
Assignment 3

SFWR ENG 2AA4

Files due Feb 23, E-mail partner due Feb 24, Lab report due Mar 2

The purpose of this software design exercise is to write an OCaml program that cre-
ates, uses, and tests an ADTs for vector spaces and inner product spaces. We will take
advantage of the fact that OCaml treats funtions as first class members and make our
vector space the space of real continuous functions.

Step 1

Write a module that creates a vector ADT, where the vector is in the space of functions.
It should consist of an OCaml code file named vectorT.ml. The specification for this
module (Vector Module) is given at the end of the assignment. The specification includes
output of a sequence of real. Please use a list (not an array) to represent the sequence.

Step 2

Write a module that creates a vector space ADT. It should consist of an OCaml file
named vectorSpaceT.ml. The new module should follow the specification (Vector Space
Module) given at the end of the assignment.

Step 3

Write a module that creates an inner product space ADT. It should consist of an OCaml
file named innerProductSpaceT.ml. The new module should follow the specification
(Inner Product Space Module) given at the end of the assignment.

1

Step 4

Write testing modules to test the above files. The modules should use oUnit for the
testing. Each procedure should have at least one test case. Record your rationale for
test case selection and the results of using this module to test the procedures in your
modules. (You will submit your rationale with your lab report.) Please make an effort to
test normal cases, boundary cases, and exception cases. The files that are required are as
follows:

• test vectorT.ml to test vectorT.ml

• test vectorSpaceT.ml to test vectorSpaceT.ml

• test innerProductSpaceT.ml to test innerProductSpaceT.ml

• test assig3.ml to test all of the above using a test suite.

Write a makefile Makefile to build the executable test assig3.

Step 5

Submit the files vectorT.ml, vectorSpaceT.ml, innerProductSpaceT.ml, test vectorT.ml,
test vectorSpaceT.ml, test innerProductSpaceT.ml, test assig3.ml and Makefile

using subversion. This must be completed no later than midnight of the deadline for file
submission.

E-mail the innerProductSpaceT.ml file to your assigned partner. (Partner assign-
ments will be posted on WebCT, on the day after the initial submission.) Your partner
will likewise e-mail you his or her files. These e-mails should be traded by midnight of
the day following the file submission.

Step 6

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your tests and record
the results. Your evaluation for this step does not depend on the quality of your partner’s
code, but only on your discussion of the testing results.

2

Step 7

Write a report that includes the following:

1. Your userid on the first page

2. Your name and student number.

3. Your partner’s innerProductSpaceT.ml file.

4. The results of testing your files (along with the rational for test case selection).

5. The results of testing your files combined with your partner’s files.

6. A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules.

7. Complete the specification for the unspecified access program (length) in the Inner
Product Space module. You are not required to implement this access program.

8. Complete the specification of the Subspace module provided at the end of the as-
signment. You are not required to implement or test this module. The parts that
you are to complete are indicated in bold.

9. Draw a graph of the uses relationship between the Vector, Vector Space, Inner
Product Space and Subspace modules. Each module should be represented by a
square. A directed arrow should be drawn between modules A and B if module A
uses module B.

10. A copy of the part of your log book relevant to this lab exercise.

A physical copy of the lab report is due at the beginning of the lecture on the assigned
due date.

Notes

1. Place all submitted files in your svn repository in the folder Assig3.

2. Please put your name and student number at the top of each of your source files.
(You should remove the student number before e-mailing any files to your partner.)

3. Your program must work in the ITB labs on moore when compiled by ocamlc.

3

4. If your partner fails to provide you with a copy of his or her files by the deadline,
please tell the instructor via e-mail as soon as possible.

5. If you do not send your files to your partner by the deadline, you will be assessed a
10% penalty to your assignment grade.

6. For the OCaml implementation of the modules, you will need to “map” the MIS
syntax to OCaml syntax. In particular, when the input to an access program consists
of several parameters, you should provide each parameter separately, as opposed to
combining them in a tuple. That is, if function f has two arguments, the type of f
is A → (B → C), not A × B → C. A concrete example, in OCaml syntax, is the
constructor for pointT. Please use

class pointT xc yc = ... as opposed to

class pointT (xc ,yc) =

7. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

8. Your code will be tested with the ocamlc compiler. We will not use ocamlopt to
test your program.

9. Any changes to the assignment specification will be announced in class. It is your
responsibility to be aware of these changes.

4

Vector Module

Template Module

vectorT

Uses

N/A

Syntax

Exported Types

vectorT = ?

Exported Access Programs

Routine name In Out Exceptions
new vectorT real → real vectorT
getf real → real
eval real, real, integer sequence of real DEL NEG, NSTEP NEG
evalPrint real, real, integer DEL NEG, NSTEP NEG
equal vectorT, real, real, integer, real boolean DEL NEG, NSTEP NEG

Semantics

Environment Variables

screen : two dimensional sequence of positions on the screen, with each position holding
a character

State Variables

f : real → real

State Invariant

None

5

Assumptions

None.

Access Routine Semantics

new vectorT (fin):

• transition: f := fin

• output: out := self

• exception: none

getf:

• output: out := f

• exception: none

eval (startx , deltax , nsteps):

• output: out :=< f(startx), f(startx + deltax), f(startx + 2 · deltax), ..., f(startx +
nsteps · deltax) >

• exception: exc := ((deltax < 0) ⇒ DEL NEG|(nsteps < 0) ⇒ NSTEP NEG)

evalPrint (startx , deltax , nsteps):

• transition: The state of screen is modified so that the sequence returned by eval
(startx , deltax , nsteps) is displayed.

• exception: exc := ((deltax < 0) ⇒ DEL NEG|(nsteps < 0) ⇒ NSTEP NEG)

equal (g, startx , deltax , nsteps , epsilon):

• output:
out := ∀(i : N|0 ≤ i ≤ nsteps : |sf [i]− sg[i]| < epsilon)

where sf = self .eval(startx , deltax , nsteps) and sg = g.eval(startx , deltax , nsteps)

• exception: exc := ((deltax < 0) ⇒ DEL NEG|(nsteps < 0) ⇒ NSTEP NEG)

6

Vector Space Module

Template Module

vectorSpaceT

Uses

vectorT

Syntax

Exported Types

vectorSpaceT = ?

Exported Access Programs

Routine name In Out Exceptions
new vectorSpaceT vectorSpaceT
add vectorT, vectorT vectorT
scalarMult real, vectorT vectorT

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new vectorSpaceT():

• output: out := self

7

• exception: none

add(v1, v2):

• output: out := new vectorT(v1 + v2)

• exception: none

scalarMult(k, v)

• output: out := new vectorT(kv)

• exception: none

8

Inner Product Space Module

Template Module

innerProductSpaceT inherits vectorSpaceT

Uses

vectorT, vectorSpaceT

Syntax

Exported Types

innerProductSpaceT = ?

Exported Access Programs

Routine name In Out Exceptions
new innerProductSpaceT real, real innerProductSpaceT
dotprod vectorT, vectorT real
isOrthog vectorT, vectorT boolean
length vectorT real

Semantics

State Variables

a: real
b: real

State Invariant

None

Assumptions

None

9

Access Routine Semantics

new vectorSpaceT (lower , upper):

• transition: a, b := lower , upper

• output: out := self

• exception: none

dotprod(v1, v2):

• output: out :=
∫ b

a
v1(x)v2(x)dx

• exception: none

isOrthog(v1, v2):

• output: out := |dotprod(v1, v2)| < error

• exception: none

length(v):

• This function returns the length of the vector v. Please specify the output.

• output: out :=?

• exception: none

Local Constants

error = 1× 10−4

Considerations

The values of a and b will normally be either −1 and 1 or 0 and 1, respectively.

10

Subspace Module

Uses

? Please specify uses

Syntax

Exported Types

subSpaceT = ?

Exported Access Programs

Routine name In Out Exceptions
new subSpaceT vectorT, vectorT, vectorT subSpaceT
linearCombo real, real, real vectorT
isOrthonormal boolean

Semantics

State Variables

The basis vectors for the subspace:
b1: vectorT
b2: vectorT
b3: vectorT

State Invariant

None

Assumptions

None

Access Routine Semantics

new subSpaceT(v1, v2, v3):

• This access program is the constructor for the subspace.

• transition: Please specify

11

• ouput: Please specify

• exception: none

linearCombo(c1, c2, c3):

• This function returns the linear combination of the basis vectors b1, b2 and b3 using
the coefficients c1, c2 and c3, respectively. Please specify the output of this
function.

• output: out :=?

• exception: none

isOrthonormal():

• This function returns true if all of the vectors in the basis (b1, b2 and b3) have length
1 and all of the vectors are orthogonal to one another. Please specify the output
of this function. You may find it helpful to introduce your own local functions.

• output: out :=?

• exception: none

12

