
Assurance Cases for Scientific Computing Software
Spencer Smith

Computing and Software Department,
McMaster University
1280 Main Street West

Hamilton, Ontario L8S 4K1
smiths@mcmaster.ca

Mojdeh Sayari Nejad
Computing and Software Department,

McMaster University
1280 Main Street West

Hamilton, Ontario L8S 4K1
sayarinm@mcmaster.ca

Alan Wassyng
Computing and Software Department,

McMaster University
1280 Main Street West

Hamilton, Ontario L8S 4K1
wassyng@mcmaster.ca

ABSTRACT
Assurance cases that provide an organized and explicit argument
for correctness should be used for certifying Scientific Computing
Software (SCS), especially when the software impacts health and
safety. Assurance cases have already been effectively used for safety
cases for real time systems. Their advantages for SCS include en-
gaging domain experts, producing only necessary documentation,
and providing evidence that can potentially be verified/replicated
by a third party. This paper illustrates assurance cases for SCS
through the correctness case for 3dfim+, an existing medical analy-
sis software for analyzing activity in the brain by computing the
correlation between the measured and an ideal brain signal. This
example was partly chosen because of recent concerns about the
validity of fMRI (Functional Magnetic Resonance Imaging) stud-
ies. No errors were found in the software outputs from 3dfim+.
However, the example still justifies the value of assurance cases,
since the existing documentation is shown to have ambiguities and
omissions, such as an incompletely defined ranking function and
missing details on the coordinate system convention adopted. In
addition, a potential concern for the software itself is identified:
running the software does not produce any warning about the ne-
cessity of using data that matches the parametric statistical model
employed for the correlation calculations.

CCS CONCEPTS
•Mathematics of computing→ Mathematical software; • Soft-
ware and its engineering→ Requirements analysis; Software ver-
ification and validation;

KEYWORDS
assurance cases, software quality, software requirements specifica-
tion, medical imaging software

ACM Reference format:
Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng. 2018. Assurance
Cases for Scientific Computing Software. In Proceedings of 40th International
Conference on Software Engineering, Gothenburg, Sweden, May 2018 (ICSE),
12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE, May 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Are we currently putting too much trust in the quality of Scientific
Computing Software (SCS)? Given its role in such fields as nuclear
safety analysis andmedical imaging, SCS has a significant impact on
health and safety related planning and decision making. Although
SCS developers do excellent work, do we have enough checks and
balances in place for confidence in correctness? The usual approach
employed when correctness is critical is to impose requirements
for official software certification, where the goal for certification is
to: “...systematically determine, based on the principles of science,
engineering and measurement theory, whether a software product
satisfies accepted, well-defined and measurable criteria” [16, p. 12].
Unfortunately, two significant problems exist for SCS in completing
a conventional certification exercise through an external body:

• The external body often does not have deep expertise on the
physical problem the software simulates or analyses, or on
the numerical techniques employed. This tends to lead the
external body to request a large quantity of documentation,
as shown in standards for SCS in the nuclear domain [4, 9,
10, 39], or in the medical domain [7].

• SCS developers tend to dislike documentation. As observed
by Carver [5], scientists do not view rigid, process-heavy ap-
proaches, favourably. Moreover, they often consider reports
for each stage of software development as counterproduc-
tive [31, p. 373].

A potential solution to these two problems is to have the SCS
developers create an assurance case as they develop their software.
Assurance case techniques have been developed and successfully ap-
plied for real time safety critical systems [30, 32, 43]. An assurance
case presents an organized and explicit argument for correctness
(or whatever other software quality is deemed important) through
a series of sub-arguments and evidence. Putting the argument in
the hands of the experts means that they will work to convince
themselves, along with the regulators. They will use the exper-
tise that the regulators do not have; they will be engaged. This
engagement will hopefully help bridge the current chasm between
software engineering and scientific computing [20], by motivat-
ing scientists toward documentation and correcting the problem
of software engineers failing to meet scientists’ expectations [33].
Significant documentation will still likely be necessary, but now
the developers control the documentation. What is created will be
relevant and necessary. More details on the current literature on
assurance cases is given in Section 2.

Arguing in favour of assurance cases does not imply that SCS
developers have not, or do not currently, treat correctness seriously.
They have developed many successful theories, techniques, testing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

procedures and review processes. In fact, an assurance case will
likely use much of the same evidence that SCS developers currently
use to convince themselves of the correctness of their software. The
difference is that the argument is no longer ad hoc, or incompletely
documented. The argument will now be explicitly presented for
review by third parties; it is no longer about implicitly trusting the
developer. The act of creating the assurance case may also lead the
developer to discover subtle edge cases, which would not have been
noticed with a less rigorous and systematic approach.

While the eventual goal is developing a template for assurance
cases for any SCS, our initial approach is to learn by first building
an assurance case for one particular example. Our case study fo-
cuses on 3dfim+, a medical image analysis software package that
supports Functional Magnetic Resonance Imaging (fMRI). 3dfim+
was selected because it is a reasonably small (approximately 1700
lines of code) and easy to understand example of medical image
analysis software. We targeted medical image analysis software,
since some of the common fMRI statistical analyses data have not
yet been validated [29] and because a recent study [11] has shown
a potentially serious flaw in software commonly used to analyze
fMRI data. More detail on 3dfim+ can be found in Section 3.

The scope of our work does not include redeveloping or reim-
plementing 3dfim+. Our goal is to build an assurance case for the
existing software 3dfim+, by treating it as black box. We consider
only the executable for 3dfim+ and the existing documentation and
correspondingly produce new documentation and testing results,
but not new code. Excluding the code makes the case study more
realistic, since, if an assurance case exercise were to be conducted
in industry, there would be little appetite for reimplementation.
Considerable effort has already gone into writing medical image
analysis; it is not feasible for the community to start over.

To argue for the correctness of 3dfim+, we developed an assur-
ance case with the top goal of “ Program 3dfim+ delivers correct
outputs when used for its intended use/purpose in its intended
environment.” We also developed a Software Requirements Specifi-
cation (SRS) document that contains all the necessary information
and mathematical background needed to understand 3dfim+. This
document can be used for validation and verification activities, and
appears many times as evidence in our assurance case. The SRS was
reviewed by a domain expert to provide further evidence. We also
developed a test case to illustrate how the results from 3dfim+ can
be checked to provide additional evidence of correctness. The full
assurance case for 3dfim+ can be found in Nejad 2017 [25]. Excerpts
from the full case are given in Section 4.

Besides providing a means to illustrate assurance cases for SCS,
the 3dfim+ example provides an opportunity to justify their value
for certification. Although no errors were found in the output of
the existing software, the rigour of the proposed approach did lead
to finding ambiguities and omissions in the existing documentation,
and highlighted a potential concern when running the software
itself. More importantly, the explicit arguments and artifacts pro-
vided through the assurance case provide evidence that can be
independently judged for sufficiency. The specific critique for the
existing implementation and documentation for 3dfim+ is given in
Section 5.

2 OVERVIEW OF ASSURANCE CASES
An assurance case is “[a] documented body of evidence that pro-
vides a convincing and valid argument that a specified set of critical
claims about a system’s properties are adequately justified for a
given application in a given environment” [30, p. 5].

The idea of assurance cases (or safety cases) began after a number
of serious accidents, starting with the Windscale Nuclear Accident
in the late 1950s. This incident was the United Kingdom’s most
serious nuclear power accident [27] and was instrumental in the
government setting up new safety regulations incorporating assur-
ance cases. Although there had not previously been an ignorance
of safety concerns, and safety standards and regulatory approaches
had been applied as the norm, the previous approaches proved to
be insufficient. They lacked interaction between regulators and
developers, especially since the developers had more knowledge
than the regulators about the safety of their products.

Assurance cases have been widely used in the European safety
community for over 20 years to ensure system safety [22]. This
methodology has been applied in industries such as aerospace, trans-
portation, nuclear power, and defence [1]. Some other examples
include the energy sector, such as oil and gas, aviation infrastruc-
ture, such as ground systems, aerospace vehicles, such as space
vehicles and aircraft, railways, automobiles, and medical devices,
such as pacemakers, and infusion pumps [30]. Also, there were
some attempts to develop assurance cases for security sectors [3].

In North America, the medical domain is showing an increased
interest in assurance cases. Safety cases are considered to have
“the potential to support healthcare organizations in the imple-
mentation of structured and transparent systems for patient safety
management” [8]. This potential is reflected in the Food and Drug
Administration’s (FDA’s) strong recommendation that manufactur-
ers submit a safety assurance case of any new infusion pumps [40].

Safety cases, and in general assurance cases, require a clearly
articulated argument, supported by evidence. An assurance case
consists of a Top Goal, which is the main proposition we want our
software to satisfy; Sub-Goals, which provide the decompositions
of the Top Goal; Strategy, which presents the rationale adopted
while making arguments and choosing sub-goals; and, Evidence,
which is the evidence supporting the argument. Figure 1 shows
what an assurance case might look like, using Goal Structuring
Notation (GSN) for goals, context and assumptions.

For our work we have chosen the popular Goal Structuring
Notation (GSN), developed by Kelly [23] to make our arguments
clear, easy to read and, hence, easy to challenge. To develop the
assurance case, we used Astah (http://astah.net/) to create and edit
our GSN arguments. A full overview of GSN, with examples, can
be found in Sprigg’s book [38].

Focusing on the assurance case from the start of a project can im-
prove the efficiency of the development process. Scientific software,
such as medical software, is often subject to standardization and
regulatory approval. While applying such approvals and standards
has had a beneficial effect on system quality, it does not provide
good tracking of the development stages, as the compliance with the
standards are mostly checked after the system development. Once
a system is implemented, its documentations must be approved by
the regulators. This process is lengthy and expensive. In contrast,

http://astah.net/

Assurance Cases for Scientific Computing Software ICSE, May 2018, Gothenburg, Sweden

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310003 9122

 G: System Goal / Sub-Goal
C: Context Information
A: Assumption
ST: Strategy to meet goal
S: Solution to support goal
 : Remain to be supported

G1 (System top level
Assurance Goal)

 C1: System Requirement
Specifications

 ST1 (Strategy for
Meeting Goal)

G2 (System Sub-Goal
supported by Evidence)

S1 (Test
Results)

G3 (System Sub-Goal
supported by Evidence)

S2
(Simulation

Results)

A1: Assumption
made

G4 (System Sub-Goal to
be addressed later)

Fig. 1 Assurance Case with its basic elements

An Assurance Case presents an argument that a system is acceptably safe, secure, reliable, etc. in a given context.
Where, a system could be physical or a combination of hardware and software. Based on the system goals identified in
an Assurance Case, Assurance Case can also be referred as security case, dependability case, and safety case or by
other relevant name as per goals applicability.

For better clarity, uses, critical engineering decisions and to ensure consistency, it is required to meet some
minimum requirements for the contents and structure of an Assurance Case. These minimum requirements are specified
by an International Standard ISO/IEC 15026-2:2011. To present an Assurance Case in a way to make it easy for
visualization, understanding and reviewing purpose, following Graphical notation tools are used

x Goal Structuring Notation (GSN) and
x Claims-Arguments-Evidence (CAE)

CAE defines nodes for Claims, Arguments and Evidence whereas GSN uses goal oriented presentation style and
defines nodes for Goals (claims), Strategy (arguments) and Solutions (evidence). Both these graphics notations are
mostly similar, with some difference of progression approach. GSN follows Top –Down approach while creating the
Assurance Case starting with top level goal of the system where as CAE supports Bottom-UP view starting with
evidence to determine the possible claim, while preparing Assurance Case [10]. There is no thumb rule as such to
decide which approach should be followed, it can be decided by developers based on their choice and information
available in hand before proceeding ahead with creating of Assurance Case. Arguments presented using GSN can help
provide assurance of critical properties of systems, services or organizations (such as safety or security properties).
Such arguments can form a key part of an overall assurance Case [11]. Refer figure 1, which is showing the typical
structure of an Assurance Case represented with Goal Structuring Notations.

Assurance Case in its simple form basically consists of following main components.

x Claim or Goal: This is generally some functionality, characteristics, requirement or behavior of the system

that needs to be fulfilled. This can include all the essential requirements, functionalities and behavior of the
system which is supposed to be met to ensure that system is fit for use. All the goals/claims are required to
be supported by valid arguments based on valid evidences. The higher level goal/claim can be further

Figure 1: A basic GSN structure [13]

assurance case development usually occurs in parallel with the
system construction, resulting in a traceable, detailed argument
for the desired property. Moreover, assurance cases take a more
direct, flexible and explicit approach. They are flexible enough to
incorporate all existing assurance activities and artifacts in any
step of the procedure. Therefore, developing an assurance case does
not necessarily require much additional effort, and it potentially
reduces costs, saves time and gives greater freedom in accommo-
dating different standards.

3 OVERVIEW OF 3DFIM+
3dfim+ [42] is a tool in the Analysis of Functional NeuroImages
(AFNI) package (https://afni.nimh.nih.gov/). 3dfim+ analyzes the
activity of the brain by computing the correlation between an ideal
signal and the measured brain signal. The ideal signal is defined by
the user. For instance, the ideal signal could be a square wave, as
shown in red in Figure 2. For ease of comparison, the corresponding
value of the measured activity in Figure 2 is scaled between 0 and
1. This figures shows high correlation between ideal and measured
signals. The correlation between the ideal signal and the measured
activity can be calculated at each voxel (volume element) in the full
3D image of the brain.

Figure 2 shows the ideal signal versus the brain activity for one
voxel in the full 3D image of the brain. This analysis is completed
for every voxel. The results can be visualized using the tools in the
AFNI. Figure 3 shows the AFNI environment, in which we can see
the brain from different aspects with 2 parts shown in red and blue.
These parts of the brain are those which are, respectively, the most
positively correlated and the most negatively correlated to the ideal
signal.

As mentioned in Section 2, assurance cases are usually devel-
oped in parallel with the system construction. Given that 3dfim+
already exists, this was not an option for our current case study.
This means that we have to be particularly vigilante to avoid the
bias problem. We do not want to prove correctness of 3dfim+ with
a flawed argument simply because that is what we set out to do.
Since we do not have a vested interest in the correctness of 3dfim+,
this is likely less of a problem than it might generally be.

Figure 2: Ideal signal versus activity of the voxel at position
(23,27,22) over time

Figure 3: AFNI environment and visualizing the active parts
of the brain (from https://commons.wikimedia.org/wiki/
File:AFNI_screenshot.png)

4 ASSURANCE CASE FOR 3DFIM+
We have used the guidance provided in “General Principles of Soft-
ware Validation; Final Guidance for Industry and FDA Staff” [6] to
develop our assurance case. This guide outlines generally recog-
nized validation principles that are FDA acceptable for the medical
software validation. It was prepared by the International Medical
Device Regulators Forum (IMDRF) in an attempt to provide globally
harmonized principles concerning medical device software. The
general principles document includes software, like 3dfim+, that is
itself considered a medical device.

The presentation of the assurance case starts with an overview
of the GSN arguments. This is followed by summaries and excerpts

https://afni.nimh.nih.gov/
https://commons.wikimedia.org/wiki/File:AFNI_screenshot.png
https://commons.wikimedia.org/wiki/File:AFNI_screenshot.png

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

from the evidence used to support the argument. The evidence
includes the Software Requirements Specification (SRS), Test Cases,
and Domain Expert Review.

4.1 Assurance Case
Our assurance case consists of many sub-claims, which means it
cannot legibly by represented on a single page. Therefore, we will
only include a representative subset of the argument, which has
been split to separately show the sub-structures. The full assurance
case can be found in Nejad 2017 [25].

We have to label all parts of the assurance case structure, i.e.
all goals, evidence, and contexts, so that our arguments can be
discussed and reviewed unambiguously. There are a number of
strategies to do this [38, p. 32–33]. For the ease of navigation, we
prefer a hierarchical scheme; top goals in each sub-structure are
labeled with a word or a letter but without a number (for example
G) and then their sub-goals are labeled as G.1, G.2, ... and the sub-
goals of G.1 and G.2 are labeled, respectively, as G.1.1, G.1.2, ... and
G.2.1 and G.2.2, ... and so on. The evidence is labeled in a similar
way. Contexts, strategies, evidence and justifications are labeled
alphabetically if more than one context, strategy or justification
is used for an argument; for example, C_Ga, C_Gb, C_Gc, ... for
contexts and S_Ga, S_Gb, S_Gc for strategies of the Goal G and so
on.

When splitting a goal into its sub-goals, the rationale behind the
choice of sub-goals might be obvious to the reader or might require
further explanation. In a case the rationale is not clear, we explain
it using strategies.

We have defined our top goal as “Program 3dfim+ delivers correct
outputs when used for its intended use/purpose in its intended
environment.” The truth of a claim depends on its context; therefore,
we must be explicit about what we mean by each term in our goal
statement. We could include the details with the goal statement
itself, but then it would be too long and would lose its focus. The
solution is to declare the context separately. We have defined each
term in the top goal in several contexts. We have also made an
assumption that must be considered. The assumption and contexts
are shown in Figure 4.

As previously done for medical device assurance cases [43], we
have divided the top goal into four sub-goals, as shown in Figure 5.
The first sub-goal (GR) argues for the quality of the documentation
of the requirements. To make an overall argument for correctness,
we need a specification to judge correctness against. The second
sub-goal (GD) says that the design complies with the requirements
and the third proposes that the implementation also complies with
the requirements. The fourth sub-goal (GA) claims that the inputs
to 3dfim+ will satisfy the operational assumptions because we need
valid input to make an argument for the correctness of the output.

The top level of the assurance case in Figure 5 does not imply that
up-front requirements are needed. This is fortunate, since scientists
have the view that requirements are impossible to determine up-
front, since they believe that details can only emerge as the work
progresses [5, 34]. The assurance case needs requirements, but they
can come out of the development process in any way appropriate
for the developers. That is, the documentation can be “faked” like
it is part of a rational design process [28].

Figure 4: Contexts and Assumption in Top Goal

The main focus in our assurance case is arguing for GR (quality
requirements documentation). The decomposition of GR into its
sub-goals is shown in Figure 6. This decomposition is based on the
IEEE standard 830-1993 [2]. This standard states that good documen-
tation of requirements should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability, verifiable, modi-
fiable and traceable. Using the IEEE resource increases confidence
in the argument and makes it more compelling. Hence, our sub-
goals address correctness, unambiguity, completeness, consistency,
verifiability, modifiability and traceability of the requirements doc-
umentation. “Ranked for importance and/or stability” is excluded
from the sub-goals in Figure 6 because our domain is SCS. For
3dfim+ to work, all of the requirements are considered to be of
equal importance. This is shown as justification J_GRb in Figure 6.

The arguments for consistency, completeness, and correctness
were combined together in goal G_3C. These qualities were grouped
because, according to some publications, such as “ The Three Cs
of Requirements: consistency, completeness, and correctness” [44],
there is an important relationship between completeness, consis-
tency and correctness for software requirements. Improving one
of these three qualities may diminish the others. From another
perspective, correctness is a combination of consistency and com-
pleteness. So it is important to consider these 3 qualities together.
The argument for completeness is partially based on the argument
for the readiness of a business plan from Spriggs [38, p. 30]. Due to
space limitations, the full details of this argument are not included
here.

A sample expansion for the sub-goal of modifiability from Fig-
ure 6) is shown in Figure 7. Modifiability is a quality attribute of
the software architecture that relates to “the cost of change and
refers to the ease with which a software system can accommodate

Assurance Cases for Scientific Computing Software ICSE, May 2018, Gothenburg, Sweden

Figure 5: Top Goal of the assurance case and its sub-goals

Figure 6: GR decomposition

changes” [26]. Modifiability generally requires a requirement docu-
mentation to have a coherent and easy-to-use organization with a

table of contents, an index, and explicit cross-referencing. Moreover,
requirements should not be redundant and they must be expressed
separately. As for the other qualities, the argument for modifiability
makes use of the generic evidence template (Figure 8) discussed
below.

The content of the documentation of the requirements must be
reviewed and verified by domain experts. Spriggs [38, p. 37] gives
a decomposition for this argument. We have developed a similar
decomposition in our template modules, called GenericEvidence, as
shown Figure 8. GenericEvidence is a generic argument. The generic
argument is often called a “pattern”. “A pattern in this context is an
argument that applies to a class of things, which you can use as the
basis of an argument for a specific instance” [38, p. 103]. We have
developed this module to re-use it for several arguments in our
assurance case. We have an argument that a particular quality of the
requirements documentation has beenmet; the main evidence items
are the acceptance report and the addressed comments submitted
by the reviewers. If we want to ensure that another quality has
been met, we would not want to start our argument again from
scratch. It would be better to use the same module (sub-structure),
but bring in a new evaluation, comments and sections in the report
as evidence. In that case, we could just have the name of the quality
in the module, but publish the argument stating exactly which
quality is reviewed. For instance, for the sake of completeness, we
verified that all statements made in the original documentation are
reflected in the new documentation. This comparison is mentioned
as GenericEvidence.3 in Figure 8.

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

Figure 7: Argument for modifiability of documentation of requirements

E_GenericEvidence.1 in Figure 5 mentions the acceptance cri-
teria for reviewers’ resumes. This information is included in the
assurance case to mitigate against the bias problem mentioned
in Section 2. Reviewers need to be qualified, and we should say
what qualified means before we start looking for a reviewer. When
we document the assurance case, we verify that the experts satisfy
these criteria. If not, we have to make an argument why they should
still be considered experts. This draws attention to the fact that
there is something “unusual” here that may typically be overlooked.

In Figure 5 we defined GA as “Input(s) to 3dfim+ satisfies the
defined operational assumptions.” Achieving this goal relies on the
software to check if the input is valid as well as the user to make
sure the input they give to the program is valid. The user has some
responsibilities for the use of 3dfim+, in the same sense that an
automobile driver has responsibilities to operate their vehicle safely.
This argument for GA is shown in Figure 9. This argument makes
explicit that the user has responsibility for validating the input. The
software can do automated checks, like verify that the measured
activities are positive, but the software can never tell if 3dfim+ is
the right tool for the job. For instance, the statistical model for
3dfim+ is parametric, if a non-parametric model would be more
appropriate, the user will have to select another tool. Although
not currently part of 3dfim+, we added a warning message, as part
of the assurance case, that users be explicitly reminded of their
responsibilities while running the software.

4.2 Software Requirements Specification
Having a Software Requirements Specification (SRS) is critical for
software validation [6]. The requirements mentioned in the assur-
ance case for goal GR (Figure 6) are documented in the SRS. This
document is necessary to verify correctness, since it provides a
specification against which correctness can be judged. As a con-
sequence, the SRS is mentioned in the sub-goals and evidence for
several goals. For instance, in Figure 7, for modifiability, the SRS is
mentioned in goal Modifiable.1. Figure 8 for generic evidence refer-
ences the SRS in E_GenericEvidence.4, by calling for a requirements
acceptance report. Goal GA (Figure 9) for the operational assump-
tions imposes several requirements on the SRS, such as in E_GA.2
where mention is made of SRS content related to assumptions and
data constraints.

Due to space limitations, only some representative excerpts from
the SRS for 3dfim+ can be reproduced here. The excerpts selected
are intended to give an overall feel for the document and to highlight
some areas where the rigour of the assurance case provides benefits
for the documentation and software quality.

4.2.1 SRS Template. Writing an SRS generally starts with a tem-
plate, which provides guidelines and rules for documenting the
requirements. The assurance case supports the need for a template

Assurance Cases for Scientific Computing Software ICSE, May 2018, Gothenburg, Sweden

Figure 8: Generic evidence module used as a pattern in our assurance case

through themodifiability goal (Figure 7) Modifiable.1.1: “A standard-
/correct well-structured template has been followed.” Several exist-
ing templates contain suggestions on how to avoid complications
and how to achieve qualities such as verifiability, maintainability
and reusability [12, 18, 24]. However, no template is universally ac-
cepted. For the current purpose, a good starting point is a template
specifically designed for scientific software [36, 37], as illustrated in
the table of contents below. The recommended template is suitable
for science, because of its hierarchical structure, which decomposes
abstract goals to concrete instance models, through the support
of data definitions, assumptions and terminology. The document’s
structure facilitates its maintenance and reuse [36], by using sepa-
ration of concerns, abstraction and traceability.

(1) Reference Material
(a) Table of Units
(b) Table of Notations
(c) Table of Symbols
(d) Abbreviations and Acronyms

(2) Introduction
(a) Purpose of Document
(b) Scope of Requirements
(c) Organization of Document

(3) General System Description
(a) System Context
(b) User Characteristics
(c) System Constraints

(4) Specific System Description
(a) Problem Description

(i) Background
(ii) Terminology Definition
(iii) Coordinate Systems
(iv) Physical System Description
(v) Goal Statements

(b) Solution Characteristics Specification
(i) Assumptions
(ii) Theoretical Models
(iii) Data Definitions
(iv) Instance Models
(v) Data Constraints
(vi) Properties of a Correct Solution

(5) Requirements
(a) Functional Requirements
(b) Non-functional Requirements

(6) Other System Issues
(7) Traceability Matrix
(8) Likely Changes

4.2.2 Goals. The high level objectives of the software are doc-
umented in the goals (Section 4.a.v of the SRS template shown in
Section 4.2.1). A sample goal for 3dfim+ is:

G1: Estimate the Pearson correlation coefficients between the
(best) ideal time series and the fMRI time series at each voxel
over time.

4.2.3 Assumptions. An assumption (Section 4.b.i of the SRS
template) highlights a simplification made for the purpose of the

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

Figure 9: Argument for inputs satisfying the defined opera-
tional assumptions

mathematical modelling. Sample assumptions for 3dfim+ are given
below:

A1: The variables should be either of type interval or ratio.
A2: There is a linear relationship between the two variables.
A3: The variables are bivariately normally distributed.

4.2.4 Theoretical Models. The theoretical models are sets of
governing equations or axioms that are used to model the problem
described in the problem definition section (SRS Section 4.b.ii).
Traceability exists between the theoretical model and the other
components of the documentation. For instance, the description
for the T1 (Pearson Correlation Coefficient), which is given below,

references the definition for mean (DD1) and several assumptions,
including the three listed above.

Number T1

Label Calculating Pearson Correlation Coefficient

Equation ρ(A,B) =

n∑
i=1

(ai−ā)(bi−b̄)

[
n∑
i=1

(ai−ā)2
n∑
i=1

(bi−b̄)2]
1
2

Description The equation calculates Pearson correlation coeffi-
cients ρ applied to two datasets A : Rn and B : Rn
both of size n. ā and b̄ are sample means (DD1) of
A and B, respectively. ρ is the Pearson correlation
coefficient between A and B. Assumptions A1–A5
must hold when calculating this correlation.

4.2.5 Coordinate Convention. Section 4.a.iii of the SRS docu-
ments describes the coordinate system for the fMRI images. This
information is necessary to make the requirements unambiguous,
since there are several choices for coordinate system for medical
images. As an example, the SRS defines the Anatomical Coordi-
nate System, which describes the standard anatomical position of
a human being using 3 orthogonal planes: axial/transverse (plane
parallel to the ground that separates the body into head (superior)
and tail (inferior) positions), coronal/frontal (plane perpendicular
to the ground that divides the body into front (anterior) and back
(posterior) positions), and sagittal/median (plane that divides the
body into right and left positions. 3dfim+ uses NIfTI data files that
store voxels from right to left to create rows, rows from anterior
to posterior to create slices and slices from superior to inferior to
create volumes.

4.2.6 Rank Function. Calculating the Spearman and Quadrant
correlation coefficients [42] requires the use of the rank function.
The rank function is defined in the SRS as a data definition. The
details of the description for the rank function in the SRS are given
below.

The rank of data points is determined by sorting them in an
ascending order and assigning a value according to their position
in the sorted list. If ties exist, the average of all of the tied positions
is calculated as the rank. Mathematically, the rank of element a in
dataset A is defined as follows:

rank(a,A) : R × Rn → N
rank(a,A) ≡ avg(indexSet(a, sort(A)))

indexSet(a,B) : R × Rn → set of N
indexSet(a,B) ≡ {j : N|j ∈ [1..|B |] ∧ Bj = a : j}

sort(A) : Rn → Rn

sort(A) ≡ B : Rn , such that
∀(a : R|a ∈ A : ∃(b : R|b ∈ B : b = a) ∧ count(a,A) =
count(b,B)) ∧ ∀(i : N|i ∈ [1..|A| − 1] : Bi ≤ Bi+1)

Assurance Cases for Scientific Computing Software ICSE, May 2018, Gothenburg, Sweden

count(a,A) : R × Rn → N
count(a,A) : +(x : N|x ∈ A ∧ x = a : 1)

avg(C) : set of N→ R
avg(C) ≡ +(x : N|x ∈ C : x)/|C |

The above equations use the Gries and Schneider notation [15,
p. 143] for set building and evaluation of an operator applied over
a set of values. Specifically, the expression (∗x : X |R : P) means
application of the operator ∗ to the values P for all x of type X
for which range R is true. In the above equations, the ∗ operators
include ∀, ∃ and + are used.

4.3 Test Cases
To verify the implementation of 3dfim+, we developed test cases
based on the functional requirements documented in the SRS. The
results of the test cases are used as evidence for goal GI (Figure 5),
which argues that the implementation matches the SRS. Since our
case study is for scientific software, verification through testing is
challenging. The source of the challenge is that SCS differs from
most other software because the quantities of interest are continu-
ous, as opposed to discrete. As shown for the calculation of the Pear-
son correlation coefficient (Section 4.2.4), the inputs and outputs
are continuously valued real variables. Validating the requirements
is difficult because there are an infinite number of potential input
values, many of which cannot be represented as floating point num-
bers. In general for SCS, the correct value for the output variable is
unknown. That is, SCS problems typically lack a test oracle [21].
Fortunately for 3dfim+, the correlation calculations are based on
finite sets of real numbers, so constructing a pseudo oracle using
Matlab was relatively straightforward.

We developed one test case per each functional requirement, to
compare their results with the results of 3dfim+. As an example, we
had a test case to check the correctness of the Pearson Correlation
Coefficient, which is one of the main functionalities of 3dfim+. We
used our Matlab pseudo oracle and AFNI to visualize the results and
obtain the indices of voxels. Our input consisted of 180 frames of
64×64×28 images. In this test case, we found the minimum and the
maximum Pearson correlation coefficients and their locations. For
this test and others, we achieved the same results for both 3dfim+
and our independently developed Matlab script.

However, the testing was not without its challenges. Agreement
between the Matlab pseudo oracle and 3dfim+ took a considerable
amount of time to achieve, because the coordinate systems conven-
tions for Matlab and AFNI are different. Since this information was
not documented in the original 3dfim+ manual, we were unaware
of this subtly. The coordinate system description for 3dfim+ was
added to the SRS (as described in Section 4.2.5) after our struggles
with achieving test case agreement.

In the case of 3dfim+ a pseudo oracle was available. For other SCS
software, other techniques may be needed for the verification that
the implementation matches the requirements. Where appropriate,
use can be made of the Method of Manufactured Solutions [31]
and metamorphic testing [19]. For testing purposes, the slower,
but guaranteed correct, interval arithmetic [17] can be used to
ensure that calculated answers lie within the guaranteed bounds.

Verification tests can also include plans for convergence studies. The
discretization used in the numerical algorithm should be decreased
(usually halved) and the change in the solution assessed. Although
not used in the current example, verification can also use non-
testing techniques, such as code walkthroughs, code inspections,
and correctness proofs etc. [14, 41].

4.4 Domain Expert Review
An important component of evidence for our assurance case is the
domain experts review. Review of the SRS is important to reach a
common understanding between the software engineers and sci-
entists. As mentioned in the introduction (Section 1), building an
assurance case facilitates bridging the gap between software engi-
neers and scientists.

Domain expert review appears in our assurance case as “Domain
experts/customers approve the «quality» of the documentation of
the requirements.” This corresponds to GenericEvidence.2.3 in Fig-
ure 8. To ensure our SRS is of high quality, a task-based inspection
approach was used [23]. For the review process we assigned a set
of tasks asking questions about each section of the SRS. We used
Github (https://github.com/) issue tracking for assigning the tasks
and for discussion. Two sample review questions are reproduced
below.
Q7: Please let us know if all symbols in Theoretical Model T1

(from Section 4.2.4) are defined. Is enough information pro-
vided that you could calculate the Pearson correlation coeffi-
cient if you are given datasets A and B.

Q10: Please let us know if Data Definition DD4 (Rank Function)
(from Section 4.2.6) is explained clearly or needs any addi-
tional information. Please let us know if the notation we are
using for this function is clear and understandable.

A domain expert that completed the review has a degree in engi-
neering and over 10 years experience in medical imaging. He there-
fore meets the acceptance criteria given in E_GenericEvidence.1
in Figure 5. The reviewer went through all the assigned tasks and
provided answers/suggestions. For the most part, the SRS did not
need to be modified as a result of the expert review. However, some
of the symbols in the SRS, such as N for the set of natural numbers,
were clarified as a result of the discussion with the expert reviewer.

5 PROPOSED CHANGES TO 3DFIM+
The assurance case not only provides an explicit argument for cor-
rectness that can be verified/replicated by third parties. The process
of developing and documenting the assurance case also provides
an opportunity to improve the software and its documentation.
Although several potential improvements were noticed for 3dfim+
during the course of this research, this is not a criticism of the
original 3dfim+ software and its documentation. The goal of the
assurance case is to provide certifiable software, but the original
software did not have this goal. It was written for researchers, not
for clinicians. The users for 3dfim+ and readers of its documenta-
tion are likely to be domain experts. However, even for the existing
audience for 3dfim+, there will likely be some novices, since nobody
starts out as an expert. The improvements noted below would likely
interest new users, since the new documentation is more complete
and less ambiguous than the original. This benefit of improving

https://github.com/

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

software and its documentation was previously observed during the
course of retroactively writing an SRS for nuclear safety analysis
software [35].

Given the different audience that was envisioned, the original
documentation would not satisfy the GR goal (Figure 6) for high
quality requirements. The existing documentation is not fully com-
plete, unambiguous, correct, consistent, verifiable, modifiable or
traceable. One of the main ambiguities is through the absence of
documentation on the coordinate system (Section 4.2.5). As men-
tioned previously, the absence of any specification related to the
coordinate system meant that comparing the 3dfim+ results to an
independent calculation of the correlation was difficult. Additional
investigation was necessary to find the necessary details so that
both results were expressed in the same coordinate system. Another
ambiguity, due to incomplete documentation, was for the definition
of the rank function (Section 4.2.6). In the original documentation
the specific definition of the rank function is not given. When there
are ties in the data, some means has to be found to determine the
rank of each entry. For instance, all ties could be given the same
rank, and then a gap could be left in the ranking numbers. Alterna-
tively, ties could get the same rank, but no gap could be included
before listing the next ranking number. Five different ranking al-
gorithms can be found on https://en.wikipedia.org/wiki/Ranking.
The one actually used by 3dfim+ gives the same ranking number
to all ties, with the ranking number being equal to the mean of
what they would have under ordinal ranking. This fact was not
determined from the documentation, but by investigating the C
code for 3dfim+. It is the specification for this algorithm that is
given in Section 4.2.6.

Although the software for 3dfim+ did not show any errors in its
output, some subtle concerns were raised by considering the assur-
ance case GA for satisfying the operational assumptions (Figure 9).
As shown in GA.1 3dfim+ should not proceed if the input does not
match the necessary assumptions. However, the actual software
does not actually check the input data. GA.2 (“User is aware of
that inputs are valid”) is also not considered for 3dfim+. The input
assumptions are not made explicit in the documentation and the
user is not warned that it is their responsibility to provide valid
data. As mentioned previously, the user has the responsibility of
determining whether the statistical model used by 3dfim+ provides
the right tool for them.

6 FUTUREWORK
Based on the current work and our review of past work on assurance
cases, we have identified a number of directions for the future
development of assurance cases, as follows:

• Additional Examples to Create a Template: Additional ex-
amples of documentation for SCS should be conducted to
determine an ideal template for SCS assurance cases. Much
of the current work can be reused in other projects, but deter-
mining the specifics will require investigating different SCS
problems, especially outside of the medical imaging domain.

• Work on a New SCS Project from the Start: The current work
produced the assurance case, SRS and test plan a posteriori.
As mentioned in Section 2, assurance cases work best when
they are used from the start of a project. A particular benefit

for research purposeswill be a likely increase in theworkload
that can be assigned to domain reviewers, since they will
likely have a greater vested interest in the success of the
project than when it is a purely academic exercise.

• Tool Support Improvement: Currently, there is no tool that
provides an abstraction of goals and sub-goals to handle
the complexity of the assurance case structure. For instance,
it would be nice to hide the details of a goal (or a context,
justification, evidence or assumption) and only show the title.
This would improve readability. Details could be revealed
via clicking on the goals, or context etc.

• Publishing Examples of Practical Assurance Cases: Currently,
many existing assurance cases are not released due to pro-
prietary rights. The more presentations on adoption of as-
surance cases and case studies, the better resources we have
to learn about assurance cases.

• Extension to Other Areas: Assurance cases can be used in
other areas that require assurance. Assurance cases have
been used for safety, and now for SCS. It would be potentially
valuable to extend the idea to other area, like networking.

• Adding Formality to Assurance Cases: The means of express-
ing confidence in assurance cases and the top-level claims
may benefit from further formality and rigour. Adding for-
mality could justify the completeness and consistency of
claim decomposition and the credibility of the evidence.

7 CONCLUDING REMARKS
This work has motivated assurance cases for SCS. Assurance cases
have already been effectively used for safety cases for real time
systems. For SCS their advantages include engaging domain experts,
producing only necessary documentation, and providing evidence
that can potentially be verified/replicated by a third party. The
engagement of the domain experts is noteworthy because scientist
end user developers have historically shown a distrust of software
engineering techniques and principles. In particular, SCS developers
tend not to favour full documentation of requirements. However,
their motivation should improve because an assurance case shows
the necessity and value of an SRS. As more examples and tools
become available, adoption of assurance cases in SCS should become
more prevalent.

How to document an assurance case for SCS was illustrated via
the example of the medical image analysis software, 3dfim+. The
3dfim+ software analyzes activity in the brain by computing the
correlation between the measured and an ideal brain signal. This
example was partly chosen because of recent concerns about the
validity of fMRI (Functional Magnetic Resonance Imaging) studies.
The concerns centre around whether a parametric model is appro-
priate for fMRI data. Although the software itself cannot determine
whether it is the appropriate model, the user should ask themselves
this question. The assurance case highlighted how the user can be
informed of the mathematical assumptions of the model through
the SRS, and the details of their responsibility through in-program
warnings.

The value of assurance cases for SCS was justified. Although
no errors were found in the software outputs from 3dfim+, the
exercise did highlight problems with the original documentation

https://en.wikipedia.org/wiki/Ranking

Assurance Cases for Scientific Computing Software ICSE, May 2018, Gothenburg, Sweden

and software. The existing documentation was shown to have am-
biguities and omissions, such as an incompletely defined ranking
function and missing details on the coordinate system convention
adopted. In addition, a potential concern for the software itself
was identified. As mentioned above, running the software does not
produce any warning about the obligation of the user to provide
data that matches the parametric statistical model employed for
the correlation calculations.

8 ACKNOWLEDGMENTS
The assistance of Dr. Michael Noseworthy, from St. Joseph’s hos-
pital and McMaster University, is gratefully acknowledged. The
3dfim+ case study came directly from his advice and fMRI demon-
stration. Thanks also to Dr. Dean Inglis for fulfilling the role of
expert reviewer.

REFERENCES
[1] Peter G. Bishop and Robin E. Bloofield. 1989. A methodology for safety case

development. In Industrial Perspectives of Safety-critical Systems: Proceedings of
the Sixth Safety-critical Systems Symposium, Birmingham 1998. Springer-Verlag,
London, UK, 1–10.

[2] Fletcher J. Buckley, A.M. Davis, and J.W. Horch. 1993. IEEE Recommended Practice
for Software Requirements Specifications. Technical Report. The institute of
Electrical and Electronics Engineers, Inc., New York, USA.

[3] Charles B.Weinstock, Howard F.Lipson, and John Goodenough. 2007. Arguing
Security – Creating Security Assurance Cases. Technical Report. Software Engi-
neering Institute Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA.
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_293637.pdf

[4] Canadian Nuclear Safety Commission (CNSC). 2000. Computer Programs Used
in Design and Safety Analyses of Nuclear Power Plants and Research Reactors.
Technical Report G-149. Minister of Public Works and Government Services
Canada.

[5] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. 2007.
Software Development Environments for Scientific and Engineering Software: A
Series of Case Studies. In ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering. IEEE Computer Society, Washington, DC, USA, 550–559.
https://doi.org/10.1109/ICSE.2007.77

[6] CDRH. 2002. General Principles of Software Validation; Final Guidance for Industry
and FDA Staff. Technical Report. US Department Of Health and Human Services
Food and Drug Administration FDA, Center for Devices and Radiological CDRH,
Health Center for Biologics Evaluation and Research, Rockville, MD.

[7] Center for Devices and Radiological Health, CDRH. 2002. General Principles of
Software Validation; Final Guidance for Industry and FDA Staff. Technical Report.
US Department Of Health and Human Services Food and Drug Administration
Center for Devices and Radiological Health Center for Biologics Evaluation and
Research, York, England.

[8] G.M. Cleland, M.A. Sujan, I. Habli, and J. Medhurst. 2012. Evidence: Using Safety
Cases in Industry and Healthcare. Health Foundation, London. https://books.
google.ca/books?id=o8z-Ms9o3DMC

[9] CSA. 1999. Quality assurance of analytical, scientific, and design computer pro-
grams for nuclear power plants. Technical Report N286.7-99. Canadian Standards
Association, 178 Rexdale Blvd. Etobicoke, Ontario, Canada M9W 1R3.

[10] CSA. 2009. Guideline for the application of N286.7-99, Quality assurance of analyt-
ical, scientific, and design computer programs for nuclear power plants. Technical
Report N286.7.1-09. Canadian Standards Association, 5060 Spectrum Way, Suite
100, Mississauga, Ontario, Canada L4W 5N6, 1-800-463-6727.

[11] Anders Eklunda, Thomas Nichols, and Hans Knutssona. 2016. A methodology
for safety case development. Proceedings of the National Academy of Sciences of
the United States of America (PNAS) 113, 28 (2016), 7900–7905.

[12] ESA. February 1991. ESA Software Engineering Standards, PSS-05-0 Issue 2. Tech-
nical Report. European Space Agency.

[13] Dipak Gade and Santosh Deshpande. 2015. Assurance Driven Software Design us-
ing Assurance Case Based Approach. International Journal of Innovative Research
in Computer and Communication Engineering 3, 10 (October 2015), 9121–9127.

[14] Carlo Ghezzi, Mehdi Jazayeri, and DinoMandrioli. 2003. Fundamentals of Software
Engineering (2nd ed.). Prentice Hall, Upper Saddle River, NJ, USA.

[15] David Gries and Fred B. Schneider. 1993. A logical approach to discrete math.
Springer-Verlag Inc., New York.

[16] John Hatcliff, Mats Heimdahl, Mark Lawford, Tom Maibaum, Alan Wassyng,
and Fred Wurden. 2009. A Software Certification Consortium and its Top 9

Hurdles. Electronic Notes in Theoretical Computer Science 238, 4 (2009), 11–17.
https://doi.org/10.1016/j.entcs.2009.09.002

[17] Timothy Hickey, Qun Ju, and Maarten H. Van Emden. 2001. Interval Arithmetic:
From Principles to Implementation. J. ACM 48, 5 (Sept. 2001), 1038–1068. https:
//doi.org/10.1145/502102.502106

[18] IEEE. 1998. Recommended Practice for Software Requirements Specifications. Tech-
nical Report IEEE Std 830-1998. The institute of Electrical and Electronics Engi-
neers, Inc. 1–40 pages. https://doi.org/10.1109/IEEESTD.1998.88286

[19] Upulee Kanewala and Anders Lundgren. 2016. Automated Metamorphic Testing
of Scientific Software. In Software Engineering for Science, Jeffrey C. Carver,
Neil Chue Hong, and George Thiruvathukal (Eds.). Taylor & Francis, Boca Raton,
FL, Chapter Examples of the Application of Traditional Software Engineering
Practices to Science, 151–174.

[20] Diane F. Kelly. 2007. A Software Chasm: Software Engineering and Scientific
Computing. IEEE Software 24, 6 (2007), 120–119. https://doi.org/10.1109/MS.2007.
155

[21] Diane F. Kelly, W. Spencer Smith, and Nicholas Meng. 2011. Software Engineering
for Scientists. Computing in Science & Engineering 13, 5 (October 2011), 7–11.

[22] T.P. Kelly. 1999. Arguing Safety – A Systematic Approach to Safety Case Man-
agement. Ph.D. Dissertation. York University, Department of Computer Science
Report YCST.

[23] Tim Kelly. 2003. A Systematic Approach to Safety Case Management. Technical
Report 04AE-149. SAE International.

[24] NASA. 1989. Software requirements DID, SMAP-DID-P200-SW, Release 4.3. Tech-
nical Report. National Aeronautics and Space Agency.

[25] Mojdeh Sayari Nejad. 2017. A Case Study in Assurance Case Development for
Scientific Software. Master’s thesis. McMaster University, Hamilton, ON, Canada.

[26] L. Northrop. 2004. Achieving Product Qualities Through Software Architecture
Practices. (2004). http://www.sei.cmu.edu/architecture/cseet04.pdf

[27] Office for Nuclear Regulation. 2016. A guide to Nuclear Reg-
ulation in the UK. (2016). http://www.onr.org.uk/documents/
a-guide-to-nuclear-regulation-in-the-uk.pdf

[28] David L. Parnas and P.C. Clements. 1986. A Rational Design Process: How and
Why to Fake it. IEEE Transactions on Software Engineering 12, 2 (February 1986),
251–257.

[29] Cyril Pernet and Tom Nichols. 2016. Has a software bug really
called decades of brain imaging research into question? (September
2016). https://www.theguardian.com/science/head-quarters/2016/sep/30/
has-a-software-bug-really-called-decades-of-brain-imaging-research-into-question

[30] David J. Rinehart, John C. Knight, and Jonathan Rowanhill. 2015. Current Prac-
tices in Constructing and Evaluating Assurance Cases with Applications to Aviation.
Technical Report CR-2014-218678. National Aeronautics and Space Administra-
tion (NASA), Langley Research Centre, Hampton, Virginia.

[31] Patrick J. Roache. 1998. Verification and Validation in Computational Science and
Engineering. Hermosa Publishers, Albuquerque, New Mexico.

[32] John Rushby. 2015. The Interpretation and Evaluation of Assurance Cases. Tech-
nical Report SRI-CSL-15-01. Computer Science Laboratory, SRI International,
Menlo Park, CA. Available at http://www.csl.sri.com/users/rushby/papers/
sri-csl-15-1-assurance-cases.pdf.

[33] Judith Segal. 2008. Models of Scientific Software Development. In Proceedings
of the First International Workshop on Software Engineering for Computational
Science and Engineering (SECSE 2008). In conjunction with the 30th International
Conference on Software Engineering (ICSE), ACM, Leipzig, Germany, 1–6. http:
//www.cse.msstate.edu/~SECSE08/schedule.htm

[34] Judith Segal and ChrisMorris. 2008. Developing Scientific Software. IEEE Software
25, 4 (July/August 2008), 18–20.

[35] W. Spencer Smith and Nirmitha Koothoor. 2016. A Document-Driven Method
for Certifying Scientific Computing Software for Use in Nuclear Safety Analysis.
Nuclear Engineering and Technology 48, 2 (April 2016), 404–418. https://doi.org/
10.1016/j.net.2015.11.008

[36] W. Spencer Smith and Lei Lai. 2005. A New Requirements Template for Sci-
entific Computing. In Proceedings of the First International Workshop on Situ-
ational Requirements Engineering Processes – Methods, Techniques and Tools to
Support Situation-Specific Requirements Engineering Processes, SREP’05, J. Ralyté,
P. Ȧgerfalk, and N. Kraiem (Eds.). In conjunction with 13th IEEE International
Requirements Engineering Conference, IEEE, Paris, France, 107–121.

[37] W. Spencer Smith, Lei Lai, and Ridha Khedri. 2007. Requirements Analysis
for Engineering Computation: A Systematic Approach for Improving Software
Reliability. Reliable Computing, Special Issue on Reliable Engineering Computation
13, 1 (February 2007), 83–107.

[38] John Spriggs. 2012. GSN - The Goal Structuring Notation, A Structured Approach
to Presenting Arguments. Springer, Hayling Island, UK. https://doi.org/10.1007/
978-1-4471-2312-5

[39] United States Department of Energy. 2003. Assessment Criteria and Guidelines for
Determining the Adequacy of Software Used in the Safety Analysis and Design of
Defense Nuclear Facilities. Technical Report CRAD - 4.2.4.1. Office of Environment,
Health, Safety & Security, Department of Energy, United States of America.

http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_293637.pdf
https://doi.org/10.1109/ICSE.2007.77
https://books.google.ca/books?id=o8z-Ms9o3DMC
https://books.google.ca/books?id=o8z-Ms9o3DMC
https://doi.org/10.1016/j.entcs.2009.09.002
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/MS.2007.155
https://doi.org/10.1109/MS.2007.155
http://www.sei.cmu.edu/architecture/cseet04.pdf
http://www.onr.org.uk/documents/a-guide-to-nuclear-regulation-in-the-uk.pdf
http://www.onr.org.uk/documents/a-guide-to-nuclear-regulation-in-the-uk.pdf
https://www.theguardian.com/science/head-quarters/2016/sep/30/has-a-software-bug-really-called-decades-of-brain-imaging-research-into-question
https://www.theguardian.com/science/head-quarters/2016/sep/30/has-a-software-bug-really-called-decades-of-brain-imaging-research-into-question
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
http://www.cse.msstate.edu/~SECSE08/schedule.htm
http://www.cse.msstate.edu/~SECSE08/schedule.htm
https://doi.org/10.1016/j.net.2015.11.008
https://doi.org/10.1016/j.net.2015.11.008
https://doi.org/10.1007/978-1-4471-2312-5
https://doi.org/10.1007/978-1-4471-2312-5

ICSE, May 2018, Gothenburg, Sweden Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng

[40] U.S. Food and Drug Administration. 2014. Infusion Pumps Total Product Life
Cycle: Guidance for Industry and FDA Staff. on-line. (December 2014).

[41] Hans van Vliet. 2000. Software Engineering (2nd ed.): Principles and Practice. John
Wiley & Sons, Inc., New York, NY, USA.

[42] B. Douglas Ward. 2000. Program 3dfim+. Biophysics Research Institute, Medical
College of Wisconsin.

[43] Alan Wassyng, Neeraj Kumar Singh, Mischa Geven, Nicholas Proscia, Hao Wang,
Mark Lawford, and Tom Maibaum. 2015. Can Product-Specific Assurance Case
Templates Be Used as Medical Device Standards? IEEE Design & Test 32, 5 (2015),
45–55. https://doi.org/10.1109/MDAT.2015.2462720

[44] Didar Zowghi and Vincenzo Gervasi. 2013. The Three Cs of Requirements: Consis-
tency, Completeness, and Correctness. Technical Report. Faculty of Information
Technology University of Technology, Sydney , Australia.

https://doi.org/10.1109/MDAT.2015.2462720

	Abstract
	1 Introduction
	2 Overview of Assurance Cases
	3 Overview of 3dfim+
	4 Assurance Case for 3dfim+
	4.1 Assurance Case
	4.2 Software Requirements Specification
	4.3 Test Cases
	4.4 Domain Expert Review

	5 Proposed Changes to 3dfim+
	6 Future Work
	7 Concluding Remarks
	8 Acknowledgments
	References

