
1 2 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

loyal opposition
E d i t o r : R o b e r t L . G l a s s ■ C o m p u t i n g T r e n d s ■ r l g l a s s @ a c m . o r g

S
ome time ago, a chasm opened between
the scientific-computing community and
the software engineering community.
Originally, computing meant scientific
computing. Today, science and engineer-
ing applications are at the heart of soft-

ware systems such as environmental monitoring
systems, rocket guidance systems, safety studies

for nuclear stations, and fuel in-
jection systems. Failures of such
health-, mission-, or safety-re-
lated systems have served as ex-
amples to promote the use of
software engineering best prac-
tices. Yet, the bulk of the soft-
ware engineering community’s
research is on anything but sci-
entific-application software.

This chasm has many possi-
ble causes. Let’s look at the impact of one par-
ticular contributor in industry.

Creating the chasm
In a 1997 paper, Iris Vessey described a shift

in computing philosophy that occurred in the
late 1960s.1 She quoted George E. Forsyth, the
ACM’s president at that time, as stating that
computer science was a field of its own, sepa-
rate from the application domains. The result,
as Vessey points out, was the insistence that
anyone who wanted to be taken seriously in
the field of computing, and software engineer-

ing, must develop domain-independent tech-
niques, methods, and paradigms. The pressure
was such that claims of broad applicability be-
came commonplace. So, the bridge between
software engineering and any application do-
main became a single massive structure that
everyone had to use.

In industry, a management paradigm based
on domain-independent software solutions
took hold. A typical scenario runs as follows.

Consider a company that develops mostly
engineering applications. Their IT division is
organized according to required background
knowledge—engineers and scientists write en-
gineering applications, data specialists write
database applications, business people write
accounting and human-resources applications,
and systems people look after hardware, oper-
ating systems, and compilers.

A management paradigm shift based on
domain-independent software solutions causes
a reorganization along the lines of, “all soft-
ware is treated the same; all software devel-
opers are the same.” The result is that a physi-
cist is developing a timesheet program, and a
chemical-dispersion program is left in a cor-
ner because the new maintainer, originally
from the business side, is terrified to touch it.
The customer divisions cry foul every time the
IT division sends a software developer steeped

A Software Chasm:
Software Engineering
and Scientific Computing

Diane F. Kelly

… in which I oppose the domain-independent solutions proffered by the software engineering
community and the resulting isolation of the scientific-computing community.

Continued on p. 118

in new software engineering paradigms
but ignorant of the needed engineering
background. Software developers with
engineering knowledge are hired away
from the IT division into the engineer-
ing divisions. Over time, the IT divi-
sion shrinks away.

The engineering-software developers
are now working in customer-specific
silos, physically and organizationally
separated from each other. They have
little opportunity for interaction and no
organizational support mechanism.
Each developer builds his or her own
bridge across the chasm to the software
engineering resources he or she needs or
finds useful. Some do a very good job.
However, their engineering-application
managers often have a limited under-
standing of software—it’s not their area
of expertise. When something goes
wrong, these managers grab the soft-
ware engineering textbooks promoting
domain-independent practices.

Unfortunately, the bridges that these
developers have built aren’t the do-
main-independent bridge blessed by all
these textbooks. The result is often con-
fusion, conflict, and imposed practices
that don’t improve software quality or
the developer’s life. The engineering-
software developer and software engi-
neer’s lack of interest in each other’s
discipline is now firmly entrenched on
both sides of the chasm.

Supporting the three types
of scientific developers

Today, as more and more scientists
work in their fields by sitting at a com-
puter, the need to engage these people
in software know-how is growing. We
can identify three groups of scientific-
software developer:

■ the industrial developer working in
his or her specific application domain,

■ the scientific researcher, many of
whom are employed in academia, and

■ the student engineer or scientist who
will eventually join one of the other
two groups.

Greg Wilson from the University of

Toronto gave a recent seminar on soft-
ware practices for academic scientific
researchers.2 In Wilson’s experience,
the average academic researcher devel-
oping software for research in his or
her scientific domain is so far removed
from the software engineering world
that simple practices such as using a
debugger and saving labeled copies
(configuration management) are novel.
Another colleague of mine commented
that generations of graduate students
in scientific fields have been using er-
ror-prone software development prac-
tices simply because no one has con-
vinced them that there are better ways
to do things.

In another example, response to a
required software engineering course
for third-year electrical- and computer-
engineering students has been over-
whelmingly negative. This has two ma-
jor causes. First, the students fail to
acknowledge the high probability of
software being part of their future jobs.
Second, the curriculum, based on stan-
dard software engineering textbooks,
fails to offer solutions that are obvi-
ously geared to the type of work the
students might undertake.

All three groups of developers need
appropriate software engineering knowl-
edge to support their work. Robert
Glass, in his Practical Programmer col-
umn in Communications of the ACM,
exhorted software researchers to identify
domain-specific software development

methodologies.3 We need a mapping, he
explained, between the methodologies
that software engineers are developing
and the problems that application-domain
people are solving. As he pointed out,
this task isn’t easy. One step is to char-
acterize the problem, or application, do-
mains. Even if we shrink the character-
ization to scientific or engineering
software, this step is still difficult.

In October 2000, an International
Federation for Information Processing
working group addressed the issue of
the architecture of scientific software.4

They made important inroads in char-
acterizing scientific software’s structures
and development environments. How-
ever, according to a recent private com-
munication with this working group’s
chair, Morven Gentleman of Dalhousie
University, there seems to be no interest
in continuing this work. It seems that
neither the scientific-computing com-
munity nor the software engineering
community sees any interesting work go-
ing on across the chasm, enough to start
building separate bridges. The working
group did identify some useful planks to
drop into the scientific-software devel-
opment bridge, such as a common soft-
ware architecture, around which many
scientific applications are designed. This
and other common practices developed
by separate groups of industrial scien-
tific-software developers need further
investigation.

S o, we’re left with three groups of
scientific-software developers tak-
ing different approaches to the soft-

ware engineering chasm. The scientific
community isn’t applying the current
solutions offered by the software engi-
neering community, for whatever rea-
son. Software engineers must realize
that they can’t be separated from the
application domains they’re supposed
to be supporting. We must build
bridges to join ideas, needs, and solu-
tions on both sides of the chasm.

References
1. I. Vessey, “Problems versus Solutions: The

Role of the Application Domain in Software,”

1 1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

LOYAL OPPOSITION

Software engineers
must realize that

they can’t be separated
from the application

domains they’re
supposed to be

supporting.

Continued from p. 120

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 1 1 9

LOYAL OPPOSITION

Proc. 7th Workshop Empirical Studies of Pro-
grammers, ACM Press, 1997, pp. 233–240.

2. G. Wilson, “Where’s the Real Bottleneck in
Scientific Computing?” Am. Scientist, vol. 94,
no. 1, 2006, p. 5; www.americanscientist.org/
template/AssetDetail/assetid/48548.

3. R. Glass, “Matching Methodology to Problem
Domain,” Comm. ACM, vol. 47, no. 5, 2004,
pp. 19–21.

4. R.F. Boisvert and P.T.P. Tang, eds., The Ar-
chitecture of Scientific Software, Kluwer
Academic, 2001.

Diane F. Kelly is an assistant professor in the Depart-
ment of Mathematics and Computer Science at the Royal Mili-
tary College of Canada. Contact her at kelly-d@rmc.ca.

Copyright and reprint permission: Copyright © 2007 by the Institute of Electrical and Electronics En-
gineers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permit-
ted to photocopy beyond the limits of US copyright law for private use of patrons those post-1977 ar-
ticles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying,
reprint, or republication permission, write to Copyright and Permissions Dept., IEEE Publications Ad-
min., 445 Hoes Ln., Piscataway, NJ 08855-1331.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications
Office: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; +1 714 821 8380; fax
+1 714 821 4010. IEEE Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC
20036-1903. Subscription rates: IEEE Computer Society members get the lowest rate of US$47 per year,
which includes printed issues plus online access to all issues published since 1988. Go to www.computer.
org/subscribe to order and for more information on other subscription prices. Back issues: $20 for mem-
bers, $128 for nonmembers (plus shipping and handling). This magazine is available on microfiche.

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Processing
Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855-1331. Periodicals Postage Paid at New
York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls,
ON L2E 6S8, Canada. Printed in the USA.

This book offers workable, real-world sample problems
with solutions to help the professional software engi-
neer solve common problems. In addition to its role as

the definitive preparation guide of software engineering pro-
fessionals for the IEEE Computer Society Certified Software
Development Professional (CSDP) Certificaition Program, this
resource also serves as an appropriate guide for graduate-
level courses in software engineering or for professionals
interested in sharpening or refreshing their skills.

IEEE Computer Society Real-World
Software Engineering Problems:
A Self-Study Guide for Today’s
Software Professional

978-0-471-71051-6 • July 2006
310 pages • Paperback • $60.00
A Wiley-IEEE Computer Society Press

To Order:
1-877-762-2974 North America
+ 44 (0) 1243 779 777 Rest of World

15
 %

 o
ff

fo
r

CS
M

em
be

rs

www.wiley.com/ieeecs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

