Techniques for Testing Scientific Programs Without
an Oracle

Upulee Kanewala and James M. Bieman
Computer Science Department
Colorado State University, Fort Collins, CO, USA
Email: {upuleegk, bieman} @cs.colostate.edu

Abstract—The existence of an oracle is often assumed in
software testing. But in many situations, especially for scientific
programs, oracles do not exist or they are too hard to implement.
This paper examines three techniques that are used to test
programs without oracles: (1) Metamorphic testing, (2) Run-time
Assertions and (3) Developing test oracles using machine learning.
We examine these methods in terms of their (1) fault finding
ability, (2) automation, and (3) required domain knowledge.
Several case studies apply these three techniques to effectively test
scientific programs that do not have oracles. Certain techniques
have reported a better fault finding ability than the others
when testing specific programs. Finally, there is potential to
increase the level of automation of these techniques, thereby
reducing the required level of domain knowledge. Techniques
that can potentially be automated include (1) detection of likely
metamorphic relations, (2) static analyses to eliminate spurious
invariants and (3) structural analyses to develop machine learning
generated oracles.

Index Terms—Scientific software testing, Metamorphic testing,
Metamorphic relation, Machine learning, Mutation analysis, Test
oracles, Assertion checking

I. INTRODUCTION

An oracle is used in software testing to check whether the
program under test (PUT) produces the expected output when
executed using a set of test cases. A program is considered
non-testable [1] when an oracle does not exist or is impractical
to implement even though theoretically possible. Weyuker
identified three classes of programs that are non-testable [1]:
(1) Programs written to find an answer that is previously
unknown, (2) Programs producing so much output that it is
practically impossible to verify all outputs and (3) Programs
whose tester has a misconception about the program. Much
scientific software falls into class 1 or 2 above.

In practice, especially when testing scientific software, test
oracle implementation is ad-hoc. Even though developers of
scientific software may be familiar with systematic testing,
for example satisfying a test coverage criterion, systematic
approaches are rarely used to develop test oracles. Often a
domain expert looks at the results and determines that the
results “look about right.” Such an informal approach can miss

This work is supported by Award Number 1R01GMO096192 from the
National Institute Of General Medical Sciences. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the National Institute Of General Medical Sciences or the National
Institutes of Health.

978-1-4673-6261-0/13 © 2013 IEEE

48

subtle differences in the output such as failures caused by one-
off errors. The systematic approaches that we describe here can
be effective in improving the testing of scientific software.

The precision of an oracle is defined as its tolerance for
errors [2]. An imprecise oracle will pass test cases that should
have been failed or fail test cases that should have been passed.
Approaches proposed in the literature for testing programs
without oracles differ in their preciseness. A null oracle is
the least precise oracle [2]. It is the oracle implicitly provided
by the run-time system of the PUT and it can only detect if the
PUT terminates abnormally or if it fails to terminate [2]. An
ideal oracle provides pass/fail decisions without any mistake
for all possible executions of the PUT with respect to its
specification [2]. In practice, the most precise oracle one can
develop is a pseudo-oracle. A pseudo-oracle is another pro-
gram that is independently written using the same specification
as the PUT [1].

In practice, the preciseness of oracles falls between a
pseudo-oracle and a null oracle. In this work we examine
three such techniques: (1) metamorphic testing, (2) run-time
assertions, and (3) oracles built using machine learning tech-
niques. Chen et al. [3] introduced metamorphic testing for
testing programs without oracles. This technique operates by
checking whether the program under test behaves according to
a set of metamorphic relations, which specifies how a change
to an input affects the output. The pass/fail judgment of test
cases are determined using the set of metamorphic relations,
and can be treated as an oracle.

In run-time assertion checking, assertions are embedded into
the PUT. An assertion failure during the execution of a test
case is reported as a program failure. Therefore the set of
assertions act as the oracle.

Machine learning techniques can generate oracles for non-
testable programs [4], [5]. This method works by building a
classifier that predicts whether the output produced by the PUT
for a test case is correct or not.

Since an oracle often does not exist for scientific pro-
grams [6], one (or a combination) of the above three tech-
niques can be used. When employing these methods the
test engineer has to be cautious about the oracle properties
followed by the technique. In this paper, we review five
studies [7], [8], [2], [5], [4] that employ these three techniques
to test applications without oracles. We examine the properties
of oracles produced by these techniques as well as their fault

SE-CSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

finding ability. In addition we examine the level of automation
that can be achieved and the amount of domain knowledge
required when applying the methods.

The remainder of this paper is organized as follows: Sec-
tion II describes the background on test oracles and machine
learning. Metamorphic testing, its applications and open issues
are discussed in Section III. Section IV discusses run-time
assertion checking. Oracles created using machine learning
techniques are described in Section V. Issues related to fault
finding ability, automation and domain knowledge of the three
techniques are discussed in Section VI. Section VII details the
conclusions of this study.

II. BACKGROUND
A. Test Oracles, their properties and comparison measures

A test oracle determines whether the output produced by a
test case is correct according to the expected behavior of the
PUT. The test engineer needs to be aware of the properties
followed by the oracle used for testing in order to correctly
evaluate the pass/fail judgments produced by the oracle.

Staats et al. define several general oracle proper-
ties [6]. They define the testing system to be a collection
(P,S,T,O,corr,corry) as follows:

e P is a set of programs.

o S is a set of specifications where s € S is an idealized
specification of P.

e T is a set of tests.

e O is a set of oracles where o € O is a predicate such
that o C T x P. An oracle o € O determines for a
given program and a test if the test passes. Following this
definition we will use the term false positive to denote
o signaling frue when a fault is present in the code and,
the term false negative to denote o signaling false when
a fault is not present in the code.

e corr is a predicate such that corr C P x.S. For a program
p € P and a specification s € S, corr(p, s) implies p is
correct with respect to s. Value of corr(p, s) is generally
unknown in practice.

e corry is a predicate such that corry C T'x P x.S. It defines
correctness with respect to a test ¢t € T. corrt(t,p, 5)
holds if and only if the specification s holds for program
p when running test £.

1) Properties of Oracles:

Completeness: An oracle o is complete [6] with respect to a
program p and specification s for a test case ¢t if:

corri(t,p,s) = o(t, p)

For a test set 7', the oracle o is said to be complete for p and
s if:

Yt € T, corr(t,p,s) = o(t,p)
Completeness specifies that if the result obtained by running
t on p is correct according to s, the oracle o will indicate

that the test has passed. In general, oracles are designed
to be complete, but there could be situations where this

property fails. In particular, false negatives can be produced
when using the techniques described in this paper. Use of an
incomplete oracle can result in investing resources to fix a
fault that is not actually present in the code.

Soundness: An oracle o is sound [6] with respect to a program
p and a specification s for a test case ¢ if:

0(t7p) = corrt(t,p7 S)

For a test set T, the oracle o is said to be sound for p and s
if:

Vt € T, o(t,p) = corry(t,p, s)

Soundness specifies that if o indicates that ¢ has passed, then
p is correct with respect to ¢ according to s. Oracles used in
practice are rarely sound since a fault can be manifested in
variables or states that are not observed by o.

2) Oracle Comparison Measures: Staats et al. [6] recently
proposed two measures for systematically comparing oracles:
(1) power comparison and (2) probabilistic comparison. These
measures compare the relative usefulness of oracles based
on their ability to find faults. Both power and probabilistic
comparison measures are defined for complete oracles, and
they do not address the effect of false negatives.

Power Comparison: For a program p and specification s, an
oracle o1 has a power greater than or equal to oracle oy with
respect to a test set ' (written as o1 >7 09) if:

Vt € Ta 01 (t7p) = 02(t7p)

That is if o7 fails to detect a fault for some test then o, will
not detect that fault either.

Here, the power of oracles are compared relative to a
specific test set. Therefore power relationship between oracles
may change with different test sets. If for all possible test sets
01 has power greater than or equal to o9, then o; is said to
have a power universally greater than os.

To satisfy 01 >7 02, 01 has to detect all the faults detected

by o0,. But oracles created using different techniques (e.g.
metamorphic testing vs. assertion checking) would usually
detect different faults. Therefore power relation will not be
useful when comparing such oracles [6].
Probabilistic Comparison (PB): To facilitate a comparison
between oracles created using different methods Staats et
al. [6] developed the PB relation. An oracle o; is said to be
PROBBETTER (PB) than oracle oy (written as o; PBr 03)
with respect to a test set T for a program p, if o1 is more
likely to detect a fault than o5 for a randomly selected ¢ € T'.
This relation can be used to compare oracles with respect to
a specific test set.

B. Machine Learning

Machine Learning methods focus on providing the ability
for computer programs to make better decisions based on
experience [9]. Usually, the set of examples used by a machine
learning algorithm are divided into two subsets: a training set

49

and a test set. The training set is used to create the predictive
model (training/learning), while the fest set is used to evaluate
the performance of the predictive model (testing). Supervised
learning is one machine learning method, which employs a
set of labeled examples to learn a target function. The target
function maps the input to a desired set of outputs (labels). A
predictive model that assigns a class (label) to an example is
called a classification model. Input to a supervised classifica-
tion algorithm is a set of training data S = {s1, $2,...., Sn }-
Each vector s; = z1,%2,....,Tm,c; € S is called a training
instance/example, where x; is a feature and c; is the class label
of the training instance s;. In binary classification the class
label can take only one of two possible values (i.e. positive
examples and negative examples).

1) Decision trees (DT): In decision tree learning, the target
function is a decision tree in which internal nodes test a feature
in the input and leaf nodes assign a label. A trained decision
tree model can predict (assign) a label for an previously unseen
example. J48 is the Java implementation of the C4.5 [10]
decision tree generation algorithm, from the WEKA [11]
tool kit. When choosing a feature for an internal node, C4.5
chooses the feature with the highest information gain [12].

2) Cross validation: The k-fold cross-validation technique
evaluates how a predictive model would perform on previously
unseen data. In k-fold cross-validation the data set is randomly
partitioned into k£ subsets. Then & — 1 subsets are used for
training and the remaining subset is used for testing. This
process is repeated k times in which each of the k subsets
is used to evaluate the performance. In stratified k-fold cross-
validation, k folds are partitioned in such a way that the folds
contain approximately the same proportion of positive and
negative examples as in the original data set.

3) Performance measures: Accuracy is the percentage of
correct predictions made by the predictive model.

true positives+true negatives
true positives—+true negatives—false positives+false negatives

Accuracy =

Area under the receiver operating characteristic curve
(AUC) is a performance measure that is used to evaluate
the predictive models. It is a measure of the quality of
rankings given by a model and is widely used to compare
the performance of predictive models in machine learning.
AUC measures the probability that a randomly chosen
negative example will have a smaller estimated probability
of belonging to the positive class than a randomly chosen
positive example [13]. A higher AUC value indicates that the
model has a higher predictive ability. AUC takes a value in
the range [0,1]. A classifier with AUC = 1 is considered
a perfect classifier while, a classifier with AUC = 0.5 is
considered as a classifier that makes random predictions.

We now examine the three techniques that deal with the oracle
problem. We examine these techniques in terms of oracle
properties, fault finding measures, potential automation and
required domain knowledge.

public static int addvValues (int al[]) {
int sum=0;
for (int 1=0;i<a.length;i++) {
sum+=a[i];}
return sum; }

Fig. 1. Function for calculating the sum of elements in an array

III. METAMORPHIC TESTING (MT)

Metamorphic testing tests a PUT by checking whether the
PUT behaves according to a set of metamorphic relations
(MRs). A metamorphic relation specifies how a particular
change to the input of the program would change the output.
For a function f, a metamorphic relation R would express a
relationship among multiple inputs x;, xz,...,x, for n > 1 and
their corresponding output values f{x;), f{x2),....f{x,) [3]. Since
MRs specify a relationship among multiple executions, they
can be used for testing even if the correct output of individual
executions are unknown.

Violation of a metamorphic relation occurs when a change
in the output differs from what is predicted by the considered
metamorphic relation. Satisfying a metamorphic relation does
not guarantee that the program is implemented correctly.
However, a violation of a metamorphic relation indicates that
the program contains faults.

A. MT Process

1) Identifying metamorphic relations: The most important
step in MT is identifying a set of MRs [7]. MRs are derived
using the domain knowledge of the PUT. Two approaches
can be used to develop MRs: (1) MRs that are enumerated
specifically for the PUT using its specification, and (2) MRs
enumerated from the general expectation of the user about the
PUT. MRs created using method 1 will be necessary properties
of the PUT. Therefore a violation of such a MR indicates a
fault in the PUT, and thus can be used for verification. Method
2 will not always result in a necessary property of the program.
They will be desired properties of the PUT and they can be
utilized for validation [7]. These MRs will check whether the
PUT satisfies the expected requirements of the user.

Consider the function in Figure 1 that calculates the sum
of integers in an array a. The following two properties can be
treated as MRs for testing this function:

MR;: Randomly permuting the order of the elements in a
should not change the result
MR;: Adding a positive integer k to every element in a

should increase the result by k x length(a)

Not all MRs have the same fault detection ability. MRs
that enforce an equality relationship between the initial and
follow-up test cases are preferred over MRs that enforces a
non-equality relationship, since an equality relationship can
be violated more easily than a non-equality relationship [7].

2) Creating test cases: MT requires creating initial and
follow-up test case pairs, according to the input changes
required by the identified MRs. Initial test cases can be gen-
erated using testing techniques such as random testing, fault

50

based testing, etc. Then, follow-up test cases are created by
modifying the initial test cases according to the modifications
required by the MRs. Chen et al. found that MRs that produce
different execution traces for the initial and follow-up test
cases will be more effective than those with similar execution
traces for both test cases [14].

3) Failure detection: Each of the initial and follow-up test
case pairs are executed to check whether the output change
complies with the change predicted by the corresponding MR.
A run-time violation of a metamorphic relation indicates a
fault or faults in the PUT. Since metamorphic testing checks
the relationship between inputs and outputs of multiple exe-
cutions of the PUT, this method can be used when the result
of individual executions are not known.

B. Empirical Studies

MT is used for testing programs that do not have ora-
cles in different domains. MT was shown to be effective
in bioinformatics [15], health care simulations [16], Monte
Carlo modeling [17], computer graphics [18] and for testing
programs with partial differential equations [19].

1) Applying MT to test machine learning classifiers: Xie
et al. applied MT for testing machine learning classifiers [7].
They used MT for testing and validating k-nearest neighbor
(k-NN) and Naive Bayes classifier (NBC). These programs are
non-testable programs because they use a complicated logical
and computational process [7].

Xie et al. developed 11 MRs using the general anticipated
behavior of supervised machine learning classifiers. They
conducted two experiments in this work:

(1) Testing the k-NN and NBC implementations in the
Weka [11].
(2) A mutation analysis on the same algorithms.

Results of the first experiment showed that although k-NN
did not violate any of the MRs that were necessary properties,
NBC violated several MRs that were necessary properties.
These violations indicate faults in the NBC implementation in
Weka. There were some violations of MRs used for validation
in both programs. Although these violations might not indicate
an actual fault in the program, they indicate that there could
be deviations from the expected behavior.

In the second experiment, a mutation analysis was con-
ducted to empirically measure the effectiveness of MT. Xie
et al. created mutants using the traditional mutation operators
in MuJava and randomly selected 30 mutants for each of the
algorithms. For testing k-NN, 11 MRs were used while nine
MRs were used for testing NBC with 300 randomly generated
initial test cases. Xie et al. reported that 90.5% mutants were
killed in k-NN and 90.9% mutants were killed in NBC.

Finally, Xie et al. compared the effectiveness of MT with
cross validation analysis. The experiment used three simulated
data sets. A mutant is considered as “killed” if the error-rate
obtained by cross validation is significantly different from the
expected results for the simulated dataset. Results showed that
31.6% mutants survived in k-NN and 40% of mutants survived

51

NBC
cross-validation
k-NN B MT
T T T T T 1
0 20 40 60 80 100

% of mutants killed

Fig. 2. Effectiveness of MT and cross-validation [7]

in NBC. Figure 2 shows the percentage of mutants killed by
MT and cross-validation.

Xie et al. [7] applied MT for testing complex real world
applications. They used general anticipated properties of the
domain of the PUT when developing MRs, which is easier than
specifically developing MRs for the PUT. But, this approach
can produce MRs that are not necessary properties of the PUT.
Xie et al. [7] manually proved that some of these properties are
necessary properties of the PUT. Then they only used these
necessary properties for the mutation analysis thus making
the oracle used in verification a complete oracle. Manually
proving that certain properties are necessary properties of the
PUT requires a good understanding of the algorithms that are
used by the PUT.

As with most of the oracles used in practice this is not a
sound oracle, since an error can be manifested in a state or a
variable that cannot be uncovered by the set of MRs used here.
Xie et al. claim that MT could be more effective in detecting
faults than a traditional method (cross validation) used for
testing in the domain. But Xie et al. have used different test
cases when applying the two methods, making it difficult to
fairly compare the two methods. A fair comparison between
these two methods can be performed by using the PB measure
in Section II-A2, since it compares the effectiveness for a
specific test set.

Figures 3a and 3b show the percentage of mutants killed by
each MR in k-NN and NBC programs respectively. Figure 3a
shows that three MRs could not kill any mutants. Further,
several MRs that performed poorly in k-NN performed signif-
icantly better in NBC. In addition several mutants could not
be killed even though the modified statements were executed.
The k-NN implementation was executed 3600(300+300x 11)
times and the NBC implementation for 3000(300 + 300 x 9)
times and detected 19 and 20 mutants respectively. Such
a large number of executions is not practical when testing
applications with long execution times.

Further, randomly selected 30 mutants from complex algo-
rithms might not be representative of faults made by a typical
programmer. In addition the mutants only cover 6 mutation
operators, while there are 12 mutation operators supported
by MulJava. Therefore the mutants that Xie et al. used in the
experiment may not adequately represent the faults made by
a programmer.

100

40

% of mutants killed

20

o —
MRO MR1.1MR1.2MR2.1 MR2.2 MR3.1MR3.2 MR4.1 MR4.2 MR5.1 MR5.2

Metamorphic relation
(a) Percentage of mutants killed by each MR for k-NN

100

80

60 -

% of mutants killed

20 4

MRO MR1.1 MR1.2 MR2.1 MR2.2 MR3.2 MR4.1 MR5.1 NBC
Metamorphic relation
(b) Percentage of mutants killed by each MR for NBC

Fig. 3. Percentage of mutants killed by each MR [7]

2) Applying MT for unit and integration testing: Just
et al. conducted an empirical study to evaluate the effectiveness
of MT for integration testing [8]. They used MT to test an
implementation of the jpeg2000 encoder, which is a modular
system written in Java. This application faces the oracle prob-
lem when randomly generated inputs are used for testing [8].

Just et al. used five MRs for testing individual modules
as well as the whole application. They used both traditional
and class-based mutants generated by MulJava. Class-based
mutants represent faults introduced during integration. Since
the faulty statement has to be executed in order to be detected
by any oracle, Just et al. first assessed the initial inputs that
were randomly generated. They used 1977 traditional mutants
and 206 class-based mutants in the experiment. After selecting
the initial inputs, follow-up test cases were created according
to the input modifications required by the MRs.

Just et al. calculated the number of mutants killed by
each MR in each module and in the complete application.
Their results show that the effectiveness of individual MRs
ranges from 65% — 97% between subsytems for traditional
mutants. In addition, results show that individual MRs are less
effective in detecting class-based mutants (killed 41% — 73%)
when compared with traditional mutants (killed 81% — 91%).
Results also show that MRs that reported the highest mutation
detection scores when testing individual units (i.e. traditional
mutants) did not achieve the highest mutation scores when
testing the whole system (i.e. for class-based mutants).

Further, Just et al. calculated the mutation detection score
collectively achieved by the MRs. Their results show that the
mutation detection score can be improved for both traditional
and class-based mutants by applying several MRs as combi-
nations. In addition, they conclude that by testing with only
the most effective MRs, one can improve effectiveness while
reducing the time spent on testing, rather than testing with all
the MRs. Finally, they combined the two MRs that reported the
highest effectiveness for traditional and class-based mutants
to build a single complex MR. Using this complex MR, they
were able to significantly improve the percentage of class-
based mutants that were killed up to 96.6%.

Just et al. found that using complex MRs, which were devel-
oped by combining MRs used for unit testing, the effectiveness

of integration testing can be improved. They selected test
cases that achieve a high mutation score, in order to limit the
affect of inadequate coverage. Five MRs were developed using
necessary properties of the PUT producing a complete but not
sound oracle for testing. Just et al. do not demonstrate that
class-based mutants represent actual integration errors made
by software developers.

C. Limitations, Unsolved Problems and Future Work on MT

Automatically detecting likely MRs for a program: Cur-
rently the test engineer or the programmer has to identify the
MRs manually, which could result in missing important MRs.
The development of automated methods for detecting likely
MRs for the PUT is an open problem.

Identifying effective MRs: The experiments described in
Sections III-B1 and III-B2 found that the fault finding ability
of MRs varies significantly. Developing methods to identity
the set of MRs that are most effective at detecting faults for
a particular program is an open problem.

Effectiveness of complex MRs compared to simple MRs:
Fault finding effectiveness of complex MRs developed by
combining two or more MRs is another open problem. By
combining several MRs to form a single complex MR, the
number of executions required in testing can potentially be
reduced.

Identifying limitations of MT: One of the challenges faced
when using MT is to determine whether the PUT is adequately
tested. Even if 100% of the code is covered by the test
cases, a pair of incorrect outputs might still satisfy a MR
used for testing. The experiments described in Sections I1I-B1
and III-B2 found several mutants that could not be killed using
MT. Identifying whether these mutants could be killed with
much stronger MRs or whether there are certain mutants that
could never be killed using MT is an open problem.

IV. ASSERTION CHECKING

An assertion is a boolean expression or a constraint that
is used to verify some necessary property of the PUT [20].
Usually, assertions are embedded into the source code of the
PUT and evaluated when a test case is executed. Widely used
programming languages such as C and Java provide built-in
support for assertions.

52

In the context of testing non-testable programs, assertions
can be used to check some degree of correctness of the
PUT [21]. For example assertions can be used to verify
whether the output is within an expected range (even though
the actual value is unknown) or some known relationships
between program variables are maintained, etc. One advantage
of assertions is that they can be used to detect faults that are
executed with the test case but not resulted in failures (i.e. that
do not propagate to the output).

A. Identifying Assertions

Coppit et al. developed a method where they first develop
a formal specification of the PUT and then convert the
specification into assertions [22]. This method might be not
practical in the context of most scientific programs, since they
are exploratory in nature and their specifications can face
frequent changes [23].

Invariant detection tools like Daikon [24] can assist the
creation of assertions. Daikon executes the program several
times and reports the properties that were true over these
executions. These assertions are applied in subsequent pro-
gram runs. One limitation of Daikon is that the invariants are
limited to function pre- and post-conditions. Therefore Daikon
cannot be used to create assertions that are inside the body of
a function [21].

These tools can generate incorrect invariants, even when
using large test suites [25]. Therefore human intervention is
required to select correct invariants before using them as test
oracles. However a study conducted by Staats et al. showed
that humans also fail to correctly classify automatically gen-
erated invariants [26].

B. Empirical Studies

1) Effectiveness of assertions as oracles: Shrestha
et al. conducted an empirical study to evaluate the
effectiveness of using assertions as oracles [2]. They

compared assertion checking and the null oracle in terms of
the fault detection capability. This experiment used 15 Java
classes as test subjects; 7 classes were obtained from JDK
1.4.2 and 8 classes from two sample programs. The authors
used a set of JML (Java Modeling Language) assertions
provided by a third party (JML project') for these classes.
Test cases were created using the branch coverage criterion
(targeting 90%). JUnit? test cases were written to execute the
programs with the input values.

The effectiveness of assertions is measured in terms of the
percentage of the mutants that were killed. Mutants of the
subject programs were created using the traditional mutation
operators provided by the MuJava mutation engine. To evalu-
ate the effectiveness of the null oracle, Shrestha et al. executed
all the test suites against all the mutants and recorded the
pass/fail information. Then the same test suites were executed
while the JML assertions in the programs were enabled.
Mutants that were not killed by any of the test cases were

Uhttp://www.eecs.ucf.edu/~leavens/JML//index.shtml
Zhttp://junit.sourceforge.net/

53

W JML Assertions

Average
Null Oracle
Median
0 20 40 60 80 100
% of valid mutants caught
Fig. 4. Average and median effectiveness of the null oracle and JML

assertions [2]

manually inspected to check whether they were equivalent
mutants. Results were recorded for 104 methods for the null
oracle and for 56 methods for JML annotations.

As shown in Figure 4, on a per method basis the median
effectiveness of null oracle is only 10.7%. For assertion
checking the median percentage of faults caught was 61%
(after removing the mutants caught by the null oracle). By
analyzing the distribution of effectiveness of detecting faults of
the null oracle and assertions on a per method basis, Shrestha
et al. reported that the null oracle is not effective in catching
bugs beyond 50%. They also observed that 95% —100% of the
faults were caught in 39% of the methods and less than 5%
of the faults were caught in 46% of methods using assertions.
Very few methods have between 5% and 95% of the faults
caught. The conclusion is that assertion checking is either very
effective or totally ineffective depending on the method.

C. Limitations, Unsolved problems and Future Work in Asser-
tion Checking

Minimize spurious invariants detected by automatic in-
variant detection methods: As mentioned earlier, creating
assertions using an automatic invariant detection tool may
be more effective than creating specification based assertions
when testing scientific programs. Further investigations can
evaluate the effectiveness of tools such as Daikon, especially
when testing non-testable scientific software. These tools can
detect spurious invariants producing incomplete oracles that
may signal faults that are not actually present in the code.
Therefore, we need methods to reduce the number of incorrect
invariants generated by such tools, such as using static analysis
techniques that can falsify incorrect assertions [26].
Investigate utility of assertions when testing programs
without oracles: Few studies used assertion checking for
testing non-testable programs [21], [27]. Additional empiri-
cal studies should be conducted using assertions as oracles
targeting non-testable scientific programs.

V. MACHINE LEARNING BASED METHODS FOR
DEVELOPING ORACLES

Machine learning techniques have been used for developing
oracles for non-testable programs [5], [4]. Both black-box
(features developed using inputs and outputs of the pro-
gram) [5], [4] and white-box (features developed using the
internal structure of the program) [28] features have been used
to train the classifiers used as the oracle. Using white-box

features (such as execution traces) for developing classifiers
will be less reliable than using black-box features, since these
features may suffer from the effects of coincidentally correct
test execution data [5].

A. Empirical Studies

1) Developing an oracle for mesh simplification pro-
grams [5]: Chan et al. developed an oracle for testing a mesh
simplification algorithm using machine learning [5]. These
applications face the oracle problem since neither automatic
pixel-by-pixel comparison nor manual comparison will be reli-
able [5]. Chan et al. developed a classifier that can classify the
output produced by the PUT as passed or failed. This classifier
was trained using a set of black-box features extracted from
outputs generated from an existing program called a reference
model, which implements the same functionality as the PUT.

Figure 5 shows an overview of the proposed method. Let P
be the mesh simplification program under test (PUT) and R be
a reference model for P. Let M = {my,ma,...,my} be a set
of 3D polygonal models that can be used as inputs to P and
R. First, a set of faulty versions of R were generated using
a mutation generation engine. Then the set of inputs were
executed on the original R as well as its faulty versions. Then
a set of features were extracted from the produced outputs.
Features obtained from R were labeled as passed and the
features obtained from mutants were labeled as failed. Finally,
these features were used to train a classifier C. When testing
the PUT, the same set of features were extracted from the
PUT by executing test cases. Then these feature vectors were
provided to C. The classifier C' labeled the feature vector as
passed or failed. A test case that produced a passed feature
vector was considered as a test case that reveals no failure,
while a test case that produced a failed feature vector was
considered as a test case that reveals a failure.

In the experiment, Chan et al. used a set of classification
features based on the strength of image frequencies and light
effects. They tested the proposed method using four image
segmentation implementations that were written in Java. They
used 44 open-source 3D polygonal models as their test cases.
The authors selected the C4.5 classification algorithm to create
the classifier based on the results of a pilot study.

The evaluation is in terms of accuracy (percentage of test
cases that were correctly classified), effectiveness (percent-
age of failed test cases that were properly classified) and
robustness (percentage of passed test cases that were properly
classified). Based on these observations Chan et al. conclude:
(1) An accurate, effective and robust test oracle can be

developed using a resembling reference model.

(2) If a resembling model does not exist, a less sophisticated
model should be used. Classifiers developed using simple
reference models achieve a higher accuracy while provid-
ing a low effectiveness.

(3) Dissimilar reference models results in less robust classi-
fiers.

The resulting classifier can produce pass/fail judgment of
test cases based on the knowledge obtained from a reference

model. This oracle is incomplete, i.e. it can produce false
negatives. It is also not a sound oracle since an error can
occur in an unseen example during the learning phase. Feature
selection plays an important role in the effectiveness of this
method. Therefore a domain expert needs to be involved in
selecting the set of features for developing the classifier. After
selecting an appropriate set of features, the oracle creation can
be done automatically.

In this work Chan et al. used outputs created from reference
models for learning the classifier. Therefore this method as-
sumes that independently developed reference models would
not result in same faults. But this independent assumption has
been contradicted empirically by Brilliant et al. [29]. Thus
Chan et al.’s method can suffer from similar faults present in
the reference models.

2) Developing an oracle for a image segmentation pro-
gram: Frounchi et al. [4] developed an oracle for verifi-
cation and validation of an image segmentation algorithm
using machine learning. They developed a machine learning
classifier that determines whether a segmentation created by
a subsequent version of the program is consistent with a
previously verified image segmentation of the same original
image.

During the training phase, a pair of segmentations were
obtained from version v, and vy(y < x) of the segmentation
program for each input. Then a set of predetermined similarity
measures were obtained for these segmentation pairs. Using a
domain expert, these pairs of segmentations were labeled as
consistent (if both segmentations are correct) or inconsistent(if
one of the segmentations is correct and the other one is
incorrect). This manual labeling has to be done for at least
the segmentation pairs created by the first two versions of
the algorithm. Using the similarity measures and the label
given for each image segmentation pair i, a tuple of the
form (smg1, ..., sm.y, consistency) were created. Value sm;;
denotes the similarity measure j obtained for image pair <.
Class label consistency can take two values consistent or
inconsistent. This set of tuples was used as the training set
to build the classifier. After the classifier achieves a satisfactory
accuracy, it can be used to verify whether a segmentation
produced by a subsequent version of the program is consistent
with previously verified segmentations.

Frounchi et al. evaluated the performance of the learned
classifier using 10-fold-cross validation. They used a cardiac
left ventricle segmentation algorithm as the PUT. The test set
consist of 181 CT-Scan images. Three classification algorithms
(J48, JRIP and PART) were used in the experiment. Accuracy
and AUC are used as performance measures. The three clas-
sification algorithms used in the experiment gave equivalent
performance indicating that the choice of the machine learning
algorithm is not significant. The results show that using a
wrapper to pre-select attributes can improve the classifier
performance. The decision tree classifier created with J48
using all the 18 similarity measures and a wrapper for selecting
suitable measures reported the best performance. It achieved
an average accuracy of 95% and an AUC measure of 0.95.

54

R Feature extraction f, f, f, label
M; ——»| (Reference —® R(m,) functions
i=l..k Model) — R(my) | vy | vy Vi p
m,,R,R(m,
T wutants Sy BRG] IR [v | v | | var |
Jd p=1.., v N G
_ \ |i=L..,k \ K
m, i R(m) DT ED
—) RIM) | Via | Ve Viw p N : :
m, —> Rz (m,) Ry(my)| Vi | vin Vi SR> T Gl >
: Ri(ma)| Van1 | Vo Vavi f pif pif pif pif
" ; :
i R R, (m;) Rulmy)| Vi | View Vi f

Fig. 5. Overview of the proposed method by Chan et al. [5]

In summary, the classifier can automatically determine the
correctness of image segmentations using machine learning.
Since the classifier achieved an accuracy less than 100%,
the oracle developed using this method is incomplete. The
oracle is also not sound since it will only have the knowl-
edge obtained from a set of finite examples. This method
requires selecting a set of similarity measures that will help to
determine the consistency of image segmentation pairs. This
requires an adequate understanding of the domain.

For the image segmentation algorithm used in this exper-
iment, none of the versions produced incorrect segmentation
for both versions v, and v, (y < z). A different result may
occur when developing an algorithm from scratch. Most of the
segmentations produced by initial versions might be incorrect
making them unsuitable for training the classifier. Therefore,
several iterations with manual verification might be required
before achieving an effective classifier. So the optimal number
of iteration required for achieving an effective classifier needs
to be further investigated.

B. Limitations, Unsolved Problems and Future Work in ML
Based Methods

Minimizing the effects of coincidental correctness in struc-
tural (white-box) features: Both of the applications discussed
in Sections V-Al and V-A2 are non-testable programs since
they produce complex outputs that are difficult to verify man-
ually. Both of these applications are in the domain of image
processing, where there are standard measures to measure the
similarities/differences between outputs. Therefore, applying
this method in other domains (without such measures) will
require an in-depth investigation on how to measure the simi-
larity between the outputs. On the other hand it might be more
effective to investigate the effectiveness of using classifiers
developed using white-box features in such situations while
mitigating the effects of coincidentally correct executions.

VI. DISCUSSION

A. Fault Finding Effectiveness

Performing a complete comparison between the three tech-
niques in terms of their fault finding ability is not possible due
to the vast differences in the programs the techniques have

been applied to. But it is possible to perform the comparison
for a fixed program. Two studies compare the fault finding
ability of MT and assertion checking for a fixed set of
programs.

Zhang et al. [27] compared testing effectiveness of MT
and assertion checking in terms of mutation detection ratio
using graduate student subjects. They found that MT is more
effective than assertion checking in finding faults. Murphy et
al. [21] compared MT and assertion checking when testing
machine learning and non-deterministic applications. Murphy
et al. used the Daikon invariant detection tool [24] for automat-
ically detecting invariants. The MRs for MT were developed
manually. The results show that MT is more effective in
detecting faults than assertion checking.

An important factor that determines the fault finding ability
is the test set. Much research assume the presence of an
ideal oracle when comparing coverage criteria [6]. Therefore,
conclusions in these studies might not apply to non-testable
programs. For example, consider a situation where we use
a pseudo-oracle (which only considers the output) and as-
sertion checking (that considers the internal variables) with
test cases developed using statement and branch coverage
criteria. Assume that the PUT contains a fault f that can be
caught using any test set satisfying the statement coverage
but that does not propagate to the output. Even though in
theory f should be revealed by a test set satisfying the branch
coverage criteria (since branch coverage subsumes statement
coverage), if the test suite satisfying the branch coverage is
paired with the pseudo-oracle it might not reveal the fault
while the test suite satisfying the statement coverage paired
with assertion checking would be guaranteed to uncover the
fault [6]. Therefore the test engineer should not assume that
more faults can be detected by adding more test cases to satisfy
a certain coverage criteria. Further it might be more effective
to derive more MRs (when using MT) or more assertions
(when using assertion checking) to improve the fault finding
ability than adding more test cases to satisfy a certain coverage
criteria.

B. Automation

The level of automation achieved by the three methods
discussed in this paper differs. Tools such as Daikon can be

55

used for developing assertions [24]. But such tools based on
dynamic approaches can generate spurious invariants if there
are not enough executions of the PUT.

With MT, follow-up test case generation, test execution and
failure detection steps have been automated when the set of
MRs satisfied by the PUT is provided [30]. But there have
been no previous attempts to develop methods to automati-
cally detect likely MRs. We developed a technique based on
machine learning to detect these properties [31]. In addition
it might be possible to use a dynamic approach similar to
Daikon [24] for automatically detecting likely MRs.

Both of these automation approaches could add spuri-
ous assertions/MRs to these methods, producing incomplete
oracles. Therefore when evaluating these techniques (MT
with automatically detected MRs and assertion checking with
automatically detected invariants) one has to consider the
effects of false negatives. With false negatives, the power or
probabilistic comparison measures cannot be applied directly.
New comparison measures should be developed that account
for the effects of falsely signaled faults.

Automation methods should also focus on minimizing the
number of spurious assertions/MRs as much as possible since
the test engineer would have to spend her time trying to find
out whether the signaled failure is due an actual fault in the
code.

C. Domain knowledge

The reviewed methods require different levels of domain
knowledge. For MT, depending on the MRs used for testing,
one has to be familiar with general properties of the domain or
specific properties for the implementation. Assertion checking
is similar. By developing automated methods to detect asser-
tions and MRs with high accuracies, the domain knowledge
required by the test engineer can be reduced significantly.

When developing oracles using machine learning methods,
one needs to be familiar with the machine learning techniques
in addition to the domain knowledge of the PUT. When
using black-box features to develop the classifiers, similarity
measures used as features will determine the accuracy of the
classifier. Therefore, deep understanding of these measures
is required to develop effective oracles. In addition having
familiarity with different machine learning algorithms, feature
selection methods and performance measures is important to
successfully develop oracles using ML techniques.

VII. CONCLUSIONS

Scientific programs often lack oracles because they are
written to find out a previously unknown answer or because
they produce complex outputs. As a result, ad-hoc methods
are widely used to test scientific software. In this paper we
examined three techniques that can be used to systematically
test programs without oracles: metamorphic testing, assertion
checking and oracles created using machine learning methods.
These techniques have been used to test scientific programs in
different areas such as machine learning and image processing.

56

Oracles produced by these techniques may not satisfy the
oracle properties satisfied by traditional oracles. for exam-
ple oracles created using machine learning methods produce
incomplete oracles. Therefore the test engineer needs to be
cautious when applying these techniques.

Developing techniques to automatically detect metamorphic
relations would improve the automation of metamorphic test-
ing. In addition, spurious invariants generated by automatic
invariant detection tools have to be minimized in order to use
them effectively for testing scientific programs. Investigating
the possibility of using white-box features for developing
machine learning based oracles would help to apply these
oracles to a wider range of programs. Since these automation
approaches could generate incomplete oracles, falsely signaled
faults have to be considered when comparing the effectiveness
of these oracles.

REFERENCES
[1]1 E.J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25,
no. 4, pp. 465-470, 1982.
K. Shrestha and M. Rutherford, “An empirical evaluation of assertions
as oracles,” in Software Testing, Verification and Validation (ICST), 2011
IEEE 4th Int. Conf. on, 2011, pp. 110 -119.
T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without the
need of oracles,” Information and Software Technology, vol. 45, no. 1,
pp- 1-9, 2003.
K. Frounchi, L. C. Briand, L. Grady, Y. Labiche, and R. Subramanyan,
“Automating image segmentation verification and validation by learning
test oracles,” Inf. Softw. Technol., vol. 53, no. 12, pp. 1337-1348, Dec.
2011.
W. K. Chan, S. C. Cheung, J. C. F. Ho, and T. H. Tse, “Pat: A pattern
classification approach to automatic reference oracles for the testing of
mesh simplification programs,” Journal of Systems and Software, 2008.
M. Staats, M. W. Whalen, and M. P. Heimdahl, “Programs, tests, and
oracles: the foundations of testing revisited,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE 11. New
York, NY, USA: ACM, 2011, pp. 391-400.
X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544 — 558, 2011.
R. Just and F. Schweiggert, “Automating unit and integration testing
with partial oracles,” Software Quality Journal, vol. 19, pp. 753-769,
2011.
D. Zhang and J. J. Tsai, Advances in Machine Learning Applications in
Software engineering. Idea Group Publishing, 2007.
J. R. Quinlan, C4.5: programs for machine learning.
CA, USA: Morgan Kaufmann Publishers Inc., 1993.
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10-18, Nov. 2009.
H. Zhu, “On information and sufficiency,” Annals of Statistics, 1997.
J. Huang and C. Ling, “Using AUC and accuracy in evaluating learning
algorithms,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 3, pp. 299 — 310, march 2005.
T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case studies on
the selection of useful relations in metamorphic testing,” in Proceedings
of the 4th Ibero-American Symposium on Software Engineering and
Knowledge Engineering (JIISIC 2004), 2004, pp. 569-583.
T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative approach
for testing bioinformatics programs using metamorphic testing.” BMC
Bioinformatics, vol. 10, 2009.
C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano, G. Kaiser,
I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil, “On effective testing
of health care simulation software,” in Proceedings of the 3rd Workshop
on Software Engineering in Health Care, ser. SEHC '11. New York,
NY, USA: ACM, 2011, pp. 40-47.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10] San Francisco,

(11]

(12]
[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

(24]

J. Ding, T. Wu, D. Wu, J. Q. Lu, and X.-H. Hu, “Metamorphic
testing of a Monte Carlo modeling program,” in Proceedings of the
6th International Workshop on Automation of Software Test, ser. AST
’11. New York, NY, USA: ACM, 2011, pp. 1-7.

R. Guderlei and J. Mayer, “Statistical metamorphic testing testing
programs with random output by means of statistical hypothesis tests
and metamorphic testing,” in Quality Software, 2007. QSIC ’07. Seventh
International Conference on, October 2007, pp. 404 —409.

T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing of programs
on partial differential equations: A case study,” in Proceedings of the
26th International Computer Software and Applications Conference
on Prolonging Software Life: Development and Redevelopment, ser.
COMPSAC ’02. Washington, DC, USA: IEEE Computer Society, 2002,
pp. 327-333.

L. A. Clarke and D. S. Rosenblum, “A historical perspective on runtime
assertion checking in software development,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 3, pp. 25-37, May 2006.

C. Murphy and G. E. Kaiser, “Empirical evaluation of approaches to
testing applications without test oracles,” Dep. of Computer Science,
Columbia University, Tech. Rep. CUCS-039-09, 2010.

D. Coppit and J. Haddox-Schatz, “On the use of specification-based
assertions as test oracles,” in Software Engineering Workshop, 2005.
29th Annual IEEE/NASA, april 2005, pp. 305 -314.

K. S. Ackroyd, S. H. Kinder, G. R. Mant, M. C. Miller, C. A. Ramsdale,
and P. C. Stephenson, “Scientific software development at a research
facility,” IEEE Softw., vol. 25, no. 4, pp. 44-51, Jul. 2008.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,” in
Proceedings of the 21st international conference on Software engineer-
ing, ser. ICSE ’99. New York, NY, USA: ACM, 1999, pp. 213-224.

57

[25]

[26]

(27]

(28]

[29]

[30]

(31]

N. Polikarpova, 1. Ciupa, and B. Meyer, “A comparative study of
programmer-written and automatically inferred contracts,” in Proceed-
ings of the eighteenth international symposium on Software testing and
analysis, ser. ISSTA '09. New York, NY, USA: ACM, 2009, pp. 93—
104.

M. Staats, S. Hong, M. Kim, and G. Rothermel, “Understanding user un-
derstanding: determining correctness of generated program invariants,”
in Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ser. ISSTA 2012. New York, NY, USA: ACM, 2012, pp.
188-198.

Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu, “Experimental study to
compare the use of metamorphic testing and assertion checking,” Journal
of Software, vol. 20, no. 10, pp. 2637-2654, 2009.

J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for
automatic classification of software behavior,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 4, pp. 195-205, Jul. 2004.

S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis of faults in
an n-version software experiment,” IEEE Trans. Softw. Eng., vol. 16,
no. 2, pp. 238-247, Feb. 1990.

C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” in Proceedings of the 2009 International Conference on Soft-
ware Testing Verification and Validation, ser. ICST *09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 436—445.

U. Kanewala and J. M. Bieman, “Using machine learning techniques to
detect metamorphic relations for programs without test oracles,” 2013,
manuscript submitted for publication.

