
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A document driven methodology for developing a high quality Parallel Mesh
Generation Toolbox

S. Smith *, W. Yu
Computing and Software Department, McMaster University, Hamilton, Ontario, Canada L8S 4L7

a r t i c l e i n f o

Article history:
Received 9 November 2007
Received in revised form 28 January 2008
Accepted 11 May 2009
Available online 26 June 2009

Keywords:
Mesh generation
Software engineering
Software quality
Scientific computing

a b s t r a c t

This paper motivates the value of using a document driven methodology to improve the quality of scien-
tific computing applications by illustrating the design and documentation of a Parallel Mesh Generation
Toolbox (PMGT). Formal mathematical specification is promoted for writing unambiguous requirements,
which can be used to judge the correctness and thus the reliability of PMGT. Mathematics is also shown
to improve understandability, reusability and maintainability through modelling software modules as
finite state machines. The proposed methodology includes explicit traceability between requirements,
design, implementation and test cases. Traceability improves the verification of completeness and consis-
tency and it allows for proper change management. To improve the reliability of PMGT, given the chal-
lenge that the correct solution is unknown a priori, an automated testing approach is adopted to verify
the known properties of a correct solution, such as conformality and counterclockwise vertex numbering.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The field of scientific computing (SC) has developed an impres-
sive variety of algorithms and libraries that have greatly influenced
and improved the work of scientists and engineers. SC software
has, for instance, successfully been used to increase the productiv-
ity of manufacturing processes, to improve the effectiveness of
health care treatments and to raise the level of safety obtained
by new building and vehicle designs. However, instances have oc-
curred where the confidence placed in SC software has been mis-
placed. For instance, Oliveira and Stewart [21] summarize three
examples of SC software failures: (i) the 1991 failure of a Patriot
missile to hit an incoming Scud missile; (ii) the 1996 explosion
of the Ariane 5 rocket; and, (iii) the 1991 collapse of the Sleipner
A oil rig. All of these examples led to significant financial losses,
and in the case of the Patriot missile disaster, to a tragic loss of
human life. The disturbing possibility of relying on incorrect SC
software is further highlighted by the errors found when compar-
ing nine large commercial packages for seismic data processing
[14,15]. All of the packages were initially based on the same math-
ematical algorithms, but in experiments they produced different
results, with an average absolute difference of 1% per 4000 lines
of code [15]. The above examples illustrate that problems exist
with the software quality of correctness, even though correctness
is generally considered to be the most important quality in SC
[19]. If this most important quality is not being achieved,

then it is reasonable to believe that other software qualities, such
as understandability, maintainability and reusability, are also
suffering.

How can the quality of SC software be improved? The idea
promoted in this paper is to adapt methodologies that have been
successfully used in the field of software engineering (SE). SE
methodologies are now commonly employed in developing busi-
ness applications, information systems and real-time safety critical
systems, such as the shutdown system for the Darlington nuclear
generating station [29] and the US Navy’s A-7E aircraft [16].

SC application developers often have a science or an engineer-
ing background, with its associated emphasis on reproducibility,
documentation, rigour and the scientific method; therefore, a
systematic SE approach should appeal to them. However, SE meth-
odologies, in particular software development tools, are not com-
monly employed in SC [48]. Moreover, as Segal observes ‘‘there is
no discrete phase of requirements gathering or of software evalu-
ation. Testing is of the cursory nature which would enrage a
software engineer” [35]. Segal’s description of the typical SC devel-
opment process fits with a recent survey of approximately 160 SC
software developers [43], which found that requirements specifi-
cation only occupies about 12% of the total development time
and that 90% of developers do not use formal specifications, which,
according to some prominent SE researchers, are crucial for devel-
oping high quality software.

Use of SE methodologies in SC is not as simple as just opening a
textbook and adopting existing methods and techniques. As Segal’s
field studies [35] show, interaction between SE and SC can be prob-
lematic because each side fails to meet the expectations of the

0965-9978/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2009.05.003

* Corresponding author. Tel.: +1 905 525 9140x27929; fax: +1 905 524 0340.
E-mail address: smiths@mcmaster.ca (S. Smith).

Advances in Engineering Software 40 (2009) 1155–1167

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

Author's personal copy

other side. This gap between SE and SC has been termed a ‘‘soft-
ware chasm” [18]. The chasm exists in part because most SE meth-
ods and techniques do not directly map to SC applications, since
the characteristics of SC software differ from those of the business
and real-time systems that SE research has tended to focus on [39].
A simple example of this can be found in the common SE advice to
use pass by value when a variable will not be modified by a sub-
routine. Although this is a strategy that SE promotes to keep data
safe from change, if the large arrays used in SC are passed by value,
then an unnecessarily large block of memory on the stack will be
consumed [21, page 51]. Performance considerations will require
that most SC software ignore SE advice and adopt pass by reference
for arrays.

The disconnect between SE research and SC applications is wid-
ened by the fact that there are so few examples available in the lit-
erature that illustrate how SE methodologies can be adapted to SC.
This paper attempts to address this problem by proposing new SE
inspired documents tailored for SC software development. The
proposed documentation requires an up-front investment of time
and effort, but this effort should improve the quality of both the
development process and the final product. This statement is sup-
ported in the sections that follow through arguments that appeal
to engineering judgement and to the success of similar techniques
for other types of software.

The example used to illustrate the proposed methodology and
associated sequence of documents is a Parallel Mesh Generation
Toolbox (PMGT). PMGT manages the geometry and topology infor-
mation for a mesh that is potentially stored across multiple proces-
sors. This application was chosen as a case study in the application
of SE methodologies because high quality software to manage
mesh data is of value in many applications. In particular, a quality
mesh generator is often necessary for the numerical solution of
partial differential equations (PDEs), especially when mesh adap-
tivity is used because the mesh data will require frequent modifi-
cation. The full design and documentation of PMGT is presented in
[49]. The focus of this work is not on developing an improved mesh
generation algorithm, but rather on providing an example of how
to design and document complex SC software.

The first section below lists the software qualities of interest for
PMGT, provides an explanation for their importance to SC, and
describes the challenges one faces in achieving them. The next sec-
tion outlines the proposed documentation. The sections that follow
describe the documentation for requirements, high level design,
low level design, code and test cases.

2. Software qualities

In the current work, quality is defined as a measure, potentially
phrased in relative terms, of the excellence or worth of a software
product or process. Although quality is often defined as customer
satisfaction or as meeting requirements, these definitions do not
capture the fact that customers can be satisfied and have their
requirements met by a low quality product. For instance, in some
SC applications a low accuracy may be tolerated. Although higher
accuracy represents higher quality, the additional expense, or the
necessary sacrifice in performance (speed), may mean that the
lower accuracy solution is preferable. This example highlights the
fact that quality is not a single measure but rather a collection of
measures. For a given software product one can require, verify
and measure such qualities as accuracy, performance and reliabil-
ity. These qualities and others of interest for the PMGT library and
for many SC applications are defined as follows:

Reliability: The probability that the software will meet its stated
requirements under a given usage profile. As an example, an SC

application is reliable if the true error is rarely larger than the
user requested bound on the error.
Accuracy : A measure of the absolute or relative error of the
approximate solution compared to the true solution.
Performance: A measure of how large a problem can be handled
and how quickly an answer can be found. Performance is
related to how efficiently the internal resources of the computer
are used.
Understandability: The degree to which a programmer finds the
software library easy to understand.
Maintainability: The effort required to locate and fix errors and
to add features to an operational program.
Verifiability: The effort necessary to verify the properties of a
software system.
Reusability: The extent to which a program can be used in other
applications.
Portability: The effort required to transfer the software from one
operating environment to another.

The above definitions are adapted from [12,20], with the defini-
tions for reliability and accuracy derived from [9]. To highlight the
qualities of interest in the remainder of the paper, the convention
will be adopted that the software qualities will be capitalized and
displayed in an italic font.

The importance of writing reliable software is highlighted in
this paper’s introduction (Section 1) through examples of incorrect
SC software and the incorrect usage of SC software. Reliability is
not the only software quality where there is room for improvement
in SC software. Reusability is another software quality that can be
improved, especially since reuse of reliable components improves
confidence in the computed solutions. Although there are signifi-
cant success stories in SC with respect to reuse, with many popular
libraries in existence, there are still some developers that insist on
‘‘reinventing the wheel.” As Dubois [8] observes, component reuse
is sometimes poor in SC, even when good mathematical libraries
are available, because programmers often refuse to believe that
the implementation needs to be as complicated as it is in the exist-
ing code. The difficulty of achieving reusability is evident by the
large number of similar SC packages that have been developed.
For instance, for mesh generation software, [23] identifies 94 soft-
ware packages, 61 of which generate triangular meshes, with 43 of
these using a Delaunay triangulation algorithm.

The discussion above focuses on problems with product quali-
ties, but room also exists for improving the quality of the process
of developing SC software. For instance, the process should be
usable, reusable and provide high performance. In the context of
the process, the quality of performance if often termed productiv-
ity and refers to the efficient use of human, computer and time re-
sources toward solving SC problems. The importance of improving
productivity in SC is underscored by the recent creation of the De-
fense Advanced Research Project Agency (DARPA) High Productiv-
ity Computing Systems (HPCS) program [42].

Developing high quality SC software is challenging. For in-
stance, judging the Accuracy and thus the Reliability of such soft-
ware is difficult due to the lack of an expected true solution.
Unlike many other classes of software the true solution to SC prob-
lems often cannot be determined a priori. In fact, the purpose of
the software is to solve problems that are difficult or impossible
to solve any other way. Another challenge is that most real
numbers cannot be represented exactly on a computer and have
to be approximated by floating point numbers. Round off error
makes it difficult for SC software to achieve the qualities of
Accuracy and Reliability. Additional storage may be used for floating
point numbers to improve their precision and thus the Accuracy of
the computed solution. However, this decision will lower the
Performance of the software. This example illustrates the chal-

1156 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

lenge of accounting for the tradeoffs between competing qualities
in SC.

To further illustrate the tradeoffs between different qualities,
Performance can be improved by taking advantage of parallel com-
putation, but using multiple processors can potentially lower other
software qualities. For instance, Reliability may suffer because
‘‘most programming models for parallel computers have made a
deliberate choice to present opportunities for performance at the
cost of a greater chance for programmer error [9, page 258].” More-
over, the sheer volume of calculations in a large parallel computa-
tion makes the low probability of hardware error significant
enough that it could affect Reliability [9, page 262]. In code for par-
allel computations, the qualities of Understandability, Maintainabil-
ity, and Portability, can all potentially suffer because it is difficult to
abstract away the implementation decisions from the program
interfaces and from the algorithms. In addition, Verifiability is par-
ticularly difficult to achieve for parallel programs [36].

3. Software documentation

SE methodologies can potentially improve the quality of SC, but
just using any SE methodology will not necessarily lead to
improvement. Although SE has promoted domain independent
methodologies, success in SC likely requires a domain specific
methodology [18]. The inadequacy of the ‘‘one size fits all” ap-
proach is illustrated by a case study [35] that shows how a domain
independent waterfall process led to clashes between software
engineers and computational scientists. The linear waterfall model
is difficult for SC because it is hard to initially know what assump-
tions are valid and what algorithms will have the desired conver-
gence and stability properties.

Although the methodology described below is structured
around documents that correspond to phases in the waterfall mod-
el, the form of the documents has been customized to SC. More-
over, the associated development process does not have to
generate the documents in distinct sequential stages. The process
of SC software development will not usually proceed as rationally
as the ideal waterfall model, but the advantages of a rational pro-
cess can still be obtained by documenting the work products as if
they were developed and written following the waterfall model
[28]. The advantage of documentation that follows the waterfall
model is that it closely parallels how engineers typically think
about their work flow. Moreover, the software lifecycle model

and the scientific method can both be abstractly modelled using
a waterfall process [40], which should make the proposed se-
quence of documents familiar to SC professionals.

In this paper the development of the software is called docu-
ment driven, as the separate stages of the idealized waterfall,
shown in Fig. 1, are identified by the documents produced at each
stage, as follows: Commonality Analysis (CA), Software Require-
ments Specification (SRS), Module Guide (MG), Module Interface
Specification (MIS), code, and Summary of Validation Testing Re-
port (SVTR). The back and forth arrows represent the iterative pro-
cess of validation and derivation. Before the project is complete,
the code needs to be validated against the design and against the
requirements, as represented by the dashed arrow from ‘‘SVTR”
to ‘‘SRS.” Although the validation cannot occur until after the
implementation is complete, the plan for the SVTR document can
be developed at the same time as the SRS, since succeeding in
the software validation is always part of the requirements.

The development of SC software will likely be highly iterative,
so the documentation must support change. For this reason explicit
traceability is included between the stages of the waterfall; that is,
the connections between the requirements, design, code and test
cases are identified, documented and verified. The components of
each of the different design documents are labelled and traceability
matrices are built to document the relationship between the com-
ponents. This traceability assists with the Verifiability of complete-
ness and consistency. This in turn potentially improves Reliability
because the traceability explicitly shows that the initial require-
ments for PMGT have been implemented by the identified modules
and tested by the likely test cases. Traceability also facilitates
proper change management because the connection between the
design and anticipated changes is explicitly documented. Thus
traceability improves Maintainability. Traceability is very impor-
tant for an iterative process because all of the documents will
change as the focus moves back and forth between them.

The first step in the software development process is a
Commonality Analysis (CA), where a CA studies shared features
or attributes common among similar software programs so that
the software can be developed as a program family. The idea of
program families was introduced by Dijkstra [7] and later investi-
gated by Parnas [25,26]. More recently, Weiss [1,47] has consid-
ered the concept of a program family in the context of what he
terms Family oriented Abstraction, Specification and Translation
(FAST) [6,46]. Other approaches to developing program families,

SRS

MG

Code

SVTR

Derivation

Validation

System Tests

MIS

CA

Fig. 1. Proposed documentation.

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1157

Author's personal copy

also known as software product lines, can be found in [5,30]. The
use of a CA in the context of general purpose SC is discussed in
[37]. A CA for a program family documents the terminology,
commonalities (including goals and theoretical models) and vari-
abilities (including assumptions, input variabilities and output
variabilities). The CA for a program family of mesh generators is
presented in [38]. The more general idea of development of mesh
generators as a program family, or product line, is discussed in
[2,3,41].

The CA for a mesh generator [38] can be refined, starting with
the SRS, into various program family members and their associated
documentation. For developing PMGT there were two family mem-
bers. The first, the basic core product, was a sequential program for
grid refinement. The second family member added parallelism. The
development of the second program was made much easier
because of the Reusability of the documentation from the first
program. The development of the second program took one devel-
oper (Yu) about 9 months to complete (3 months for the SRS,
1 month for the MG, 2 months for the MIS, 1.5 months for the
implementation and 1.5 months for the SVTR). The time for devel-
opment includes time spent on repeated iterations of each of the
documents, time for learning mesh generation algorithms and time
spent learning how to document the requirements and the design.
Not including code for testing, the serial version of PMGT is about
3000 lines of code and the parallel version adds about 1000 lines to
this. By way of comparison, the Basic COCOMO [4, page 75] esti-
mate for a 4000 line ðKLOC ¼ 4Þ semi-detached program is 14
months of development time E, where E ¼ abKLOCbb ¼ 3:0� 41:12.
This comparison suggests that the proposed document driven
methodology is at least as effective as those that the COCOMO esti-
mates were based on. Although encouraging for the current study,
this cannot really be taken as proof of improved productivity be-
cause the ‘‘experiment” only consists of one data point, the
COCOMO model is a simple estimate, and the data used for
COCOMO is not based specifically on SC programs.

4. Software requirements specification (SRS)

During the process of requirement gathering, the requirements
are documented in a software requirements specification (SRS).
The SRS is a document that clearly and precisely describes each
of the essential requirements (functions, performance, constraints
and quality attributes) of the software and external interfaces [44].

The experience of many software engineers suggests that soft-
ware requirements can improve the software qualities listed in
Section 2. For instance, Reliability is improved because the only
way to judge reliability is to have requirements against which to
compare the final product. Moreover, the process of writing soft-
ware requirements, especially formal software requirements, im-
proves the user’s understanding of their problem and allows
them to document the range of anticipated inputs that defines
the usage profile for the software. Documentation of the antici-
pated inputs is important because restricting the allowed input is
generally necessary to have a chance of effectively assessing Reli-
ability, since many SC programs will be found to be unreliable if
they are expected to handle all possible inputs. As a trivial example
of this, most SC programs cannot handle values larger than the
maximum floating point number on their system, even though this
restriction is rarely explicitly stated. Moreover, there is usually a
combination of input values that will cause an SC program to fail.
These problematic input values could potentially be found near,
but not exceeding, the extreme ends of the floating point number
line. Besides protecting against failures, specifying the expected
range for inputs provides an opportunity to improve Performance,
over programs that do not exploit this information, because algo-

rithms can be selected at the design stage that take advantage of
the known usage profile.

In the proposed methodology, mathematical specification is
used so that the requirements will be unambiguous, thus promot-
ing Verifiability and facilitating the transition to design, implemen-
tation and test case derivation. Unambiguous requirements also
assist with Understandability because a programmer will be able
to quickly and accurately determine what the toolbox can and can-
not do. Furthermore, a good SRS facilitates improving Understand-
ability for both experts and non-experts, because it provides a
structured presentation of all of the details relevant to a project.
The improvement in Understandability for a range of levels of
expertise facilitates communication between the different types
of people that may be on a development team. With an SRS, clashes
between software engineers and computational scientists, like the
difficulties described in [35], can potentially be avoided. In the
cases where the development team and the stakeholders only con-
sist of experts, the documentation can be simplified because some
user knowledge can be assumed. However, for this simplification
to be valid, the assumed high level of expertise must be explicitly
stated in the user characteristics section of the SRS.

Software requirements serve as a contract between developers
and testers; therefore, the SRS promotes Verifiability by giving the
testers something to verify against. Without unambiguous and
validatable software requirements, it is impossible to test the soft-
ware. Reusability is encouraged because software can only be re-
used if what the software does is known. This information is
more easily obtained by reading the abstract SRS than by attempt-
ing to decipher all of the details in the concrete code. Those that are
discouraged from reuse by the complexity of the implementation
[8], should find the SRS a simpler starting point.

Fig. 2 shows the table of contents for PMGT’s SRS. The template
used to build the SRS is adapted from the descriptions given in
[37,39,40]. Most of the sections in the current SRS are relatively
standard for a requirements template [33,44]. However, the ‘‘Spe-
cific System Requirements” section deserves additional explana-
tion, as this section is responsible for specifying the solution
characteristics. This section presents the model used for a mesh
by formally and informally specifying the goals the software
should achieve, the assumptions made, the theoretical models in-
volved and the data definitions employed. The ‘‘Specific System
Requirements” section also lists the nonfunctional requirements,
which are qualities that the software library should promote and
facilitate when it is used by a given program.

Section ‘‘Specific System Requirements” begins by stating the
goals of PMGT, where a goal is a functional objective that the

Fig. 2. Table of contents for SRS.

1158 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

system under consideration should achieve [45]. The goals are sta-
ted abstractly to keep the requirements as general as possible. The
goal will systematically be refined in the SRS and later through the
design and implementation. One of the goals (G1) for PMGT is:

G1: Given a mesh MIN and instructions I on how to refine
the mesh, PMGT should generate a refined mesh MOUT accord-
ing to the instructions I.

MIN and MOUT represent an input and an output mesh, respec-
tively, and I represents instructions on how a mesh should be re-
fined/coarsened. The instructions consist of marking cells that
need to be refined or coarsened. The mathematical description gi-
ven below will make this notion, and the model of a mesh,
unambiguous.

After stating the goals for PMGT the assumptions are listed. The
assumptions serve the vital purpose of reducing the scope of the
software, so that the implementation will be feasible. If in the fu-
ture the software library is extended, the extension will likely in-
volve relaxing one or more assumptions. Explicitly including the
assumptions makes future extension and the associated mainte-
nance easier because the SRS traces the connection between
assumptions, requirements and later the software modules. Docu-
menting the assumptions improves the Understandability of the li-
brary, over libraries without documentation, because users
explicitly know the library’s limitations. Some example assump-
tions, using the numbering assigned in [49], are as follows:

A1: PMGT focuses on a 2D domain.
A2: The input and output meshes are bounded.
A4: The input and output meshes are conformal.
A5: The elements (cells) in the input and output meshes are
triangles.

Theoretical models follow the assumptions in the SRS. The the-
oretical models refine the goals in two ways. First, they make the
goals more concrete by applying the assumptions to the goals. Sec-
ond, the theoretical models make the goals less ambiguous
through the use of formal mathematics. A theoretical model that
refines G1 is as follows:

T1: Refining mesh
Input: MIN: MeshT, I: RCinstructionT
Output: MOUT : MeshT such that Refined ðMOUT ;MIN; IÞ

This theoretical model states that the new mesh ðMOUTÞ is a
refined version of the old mesh ðMINÞ, where the instructions I
mark which cells need to be refined. As is typical for theoretical
models, for T1 to be complete, additional information is necessary.
This information is given through what are termed data defini-
tions. Just as for the theoretical model and for the goals, each data
definition is given a unique number to assist with cross-referenc-
ing, thus facilitating Maintainability of the documentation. The
types MeshT and RCinstructionT are defined in Fig. 3 and the data
definition for the predicate Refined, using the numbering from
[49], is as follows:

D23: Refined : MeshT�MeshT� RCinstructionT ! B

Refinedðm0;m; rcÞ � ðrc:rORc ¼ REFINEÞ ^ ValidMeshðmÞ
^ValidMeshðm0Þ ^ CoveringUpðm0;mÞ ^ ð#m0 P #mÞ

Data definition D23 uses � for the Cartesian product, B for the
Boolean type, ^ for logical AND,� for defined equivalence and # for
the cardinality of a set. The data definition shows that a refined
mesh must be marked for refinement ðrc:rORc ¼ REFINEÞ, that
the new mesh and the old mesh must be valid meshes
ðValidMeshðmÞ ^ ValidMeshðm0ÞÞ, that the new mesh must cover
the same space as the old mesh ðCoveringUpðm0;mÞÞ, and that
the new mesh should have as many or more cells than the old
mesh ð#m0 P #mÞ. The reasoning behind this definition will be
discussed further below. At this time however, additional data def-
initions need to be introduced to fully define D23. In particular,
D23 depends on several new types, which are listed in Fig. 3, using
the reference numbers employed in [49] and the notation of [17].

As Fig. 3 shows a mesh is modelled as a set of cells and the cells
themselves are modelled as a set of vertices, where each vertex is
given as a tuple in R2, where R2 refers to a tuple of two real num-
ber ðR� RÞ. The simple hierarchical relationship between vertices,
cells and the mesh is convenient for expressing the requirements
because it abstracts away many of the concrete data structure deci-
sions that will later be necessary for any specific implementation.
The data types in Fig. 3 also show how an entire mesh is either
marked for refinement, coarsening, or no change and how individ-
ual cells are likewise marked.

The data definition of Refined (D23) also uses several additional
predicates. In the interest of space, the predicate that returns true
when both meshes cover the same area (CoveringUp) will not be
reproduced here. However, as an illustrative example, the predicate
that checks for mesh validity, ValidMesh (D18), is shown below.

D18: ValidMesh: MeshT ! B

ValidMeshðmÞ � ð8e : EdgeT j e 2 EdgesðmÞ : ValidEdgeðeÞÞ^
ð8c : CellT j c 2 m : ValidCellðcÞÞ ^ BoundedðmÞ^

ConformalðmÞ^
NoInteriorIntersect(m)

The notation used for D18, and for the other mathematical
expressions in this paper, follows the expression building notation
used in [13]. The notation can be explained by introducing a list of
dummies x, a type t, a predicate R, an expression E, an operator �,
and a predicate P. The notation fx : t j R : Eg represents a set of val-
ues that result from evaluating E½x :¼ v � in the state for each value
v in t such that R½x :¼ v � holds in that state. Expression ð�x : t j R : PÞ
denotes the application of operator � to the values P for all x in t for

Fig. 3. Some of the data types for modelling the requirements of PMGT.

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1159

Author's personal copy

which range R is true. In D18 � is 8, which means ‘‘for all”. Besides
understanding the notation, to interpret D18 some additional
information is needed as follows: Edges is a function that returns
the edges in a mesh; ValidEdge is true if the edge is a line segment;
ValidCell is true if the cell is a triangle; Bounded is true if the
boundary edges form a closed polygon; Conformal is true if the
intersection of any two cells is either a vertex, an edge or empty;
and, NoInteriorIntersect is true if a point in space is inside only
one cell of the mesh. The formal specification of these additional
predicates can be found in [49].

As the above examples show, the mathematical specification of
mesh refinement involves several new variables, types and func-
tions. The potential complexity from managing this mathematical
model motivates the following question: ‘‘Is the effort involved
in documenting the requirements worthwhile?” The answer to this
question is ‘‘Yes,” if the requirements possess the qualities usually
expected of good requirements; that is, the requirements need to
be unambiguous (not open to interpretation), validatable (can be
tested) and abstract (focus on ‘‘What” is required, not ‘‘How” to
do it). The fact that the requirements are written formally suggests
that they are unambiguous. Having unambiguous requirements is
a precondition for having validatable requirements, but it is not a
guarantee. To ensure that the requirements are validatable, the
testability of the requirements was considered when they were
written. In part this is why Refined (D23) has such a simple defini-
tion; if the meshes are valid and cover one another, the truth of Re-
fined can be determined by simply counting the number of cells in
the new and the old mesh. This is certainly something that can be
easily tested, as described in Section 8. The final goal of abstract
requirements facilitates achieving the software quality of Portabil-
ity, since abstract requirements should not make specific state-
ments about the operating environment. The selection of the
operating environment is left as a design decision.

Although the goal of abstraction is important, there are times
when this goal is sacrificed. For instance, in some cases a design
decision is imposed for practical reasons. This is the case in the cur-
rent project with the decision to improve meshing software via a
software library, as opposed to a different structure, such as a stand
alone program. The library choice was made because the library
approach is common in mesh generation software, as it facilitates
reuse of the code in many different contexts.

The abstractness of the requirements for PMGT are illustrated
by the definition of Refined D23, which only requires that the
new mesh have at least as many cells as the old mesh. With this
definition almost any refinement algorithm would be admissible.
Refined could be modified to provide additional information and
still not explicitly identify the algorithm to be used. For instance,
if the mesh application has strict mesh quality constraints, the
requirement could state that the new mesh will not have any an-
gles less than half the minimum angle in the old mesh. Another
condition that could be added to Refined would be to explicitly
state that the refined cells are those that are explicitly marked
for refinement; that is, the refined cells will be those for which
ci:instr ¼ REFINE. To achieve this, the following predicate
ðCellsRefinedðMOUT ;MIN ; IÞÞ, which uses the data types defined in
Fig. 3, could be conjuncted with data definition D23.

CellsRefined : MeshT�MeshT� RCinstructionT ! B

CellsRefinedðm0;m; rcÞ � 8ci : CellInstructionT j
ci 2 rc:cInstr ^ ci:instr ¼ REFINE:
9m00 : MeshTjm00 � m0 : ValidMeshðm00Þ^

ValidMeshðfci:cellgÞ^
CoveringUpðm00; fci:cellgÞ ^#m00 P #fci:cellg

The above predicate, which uses 9 for existential quantification,
requires that a cell marked for refinement in m be decomposed
into multiple cells, which cover the same area as the original cell,
in m0. The restriction that the refinement of a cell covers the same
space as the original cell is restrictive, which may be inappropriate
in some contexts. The advantage of an SRS is that it facilitates the
discussion of the appropriateness of this restriction in advance of
the implementation.

The theoretical models in the SRS can be further refined with
additional information documented in the form of functional and
nonfunctional requirements. Some example functional require-
ments for PMGT are given in Table 1. Each requirement is given
a unique label, identified by F?, where ? is a natural number. In
the full documentation of the requirements [49] additional infor-
mation is given for each requirement, including the source of the
requirement, a list of related data definitions and theoretical mod-
els and a record of the history of changes to the requirement.

Table 1 also lists several sample nonfunctional requirements
(NFRs), which are uniquely identified using numbers prefixed with
N. The challenge for the nonfunctional requirements is to state
them in such a way that they are validatable. It is inadequate to
simply have a performance requirement that the software be ‘‘fas-
t”, since this is ambiguous and cannot be tested. The approach ta-
ken for NFRs to address this problem is to state them as relative
requirements between competing algorithms and different soft-
ware packages [37]. For instance, in Table 1 performance and
understandability requirements are stated relative to the perfor-
mance and understandability of the mesh generation library
AOMD [31]. To make the nonfunctional requirements validatable
(testable) they have to be specific. In the current case, the specific
test problem, called Example D in the table, is given in Appendix D
of [49].

A traceability matrix is used in the SRS to show the relationship
between goals, assumptions, theoretical models, data definitions,
functional requirements and nonfunctional requirements. A por-
tion of the matrix from [49] is shown in Table 2. This matrix assists
with the Maintainability of PMGT by documenting the impact of
changes within the SRS document itself. For instance, if an assump-
tion should change, then the SRS specifies which portions of the
document need to be updated. An example of this would be chang-
ing the assumption that the domain is 2D (A1) to an assumption
that it is 3D. Table 2 shows that changing A1 means that the
assumption that the elements are triangles (A5) would also have
to be changed; the elements will have to become shapes with a
3D topology, such as tetrahedra or hexahedra. Changing the
dimension of the domain would also mean that the data definitions
for VertexT (D1) and CellT (D4) would need to be modified. In the
case of the vertex information, the change would be to incorporate
another dimension for the coordinates. For the cell definition,
the change to a 3D topology would mean the cells are no longer
represented by just three vertices, so a set of VertexT would no
longer implicitly carry the connectivity information. A different
data type, possibly using a sequence of VertexT, would need to
be adopted.

Documenting traceability between portions of the SRS and, as
shown in the next section, between the requirements and the de-
sign, are very important to successful SC software development.
This is especially true during the initial iterative phases of discov-
ery and experimentation, when changes will likely be frequent. As
mentioned previously, although the documents follow a rational
sequence, the development itself will involve considerable itera-
tion. Some sections of the SRS can be filled in initially, such as
the goal section, user characteristics, and scope section, while oth-
ers will be added over time. As changes are made, for instance to
the assumptions, the effect of these changes on the SRS and on sub-
sequent documents can be traced.

1160 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

5. Module guide (MG)

According to the waterfall model for documenting PMGT, as
shown in Fig. 1, the software design documents follow the SRS.
Software design involves decomposing the software into modules,
where the definition of a module adopted here is a ‘‘work assign-
ment” [24]. A summary of what the modules are intended to do
and the relationship between them is provided in the Module
Guide (MG) document.

The principle applied to the design is information hiding. Accord-
ing to this principle, system details that are likely to change inde-
pendently should be hidden in different modules [27]. The
information hiding principle allows both designers and maintain-
ers to easily identify the parts of the software that they want to
consider without needing to know irrelevant details. The Maintain-
ability of the software is thus improved over software where

changes to the implementation require modifications in many
locations. PMGT hides details of the underlying operating system,
which is a common strategy in software design for improving Por-
tability. Table 3 summarizes the modules of PMGT along with the
information that they hide (secrets).

The first step in the system architectural design, as summarized
in the MG, is identifying the anticipated changes, such as those re-
lated to data structures, algorithms and portability. The anticipated
changes guide the design so that it can explicitly account for likely
potential future modifications. Ideally, the anticipated changes
should be independent, so that each change can be hidden within
one module. When a change occurs, only the module that hides the
change needs to be modified. Several example anticipated changes
for PMGT, using the numbering from [49], are as follows:

AC2: The data structure and algorithms for implementing
the interface between a file and the software

AC7: The mechanisms for validating the input and output
meshes

AC11: The data structure of a mesh
AC12: The algorithms for refining a mesh
AC14: The shape of the cells in the mesh (initially PMGT is

for triangular meshes)

Table 4 shows the traceability between the above anticipated
changes and the associated modules of PMGT. The names of the
modules are show in the first row. The first column, ‘‘File Read
Write” module, shows how the design facilitates the portability
of PMGT. On a different operating system, files will be handled
differently, so there is a need for a module to hide the data struc-
tures and algorithms used for file handling. Fortunately most

Table 1
Sample requirements.

Num Label Description

F1 RefiningMesh PMGT should have capabilities for refining an existing mesh
F2 CoarseningMesh PMGT should have capabilities for coarsening an existing mesh
F3 RefiningOrCoarsening PMGT can either refine or coarsen a given mesh or coarsen a mesh, but not both at the same time
F4 MeshType The mesh generated by PMGT is unstructured
F11 VertexUniqueID Each vertex in the output file has a unique identifier
F12 ElmUniqueID Each element in the output file has a unique identifier
F13 ElmTopology The topology of an element in the output file is given by the connectivity of its set of vertices
F14 OutElmOrder The element information in output files is listed in ascending order
F15 OutVertexOrder The vertex information, such as the coordinates, in output files is listed in ascending order
N1 Performance Refining/coarsening a mesh using multiple processors should be faster than when using a single processor. In addition, the performance of

PMGT should be comparable with that of similar applications. Specifically, the execution time to mesh Example D should be no longer than
the time taken by AOMD to solve the same problem

N6 Understandability Users with the background specified in the SRS should be able to set-up Example D at least as quickly as an AOMD user could

Table 3
Modules for PMGT.

Num Label Secret

M1 Virtual memory The hardware addressing methods for data and instructions in real memory
M2 File read write The data structure and algorithms for implementing the interface between the file and the system
M3 Keyboard input The data structure and algorithms for implementing the interface between the keyboard and the system
M4 Screen display The data structure and algorithms to display graphics and text on the screen
M5 Input format The format and structure of the initial input mesh
M6 Output format The format and structure of the output mesh
M7 Service The algorithm for validating meshes
M8 Vertex The data structure of a vertex
M9 Edge The data structure of an edge
M10 Cell The data structure of a cell
M11 Mesh The data structure of a mesh
M12 Refining Algorithms for refining a mesh
M13 Coarsening Algorithms for coarsening a mesh

Table 2
Traceability matrix between goals, assumptions, theoretical models and data
definitions.

G1 A1 A2 A4 A5

A1 U U

A2 U U

A4 U U

A5 U U U

D1 U U

D2 U

D4 U U U

D7 U

D18 U

D20 U

D21 U

D22 U

D23 U

T1 U U

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1161

Author's personal copy

modern programming languages already hide the file system, so it
is unlikely that this module will have to be explicitly implemented.
As Table 4 shows, in most cases there is a one to one correspon-
dence between anticipated changes and modules. For instance, if
the data structure for representing a mesh should change (AC11),
the only module that will need to be modified is the Mesh module.
AC14 is related to two modules because the service module and
the cell module need to know the number of vertices for a cell. Ta-
ble 4 shows that the algorithm and the data structure have been
uncoupled, which facilitates changes to the algorithm. All access
to the mesh data will be through a stable standardized interface,
which is discussed in the Section 6.

Unlikely changes are also listed in the MG. If one of these
changes occurs, the design of PMGT makes no obligation that
adapting to this change will only require a small modification. List-
ing unlikely changes helps one set realistic goals for Maintainabil-
ity. Some unlikely changes for PMGT include:

UC5: The type of the mesh is unstructured.
UC6: The representation of an edge is a set of vertices.
UC8: A Cartesian coordinate system is used.

To illustrate the influence of unlikely changes, one can consider
changing UC6, the representation of an edge. Changing the repre-
sentation of an edge will affect all of the data structure modules,
since the implementation assumes that an edge is represented by
two vertices. If an edge is instead represented by two cells, then
this change cannot be isolated to a single module. Another exam-
ple of the influence of an unlikely change is to consider a change
in the coordinate system (UC8). Although considered unlikely in
the current design, the design proposed by [10] considers a change
in the coordinate system as a likely change. If one compares the
current design to [10] one will observe that [10] is more general,
but at the expense of greater abstraction and potentially lessened
Understandability.

Software design includes specifying the relationship between
modules. The use relation for PMGT is shown in Fig. 4. For two
modules A and B, A uses B if correct execution of B may be neces-
sary for A to complete the task described in its specification [26].
The modules shown in rectangles, which correspond with the
hardware hiding modules, are assumed to already be implemented
in the programming environment. Fig. 4 is a directed acyclic graph
(DAG). Each level of the hierarchy offers a testable and usable sub-
set of the system. This potentially improves the Verifiability and
Reusability of PMGT. For example, the mesh module (together with
the vertex module, edge module, and cell module) is a subset of the

Table 4
Excerpt from a traceability matrix between modules and anticipated changes.

File read write (M2) Service (M7) Cell (M10) Mesh (M11) Refining (M12)

AC2 U

AC7 U

AC11 U

AC12 U

AC14 U U

Service

Refining

Cell

Mesh

VertexEdge

Coarsening Input Output

Virtual MemoryScreen OutputFile Read/WriteKeyboard Input

Embedded
Application

Fig. 4. Uses hierarchy.

1162 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

system. The design and the implementation of this subset can be
reused since it does not use other modules. Modules in the higher
level of the hierarchy are essentially simpler because they use
modules from the lower levels, thus the Maintainability of PMGT
is encouraged. The design is easily understood due to its simplicity,
which promotes the Understandability of PMGT.

The MG facilitates Maintainability of the software because it
shows the traceability between requirements and design, which al-
lows one to determine which software modules need to be chan-
ged when there is a change in the requirements. Table 5 shows
how changes in some functional and nonfunctional requirements
made to the modules in PMGT’s design. For instance, if a modifica-
tion is made to any of the requirements that deal with the output,
such as requirements F11–F15, then the output format hiding
module will have to be modified. Table 5 reinforces the fact that
changes in the output format are isolated to one module. The rows
full of check marks for the NFRs in Table 5 highlight the fact that
NFRs are related to qualities of the overall system; thus, changes
to NFRs cannot be isolated to a small number of modules. The
traceability between requirements and design assists with an iter-
ative development process because the effect of change is readily
apparent.

6. Module interface specification (MIS)

The MG does not provide enough information for each module
to be developed independently. The syntax and semantics of the
access routines for each module are still needed. The detailed de-
sign of PMGT is described in the Module Interface Specification
(MIS) document [49]. The MIS is less abstract than the architectural
design in the last section. However, it is still abstract because it de-
scribes what the module will do, but not how to do it. The MIS
encourages Reusability because it assists with the Understandability
of the program interface by clearly specifying the meaning of ac-
cess program parameters, since an unclear description of the
parameters is one reason for not reusing libraries [8].

The template used to document the MIS for each module is a
modified version of the templates presented in [12,17]. Accord-
ing to the adopted template, each module is a finite state machine
(FSM). A simple formalism [17] for an FSM is a tuple ðS; s0; I;O; T; EÞ,
where S is a set of states, s0 is an initial state ðs0 2 SÞ; I is the set of
inputs, O is the set of outputs, T is the transition function
ðT : S� I ! SÞ and E is the output function ðE : S� I ! OÞ. The
FSM model and the associated documentation provides an unam-
biguous statement of the module’s services and its assumptions
about the outside environment. An FSM specification of a module
clarifies the documentation of the module and thus potentially im-
proves Understandability, Reusability, Maintainability and Verifiabil-
ity. The Mesh module will be used to illustrate how the syntax
(Fig. 5) and semantics (Fig. 6) of the module state machine are
presented.

The syntax of the MIS for each module documents the imported
and exported data types and the exported access programs. As
Fig. 5 shows, the Mesh module uses the types B (Boolean) and N

(natural number), which are both assumed to be defined by what-
ever programming language will eventually be used for the imple-
mentation. The Mesh module also uses three types defined by the
specification: VertexT, EdgeT and CellT. The name of the module
that defines the imported type is given so that the reader can easily
navigate the document and find any details that they may be seek-
ing. The syntax for the mesh module states that MeshT is an ex-
ported type, which means that other modules may import this
type to use in their specification. It is worth noting that the import-
ing and exporting of types are used here for specification purposes;
the actual implementation does not necessarily follow the same
pattern. In particular, the implementation of a given module will
often use modules that are not listed in the MIS. This is a conse-
quence of the increase in the amount of detail associated with
moving from an abstract interface to a concrete implementation.

Fig. 5 lists the access programs for the Mesh module. These pro-
grams are the only interface to the mesh module, analogous to
public methods in an object oriented design. This interface must
remain stable, but the internal design decisions for the Mesh mod-
ule can be changed. For each access program, the input and output
types are listed along with the exceptions, which are generated
when an undesired condition occurs. Although the syntax section
of the MIS shows useful information, a programmer also needs to
know how the state of the module and its output will change
depending on the current state and the provided input. This

Table 5
Excerpt from a traceability matrix between modules and requirements.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

F1 U

F2 U

F3 U U

F4 U U U U U

F11 U

F12 U

F13 U

F14 U

F15 U

N1 U U U U U U U U U U U U U

N6 U U U U U U U U U U

Fig. 5. Syntax of the mesh module.

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1163

Author's personal copy

information is provided in the semantics section, for which an ex-
cerpt is provided in Fig. 6.

Fig. 6 shows that the state variable for the Mesh module is m, a
set of cells. The documentation also identifies the invariant that the
number of cells will always be zero or greater ð#m P 0Þ. This
invariant potentially improves the quality of Verifiability of the doc-
umentation and code because the documentation and code may be
inspected to verify that if the state invariant holds at the beginning
of an access program call, it will still hold at the ending of that call.
Section 6 of the Mesh module’s MIS shows that the implementa-
tion is allowed to assume that the programmer will not call any ac-
cess programs until after initMesh() has been called. That is,
initializing the Mesh module is the responsibility of the program-
mer. This decision was made to avoid the necessity of adding state
information on initialization, the need to frequently check this
information and the need to provide an associated exception.

For a typical usage of the Mesh module the Mesh is first initial-
ized with the state transition m :¼ ;, where ; is the null set. After
this, cells are added to the set of cells in the mesh using addCell(),
which employs the transition m :¼ m [fcg, where [is set union. In
the event that a cell is already in the mesh, an exception is gener-
ated ðc 2 m) CellExistÞ because a set should only store one in-
stance of each of its constituent elements. Once the mesh is built
there are several derived quantities and predicates of interest.

For instance, a query can be made to see whether a given vertex
is on a given edge. This query is made using similar triangles, with
the resulting predicate shown in the output field of the onEdge()
access program in Fig. 6. Another example of the use of the Mesh
module is generating output of the sets of edges and of edges on
the mesh boundary. These sets are found using the edges() and
boundaryEdges() access programs, respectively. Although the out-
put field for boundaryEdges() looks complicated, the mathematics
simply state that the returned value will be the set of edges where
each edge belongs to only one cell in the mesh, since this corre-
sponds with the set of boundary edges.

7. Implementation (code)

The system implementation is the transformation of the design
to a work product. The implementation phase is very important in
the software development life cycle because it produces an execut-
able version of the system. In many SC projects the implementa-
tion is the only phase of the software development life cycle that
receives much attention. However, even when the implementation
is the sole component, in many cases there is still room for quality
improvement. For instance, one reason for poor quality SC software
is that the software is often written by scientist and most scientists
have simply never been shown how to program efficiently [48]. In

Fig. 6. Excerpt from semantics of the mesh module.

1164 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

particular, support technology that can assist with software devel-
opment, such as version control software, is often neglected, even
when it can potentially improve quality.

The implementation is the final step of the refinement from ab-
stract to concrete. The major decisions relating to the implementa-
tion of PMGT are the data structures and algorithms. Rather than
develop a new data structure or algorithm for mesh generation
consideration was given to selecting (with minor modifications if
necessary) existing data structures and algorithms to fit the scope
of PMGT and to improve the qualities of PMGT. An edge-based data
structure was selected for PMGT because of its flexibility (Main-
tainability), which is especially important if the anticipated change
of cell shape (AC14) should be made in the future. The data struc-
ture for PMGT is based on the halfedge data structure [22].

For the serial version of PMGT two algorithms were imple-
mented: (i) a point insertion algorithm; and, (ii) the longest edge
bisection algorithm. The point insertion algorithm adds a point at
the centroid of an existing element and refines the element into
three triangles. The longest edge bisection algorithm is a modified
version of the algorithm found in [32]. For each triangle to be re-
fined, the mesh is updated based on a list of successive neighbour
triangles, where the members of the list have longest-edges greater
than the longest edge of the preceding triangle in the list. The lon-
gest edge bisection algorithm produces meshes that are generally
of better quality than those produced by the point insertion
algorithm.

SE technology is used through the implementation of PMGT to
improve the software quality. This technology can improve the
overall quality of the software development process, as well as
the software product. Version control is used for the entire devel-
opment of PMGT. One of the advantages of version control is that it
helps diagnose errors by facilitating comparison of a new incorrect
version of the code to an old correct version of the code. Therefore,
version control assists with improving the Maintainability of the
software. In addition to version control, a makefile was employed,
where the makefile manages the build process, which can be error
prone when done manually; therefore, adopting a makefile bene-
fits the Reliability of PMGT. Finally, namespaces were used in the
C++ source code to avoid name conflict and unnecessary access
of protected data and routines; this decision promotes the Reliabil-
ity and Understandability of PMGT.

PMGT will execute on any Linux/Unix/Mac operating system
with a g++ compiler and the MPI library. For the serial version
the MPI library is not necessary; therefore, the serial version can
be easily adapted to the Windows OS. Implementing PMGT for
multiple environments improves its Portability.

8. Software testing

Testing is often not emphasized in SC and when it is conducted
‘‘scientists use testing to show that their theory is correct, not that
the software does not work” [34]. That is, rather than verify that
the implementation of the theory is correct, the first assumption
made by developers is that any errors are in the theory itself. Given
the inevitability of coding errors, this confidence in the implemen-
tation is often misplaced. Part of the reason for this misplaced con-
fidence may be that a systematic process is rarely followed for SC
software development, so a systematic process is also not followed
for testing. As an example of this possibility, planning systematic
unit tests is difficult if one has not previously designed the soft-
ware as a set of units (modules). Another part of the explanation
for limited testing, may be that SE methodologies for testing do
not specifically address the most significant challenge in SC test-
ing: the challenge of finding meaningful test cases with known
solutions. As mentioned in Section 2, one of the important charac-

teristics of SC software is that it is difficult to find true solutions for
most SC problems.

Two approaches are used in the SVTR to deal with the unknown
solution challenge: (i) parallel testing; and, (ii) verification of de-
rived properties or characteristics. Parallel testing involves testing
independent implementations of the same computational model
against one another. This is what Hatton [14,15] does to find errors
in seismic data processing programs. Parallel testing is also the
motivation for phrasing the NFRs for PMGT as relative comparisons
to AOMD (Table 1). If parallel testing of two programs shows dis-
agreement, then one knows at least one of the two packages is
incorrect. For the second approach, the verification of derived
properties, the goal is changed from finding the true solutions, to
finding properties that the true solution is known to have. Some
example properties from physical modelling are the requirements
for equilibrium and for conservation of mass. Although the notion
of a ‘‘true” solution is not entirely clear for a mesh, since small
changes can be made in the location of some of the interior nodes
and the mesh is still valid, derived properties of a correct mesh can
still be determined.

One way to test the Reliability of PMGT is to see whether the
output mesh is a refined or coarsened version of the input mesh.
According to the SRS, the characteristics of a refined and coarsened
mesh relate to the data definition of Refined (D23) and Coarsened,
respectively. In both definitions, the output mesh needs to be a va-
lid mesh and the input mesh and output mesh need to cover each
other. The predicates for a valid mesh and a covering up are de-
fined in the SRS. In addition, other requirements that are common
to all meshes should be met. For instance the requirement should
be reached that the mesh satisfies the Euler Equation,
nc þ nv � ne ¼ 1, where nc is the number of cells, nv is the number
of vertices, and ne is the number of edges [11].

To improve the Understandability of PMGT, the correctness tests
are automated. A significant advantage of automated testing is that
it allows for regression testing, so that when changes are made to
the software, previous test cases can easily be redone. The auto-
mated correctness validation test requirements (ACVTRs) of PMGT
are as follows:

1. The area of each element is greater than zero.
2. The boundary of the mesh is closed.
3. The mesh is conformal.
4. The intersection of any two elements is empty.
5. The input mesh and output mesh cover each other.
6. The length of each edge is greater than zero.
7. The vertices of an element are listed in a counterclockwise

order.
8. The output mesh conforms to the Euler Equation.

Since the output mesh can be displayed on the screen, the out-
put meshes can also be visually checked to ensure that no vertex is
outside the input domain, no vertex is inside a cell, no dangling
points or edges exist, all cells are connected and the mesh is con-
formal. Some of these requirements overlap with the ACVTRs. This
redundancy is an advantage for promoting Reliability because the
odds of misinterpreting two independent tests are very small. For
the final version of PMGT all test cases were passed.

An important purpose of testing in SC is to describe the quality
of the software. For instance, the Performance can be estimated
through experimentation with the code. The execution time for
refining a mesh using PMGT was measured using the serial version
and the parallel version with different number of processors. The
results showed a super linear speedup with an increasing number
of processors. The dramatic speedup is explained by the fact that
the parallel algorithm only implemented the point insertion
algorithm (Section 7), which allows for an embarrassingly parallel

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1165

Author's personal copy

algorithm because no communication is necessary between the
cells of the mesh. The fact that the speedup is super linear is prob-
ably due to the cache effect. That is, when the numbers of proces-
sors increases, the size of accumulated caches from different
processors increases as well. With the larger accumulated cache
size, more data can fit into the caches and the memory access time
reduces dramatically, which causes the extra speedup in addition
to the speedup from parallelization of the computation.

The emphasis above was on system tests assessing Reliability
and Performance, since it is the final system we are most interested
in and these two qualities are generally considered to be the most
important in SC. Moreover, we focused on the unknown solution
challenge because it is a defining characteristic of SC. Testing can
also be done using more conventional SE practises. For instance
black box unit tests can be constructed based on the specifications
given in the MIS. In addition, white box tests inspired directly from
the code can be devised. These tests can also generate a profile that
quantifies such metrics as statement and condition coverage.

As for the SRS and MG, traceability is an important component
of the SVTR. A matrix is provided in [49] to show which test cases
exercise which requirements. By inspecting the matrix, it is possi-
ble to see that all of the functional requirements of SVTR are
covered by the test cases. The matrix relating test cases and
requirements facilitates a nonlinear process for developing SC soft-
ware because it allows one to concurrently work on the SRS and
SVTR. Test cases complement the requirements, and in some sense
can be thought of as requirements, so it makes sense to document
them at the same time. A matrix is also provided [49] to show
which modules are needed by each of the test cases. This matrix
can be inspected to ensure that each module is tested by at least
one test case. Moreover, if a test case fails, the traceability matrix
shows which modules need to be investigated to track down the
error.

9. Concluding remarks

This paper proposes adapting SE methodologies to improve the
quality of SC applications by illustrating the design and documen-
tation of PMGT. As an example of a quality improvement, the qual-
ity of Reliability is potentially improved by having explicit
traceability between requirements, design, implementation and
testing, since the traceability can be inspected to improve the ver-
ification of completeness and consistency. Reliability may also be
improved because having an unambiguous mathematical specifi-
cation of the requirements and the module interfaces allows one
to judge correctness. Although the correct mesh is not known a pri-
ori, the proposed methodology can still promote Reliability and
measure Accuracy through the automatic test cases that verify
properties of a correct solution, rather than the solution itself. In
addition to the validity of the solution, testing also measured the
quality of Performance and demonstrated that the parallel version
of the program met the nonfunctional requirement of being faster
than the serial version.

SE methodologies also promote the related qualities of
Understandability, Reusability, Verifiability and Maintainability. The
principle of information hiding and the emphasis on identifying
anticipated changes means that programmers will not be dis-
tracted by unnecessary implementation details and that the design
will accommodate future growth. For instance, information hiding
assists with the Portability of the PMGT library. The uses hierarchy
between modules also helps because it shows the relationship
between modules and the useful subsets of the software library.
Finally the previously mentioned traceability assists with mainte-
nance tasks (Maintainability) because the connections between de-
sign documents is explicit.

Acknowledgements

The financial support of SHARCNET and the Natural Sciences
and Engineering Research Council (NSERC) are gratefully
acknowledged.

References

[1] Ardis Mark, Weiss David M. Defining families: the commonality analysis. In:
Proceedings of the nineteenth international conference on software
engineering. ACM, Inc.; 1997. p. 649–50.

[2] Cecilia Bastarrica M, Hitschfeld-Kahler Nancy, Rossel Pedro O. Product line
architecture for a family of meshing tools. In: Morisio Maurizio, editor. ICSR.
Lecture notes in computer science, vol. 4039. Springer; 2006. p. 403–6.

[3] Bastarrica María Cecilia, Hischfeld-Kahler Nancy. Designing a product family of
meshing tools. Adv Eng Software 2005:1–10.

[4] Boehm Barry. Software engineering economics. Englewood Cliffs (New
Jersey): Prentice Hall; 1981.

[5] Clements Paul, Northrop Linda M. Software product lines: practices and
patterns. Boston (MA, USA): Addison-Wesley Longman Publishing Co., Inc.;
2002.

[6] Cuka David A, Weiss David M. Engineering domains: executable commands as
an example. In: International conference on software reuse. IEEE Computer
Society; 1998. p. 26–34.

[7] Dijkstra EW. Structured programming, chapter notes on structured
programming. London: Academic Press; 1972.

[8] Dubois Paul F. Designing scientific components. Comput Sci Eng
2002;4(5):84–90.

[9] Einarsson Bo, Boisvert Ronald, Chaitin-Chatelin Françoise, Cools Ronald,
Douglas Craig, Dritz Kenneth, et al. Accuracy and reliability in scientific
computing. Number 0-89871-584-9 in software-environments-tools.
Philadelphia (PA): SIAM; 2005.

[10] ElSheikh Ahmed H, Spencer Smith W, Chidiac Samir E. Semi-formal design of
reliable mesh generation systems. Adv Eng Software 2004;35(12):827–41.

[11] Frey Pascal Jean, George Paul-Louis. Mesh generation application to finite
elements. Hermes Science Europe Ltd.; 2000.

[12] Ghezzi Carlo, Jazayeri Mehdi, Mandrioli Dino. Fundamentals of software
engineering. 2nd ed. Upper Saddle River (NJ, USA): Prentice Hall; 2003.

[13] Gries David, Schneider Fred B. A logical approach to discrete math. Springer-
Verlag Inc.; 1993.

[14] Hatton Les. The chimera of software quality. Computer 2007;40(8).
[15] Hatton Les, Roberts Andy. How accurate is scientific software? IEEE Trans

Software Eng 1994;20(10):785–97.
[16] Heitmeyer Constance. Software cost reduction. In: Marciniak JJ, editor.

Encyclopedia of software engineering. John Wiley & Sons, Inc.; 2002.
[17] Hoffman Daniel M, Strooper Paul A. Software design, automated testing, and

maintenance: a practical approach. International Thomson Computer Press;
1995.

[18] Kelly Diane F. A software chasm: software engineering and scientific
computing. IEEE Software 2007;24(6):119–20.

[19] Kelly Diane F, Sanders Rebecca. Assessing the quality of scientific software. In:
Proceedings of the first international workshop on software engineering for
computational science and engineering (SECSE 2008), Leipzig, Germany. In
conjunction with the 30th international conference on software engineering
(ICSE); 2008.

[20] McCall J, Richards P, Walters G. Factors in software quality. NTIS AD-A049-014,
015, 055; November 1977.

[21] Oliveira Suely, Stewart David E. Writing scientific software: a guide to good
style. New York (NY, USA): Cambridge University Press; 2006.

[22] OpenMesh. Openmesh, computer graphics and multimedia group, Rheinisch-
Westfälische Technische Hochschule Aachen, <http://www.openmesh.org/>;
2006.

[23] Owen Steven J. A survey of unstructured mesh generation technology. In:
Proceedings 7th international meshing roundtable, Dearborn, MI; October
1998.

[24] Parnas DL. A technique for the specification of software modules with
examples. CACM 1972;15(5):330–6.

[25] Parnas David. On the design and development of program families. IEEE Trans
Software Eng 1976;SE-2(1):1–9.

[26] Parnas David L. Designing software for ease of extension and contraction. IEEE
Trans Software Eng 1979(March):128–38.

[27] Parnas David L. Some software engineering principles. INFOR, Can J Oper Res
Inform Process 1984;22(4):303–16.

[28] Parnas David L, Clements PC. A rational design process: how and why to fake it.
IEEE Trans Software Eng 1986;12(2):251–7.

[29] Parnas David Lorge, Asmis GJK, Madey J. Assessment of safety-critical software
in nuclear power plants. Nucl Safety 1991;32(2):189–98.

[30] Pohl K, Böckle G, van der Linden F. Software product line engineering:
foundations principles and techniques. Springer-Verlag; 2005.

[31] Remacle Jean-Fancois, Shephard Mark S. An algorithm oriented mesh
database. Int J Numer Methods Eng 2003;58:349–74.

[32] Rivara Maria-Celilia. New longest-edge algorithms for the refinement and/or
improvement of unstructured triangulation. Int J Numer Methods Eng
1997;40:3313–24.

1166 S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167

Author's personal copy

[33] Robertson Suzanne, Robertson James. Mastering the requirements
process. ACM Press; 1999.

[34] Sanders Rebecca, Kelly Diane. Dealing with risk in scientific software
development. IEEE Software 2008;4:21–8. July/August.

[35] Segal Judith. Models of scientific software development. In: Proceedings of the
first international workshop on software engineering for computational
science and engineering (SECSE 2008), Leipzig, Germany. In conjunction
with the 30th international conference on software engineering (ICSE); 2008.

[36] Siegel Stephen F, Mironova Anastasia, Avrunin George S, Clarke Lori A. Using
model checking with symbolic execution to verify parallel numerical
programs. In: International symposium on software testing and analysis
(ISSTA), Portland (ME); 2006.

[37] Spencer Smith W. Systematic development of requirements documentation
for general purpose scientific computing software. In: Proceedings of the 14th
IEEE international requirements engineering conference, RE 2006,
Minneapolis/ St. Paul, Minnesota; 2006. p. 209–18.

[38] Spencer Smith W, Chen Chien-Hsien. Commonality analysis for mesh
generating systems. Technical report CAS-04-10-SS, McMaster University,
Department of Computing and Software; 2004.

[39] Spencer Smith W, Lai Lei. A new requirements template for scientific
computing. In: Ralyté J, A_gerfalk P, Kraiem N, editors. Proceedings of the first
international workshop on situational requirements engineering processes –
methods, techniques and tools to support situation-specific requirements
engineering processes, SREP’05, Paris, France, 2005. In conjunction with 13th
IEEE international requirements engineering conference; 2005. p. 107–21.

[40] Spencer Smith W, Lai Lei, Khedri Ridha. Requirements analysis for engineering
computation: a systematic approach for improving software reliability.

Reliable Comput 2007;13:83–107. Special Issue on Reliable Engineering
Computation.

[41] Spencer Smith W, McCutchan John, Cao Fang. Program families in scientific
computing. In: Sprinkle Jonathan, Gray Jeff, Rossi Matti, Tolvanen Juha-Pekka,
editors. 7th OOPSLA workshop on domain specific modelling (DSM’07),
Montréal, Québec; 2007. p. 39–47.

[42] Squires S, Van de Vanter ML, Votta LG. Software productivity research in high
performance computing. CT Watch Quart 2006(November):52–61.

[43] Tang Jin. Developing scientific computing software: current processes and
future directions. Master’s thesis, McMaster University, Hamilton, ON; 2008.

[44] Thayer RH, Dorfman M, editors. IEEE recommended practice for software
requirements specifications. Washington (DC, USA): IEEE Computer Society;
2000.

[45] van Lamsweerde Axel. Goal-oriented requirements engineering: a guided tour.
In: Proceedings of the 5th IEEE international symposium on requirements
engineering IEEE. Washington (DC, USA): IEEE Computer Society; 2001. p.
249–63 [August].

[46] Weiss D, Lai CTR. Software product line engineering. Addison-Wesley; 1999.
[47] Weiss David M. Commonality analysis: a systematic process for defining

families. Lect Notes Comp Sci 1998;1429:214–22.
[48] Wilson Gregory V. Where’s the real bottleneck in scientific computing?

Scientists would do well to pick some tools widely used in the software
industry. Am Sci 2006;94(1).

[49] Yu Wen. A document driven methodology for improving the quality of a
parallel mesh generation toolbox. Master’s thesis, McMaster University; 2007.

S. Smith, W. Yu / Advances in Engineering Software 40 (2009) 1155–1167 1167

