SE 3XA3: Test Plan
Rogue Reborn

Group #6, Team Rogue++

Ian Prins prinsij
Mikhail Andrenkov andremb
Or Almog almogo

Due Monday, October 31", 2016

Contents

1 General Information 1
1.1 Purpose e 1

1.2 Scope 1

1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document 2

2 Plan 3
2.1 Software Description 3
22 Test Team oo 3
2.3 Automated Testing Approach 3
2.4 Testing Tools 4
2.5 Testing Schedule 5

3 System Test Description 6
3.1 Tests for Functional Requirements 6
3.1.1 Areaof Testingl 6

3.1.2 Areaof Testing2 6

3.2 Tests for Nonfunctional Requirements 6
3.2.1 Areaof Testingl 6

3.2.2 Areaof Testing2 7

4 Tests for Proof of Concept 8
4.1 Areaof Testingl, 8
4.2 Areaof Testing2 L. 8

5 Comparison to Existing Implementation 9
6 Unit Testing Plan 10
6.1 Unit testing of internal functions 10
6.2 Unit testing of output files 10

7 Appendix 12
7.1 Symbolic Parameters o000 12
7.2 Usability Survey Questions? 13

List of Tables

1 Revision History ii
2 Table of Abbreviations and Acronyms 1
3 Table of Definitions 2
4 Symbolic Parameter Table 12

List of Figures

Table 1: Revision History

Date Version Notes

10/21/16 0.0 Initial Setup

10/24/16 0.1 Added Unit Testing and Usability Survey
10/24/16 0.2 Added Most of Section 2

10/24/16 0.3 Added Section 1

i

1 General Information

1.1 Purpose

The purpose of this document is to explore the verification process that
will be applied to the Rogue Reborn project. After reviewing the document,
the reader should understand the strategy, focus, and motivation behind the
efforts of the Rogue++ testing team.

1.2 Scope

This report will encompass all technical aspects of the testing environ-
ment and implementation plan, as well as other elements in the domain of
team coordination and project deadlines. The document will also strive to be
comprehensive by providing context behind critical decisions, motivating the
inclusion of particular features by referring to the existing Rogue implementa-
tion, and offering a large variety of tests for various purposes and hierarchical
units. Aside from the implementation, the report will also discuss a relevant
component from the requirements elicitation process.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations and Acronyms

Abbreviation Definition

PoC Proof of Concept

Table 3: Table of Definitions

Term Definition

Boost C++ utility library that includes a comprehensive unit
testing framework

Libtcod Graphics library that specializes in emulating a rogue-
like experience

Permadeath Feature of roguelike games whereby a character death
will end the game

Roguelike Genre of video games characterized by ASCII graphics,

procedurally-generated levels, and permadeath

1.4 Overview of Document

The early sections of the report will describe the testing environment
and the logistic components of the Rogue Reborn testing effort, including
the schedule and work allocation. Next, a suite of tests will be discussed
with respect to the functional requirements, nonfunctional requirements, and
proof of concept demonstration. Upon discussing the relevance of this project
to the original Rogue, a variety of unit tests will be given followed by a sample
usability survey to guage the interest and opinion of the Rogue Reborn game.
A breakdown of the sections is listed below:

e §1 - Brief overview of the report contents
e §2 - Project logistics and the software testing environment

e §3 - Description of system-level integration tests (based on require-
ments)

84 - Explanation of test plans that were inspired by the PoC demon-
stration

§5 - Comparison of the existing Rogue to the current project in the
context of testing

86 - Outline of the module-level unit tests

§7 - Appendix for symbolic parameters and the aforementioned usabil-
ity survey

2 Plan

2.1 Software Description

Initially, the plan for testing involved the usage of a pre-made testing sys-
tem called Boost. Boost has industry renown and is very well documented.
The drawback to using such a profound system is exactly its advantage - it is
heavy, globally encompassing, and requires a lot of work to use properly. The
Boost library is suitable for projects spanning years, with dedicated testing
teams. This is not the present situation. With hardly over a month until the
completion of the project, starting to use Boost would be most unwise.

Instead, an alternative solution has been proposed and implemented. Na-
tive test cases can be written in C++ to do exactly that which is required.
The details of this implementation will be explained in the parts to follow.

2.2 Test Team

All members of the team will take part in the testing procedure. While
Mikhail was given the title of project manager, and Ian C++ expert, Ori was
assigned the role of testing expert. Testing will be monitored by Ori, but of
course every member of the team will contribute to the testing facilities. It
would be desirable for the team member who wrote class C' to write the unit
tests for this class. Due to the dependency-tree-like structure of the project’s
design, there will be cases where a unit test for one class encompasses a
partial system test for another one. This can be extrapolated from the class
inheritance diagram.

2.3 Automated Testing Approach

We have made a very large attempt at automating whatever we could for
this project. In the real world, any task that can be automated, is automated.
The steps we have taken are as follows:

e Set up a GitLab pipeline for the project. The pipeline is programmed
to run a series of commands on an external VPS whenever a push is
made to the git repository. Each run is documented and its history
may be accessed.

e Write a special makefile that outputs 2 executables: the first being the
actual project, and the second the project’s tests. The details will be
delved into in the following sub-section.

e The team’s primary method of communication is Slack, a cross-platform,
programmer-friendly chat interface. We hooked up the GitLab project
repository to the Slack channel such that whenever a push is made or
an issue addressed, a notification is sent. This method makes it far
easier to communicate about project-related inquiries.

2.4 Testing Tools

The special makefile discussed previously utilizes a phenomenon of C++
to perform the necessary steps. First, it places all source files into a ded-
icated folder, distinguishing between program files and test files. This is
an absolutely necessary step, as there is an important relationship between
source and test classes. See the diagram below:

Source Test

As the diagram above depicts, there are classes shared between both final
programs. The vast majority of classes fall in the center, required by both the
final project and its testing component. The files required by the test which
are not required by the source are, obviously, testing-related files. These are
the files that contain the test case implementations. At the time of writing,
there is actually only one file required by source that is not required by the
test, and that is the source program entry (i.e. the file that contains the
main() method).

The entire procedure of file collection, compilation, and separate linking
is handled by the makefile, and is triggered by the "make” command. Then,
simply running Test.exe will fire off all of the pre-written tests.

There is a plan to implement a python script on the GitLab pipeline that
will cause the build to fail if any of the tests do not pass. At the time of
writing this document, it is not yet implemented, but note will be made when
it does. It should be noted that if a build fails, the pipeline not only reports
the failure, but also logs where the failure happened, down to the specific
test case. This will hopefully make debugging a more pleasant experience
later on.

2.5 Testing Schedule
See Gantt Chart at the following url ... TODO

3

3.1

System Test Description

Tests for Functional Requirements

3.1.1 Area of Testingl

Title for Test

1.

2.

test-id1

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

3.1.2 Area of Testing2

3.2

Tests for Nonfunctional Requirements

3.2.1 Area of Testingl

Title for Test

1.

test-id1

Type:

Initial State:
Input/Condition:
Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

3.2.2 Area of Testing2

4 Tests for Proof of Concept

4.1 Area of Testingl
Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.
Initial State:

Input:

Output:

How test will be performed:

4.2 Area of Testing2

5 Comparison to Existing Implementation

6 Unit Testing Plan

After examining the boost library’s utilities for unit testing, we have
decided we will not use a unit testing framework for testing the product. We
concluded that adding a framework would not make the work significantly
easier, while reducing our flexibility and adding installation difficulties.

6.1 Unit testing of internal functions

Internal functions in the product will be unit tested. This will be reserved
for more complex functions so as to not waste development time unnecessar-
ily. The following are examples of internal functions that are good candidates
for unit testing:

e The dungeon generation functions. The work of generating the dungeon
is complex, but it is also easy to automate verification of dungeon
properties such as a correct number of rooms, connectness, compliance
with formulas for item generation, presence or absence of certain key
features such as the stairs connecting levels or the Amulet of Yendor
in the final level.

e The keyboard input functions. As libtcod provides a Key struct which
models keyboard input, we can mock/automate these functions. They
are fairly complex, and since they return a pointer to the next de-
sired state (similar to a finite state machine) we can easily verify their
behavior.

e Some of the item activation functions. For example it could be verified
that when the player drank a potion of healing their health increased (if
it was not at its maximum), when a scroll of magic-mapping is read the
level was revealed, or that a scroll of identification reveals the nature
of an item.

6.2 Unit testing of output files

There is only one output file for the product, the high score file, which
stores the scores in a csv format. The production and reading of this file can
be unit-tested by verifying its contents after writing to it, and by providing

10

a testing version of the file with known contents and verifying the function
reads them correctly.

11

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

Table 4: Symbolic Parameter Table

Parameter Value
FINAL_LEVEL 26
WIDTH_RESOLUTION 1280
HEIGHT_RESOLUTION 400
VIEW _DISTANCE 2
START_LEVEL 1

MINIMUM_ENTERTAINMENT _TIME 20

MINIMUM_RESPONSE_SPEED 30
HIGH_SCORE_CAPACITY 15
LUMINOSITY _DELTA 0.5

12

7.2

Usability Survey Questions?

Is there any game feature you were unable to figure out how to utilize?
How helpful was the help screen for you?

Was there anything going on in the game that the interface failed to
make clear to you or deceived you about?

What common Ul interactions did you find particularly lengthy?
What aspects of the interface did you find unintuitive?

How responsive was the interface?

How easy was it to see everything that was going on?

How effective are the graphics/symbols?

Would an alternative input device such as a mouse make interacting
with the interface easier for you?

13

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

