This library
was selected on the merits of its superb documentation, simple approach to
test creation, and robust assertion support. On a final note, the Rogue Reborn
documentation will be generated using two tools. Specifically, all design docu-
mentation will be generated using LaTeX, while all source code documentation
will be delegated to the Doxygen tool.

7 Coding Style

In any large-scale project, it is important that all members are on the same
page. This is especially true for a software project, where every team mem-
ber must be able to read and understand the code that another wrote. The
Rogue++ project will be utilizing a modified version of Google’s C++ Style
Guide to format and organize the code. Google’s style guides are a professional
standard, utilized in every corner of the software industry. The team has de-
cided to implement some changes to it, however, primarily due to the nature
of the project and past proramming experience. As with any style guide, what
is most important is that the code is persistent, not that it conforms to one
system or another. Having said that, the team shall differ on two matters from
Google’s style guide:

e Opening and closing curly braces ({}) shall be on the same column. The
reason for this is simple: curly braces are used to separate code blocks
and to designate to whom or what a piece of code belongs. In a trivial
case it makes no difference, but with multiple layers of nested for-loops,
if-statements, and function definitions, opening and closing curly braces
on new lines will yield code that is easier to read and easier to debug.

e Google’s C++ Style Guide calls for inline comments describing classes,
functions, methods, and file contents. While this is a noble goal, and
is most definietly necessary, this job has been delegated elsewhere. As
mentioned before, the team will be using the Doxygen tool for document-
ing code structure. Doxygen will encapsulate the design-documentation
sphere, stepping into a fair portion of Google’s style guide. The team will


https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

still, of course, leave in-line comments explaining the functional aspects of
the code.

8 Project Schedule

Provide a pointer to your Gantt Chart.

9 Project Review



	Team Meeting Plan
	Team Communication Plan
	Team Member Roles
	Git Workflow Plan
	Proof of Concept Demonstration Plan
	Technology
	Coding Style
	Project Schedule
	Project Review

