Task-Directed Software I nspection Technique:
An Experiment and Case Study

Diane Kelly and Terry Shepard
Royal Military College Of Canada

Abstract

Research in software inspection has led to the
development of inspection techniques focused on
providing structure and guidance to the individual
inspector, with the goal of improving effectiveness.
This paper defines and investigates a new inspec-
tion technique, task-directed inspection, specifi-
cally developed for inspecting complex
computational code, but capable of being applied in
other software domains. Students from the Royal
Military College of Canadaand Queen’s University
in Kingston, as participants in an experiment,
applied two task directed techniques and an indus-
try-standard non-structured inspection technique to
acivil engineering code in use in military applica-
tions. Results from the experiment were analyzed
with a new Orthogonal Defect Classification for
computational code developed for this research.
Based on this small sample group, the task-directed
techniques help software inspectors more thor-
oughly examine and understand software code. This
research also points out the differences between
experienced and inexperienced inspectors, and
opens up several possibilities for further research.

Keywords

Software inspection, software inspection process,
software reading techniques, orthogonal defect
classification.

1. INTRODUCTION

The significant advantages of software inspection,
the forma human review of software work prod-
ucts, over other verification techniques have been
documented in studies such as those carried out at
Bell-Northern Research [16]. However, an informal
survey [7] indicates that 80% of 90 respondents
practiced inspection irregularly or not at all.

Johnson [7] comments that some industry practitio-
ners found inspections to be "... difficult, costly,
ineffective, and/or excessively time consuming,
despite the prospect of quality improvement.”

Inspections, being labour intensive, can indeed be
costly, but that cost can be more than offset by
effective results and reduced by changes in the
inspection process.

Since Michael Fagan published his first article in
1976 on inspections [6], extensive research has
been focused on various aspects of the inspection
process. One particular area of research is on the
techniques used by individua inspectors to detect
defects in the software work products. Increasing
the effectiveness of the individual inspectors means
making better use of the individua's time and
expertise and also creates opportunities to stream-
line the overall inspection process.

In 1996, one of the authors (Diane Kédly), while
working at Ontario Hydro in the Nuclear Division
(OHN), developed a new inspection technique,
called task-directed inspection [8]. The techniqueis
designed to provide structure and direction to the
individual inspector, enabling a more thorough
examination and understanding of the work product
and increasing the effectiveness of the inspection.

At OHN, the new inspection technique was com-
bined with an inspection process that decoupled the
inspection activity from the correction of the code
product. Inspection is considered an evaluation pro-
cess rather than a corrective process. Findingsiden-
tified during the inspection exercise exit the
inspection process without being fixed. The need
for large inspection meetings disappears along with
the difficulties associated with such meetings and

the inspection processis focused on individua con-
tributions rather than team contributions.

It was within this process framework that we car-
ried out an experiment to eval uate the effectiveness
of two kinds of task-directed inspections. The
experiment was devised to both measure the effec-
tiveness of task-directed inspections and to observe
the use of the task-directed technique in a setting
different from where it was developed.

The effectiveness of the task-directed inspection
was defined as the ability of the inspector to iden-
tify subtle defects in the work product. Measure-
ments commonly taken in empirical studies of
inspection techniques involve counting the number
of defects and calculating defect rates [11], [14],
[15]. Counting number of defects does not provide
aclear picture of the inspector’s work. Findings can
vary from white space inconsistencies to logic
errorsin acomplex calculation. These two extremes
illustrate very different levels of understanding of
the work product. In complex code, subtle defects
are difficult to find and require the inspector to
achieve adeep level of understanding.

Since there are different understandings of the word
“defect”, we use instead the word “finding” for any
issue identified by the inspector during the inspec-
tion process. This is to emphasize the idea that an
issue identified by an inspector may not be a defect
by some interpretations, e.g., may not lead to incor-
rect operation of the software. Findings can be
related to maintainability and other issues. Here we
use the more general word finding, and where we
use the word defect we mean the word finding.

The task-directed techniques are designed to
increase the inspector’s understanding of the work
product. To evaluate whether that has been
achieved, a metric is needed beyond simply count-
ing findings. It must differentiate between findings
that address "white space" issues and those that
address "logic errors'. A tool analogous to the IBM
Orthogonal Defect Classification [4] was devel oped
for use in this experiment to provide a means of cat-
egorizing the inspector’s findings and analyzing the
effects of the task-directed techniques on the types
of findings identified. Types of findings can be
associated with the level of understanding the
inspector achieved in identifying that finding. If the

inspector identifies more findings that depend on a
deeper understanding of the work product, then the
task-directed technique has increased the effective-
ness of the inspection by this measure. It should be
noted that the subtlety of the finding does not corre-
late with the end consequence of the finding on the
operation of the software product; subtle defects
may have minor consequences while simple to find
defects may have major consequences.

The experiment was carried out with graduate stu-
dents at Queen’s University and the Royal Military
College in Kingston. Twelve students used three
different inspection techniques to examine civil
engineering code currently in use by the military.
The students recorded their findings and times
taken while examining the code. The recorded find-
ings were used to evaluate and compare the effec-
tiveness of the three techniques.

Theresults from the two task directed techniquesin
the experiment were compared to the results from
the ad hoc technique. Analysisindicates that experi-
enced inspectors using the task-directed techniques
identified a higher proportion of findings that
required deeper understanding of the code.

Section Il in this paper provides background for the
research described in this paper. Section Il gives
the circumstances in which the task-directed tech-
nique was initially developed and used in industry.
Sections 1V, V, and VI describe the controlled
experiment carried out with the graduate students to
assess the effectiveness of task-directed inspections
in encouraging better understanding of the product
under inspection. Section VIl describes a new
orthogona defect classification used as a tool to
anayze the findings from the inspection exercise in
the experiment. The tool was used to categorize
findings according to the level of understanding
likely achieved to identify that finding. Section VIlI1
discusses the analysis of the findings identified dur-
ing the experiment. Section I X concludes the paper.

2. Background

We define software inspection, or simply,
inspection, as the systematic, static review of a soft-
ware product to detect and record defects in the
product. Static, as opposed to dynamic, does not
include executing the product.

The definition of the inspection process, for our
purposes, does not include the correction of defects.
This is a deviation from the Fagan inspection pro-
cess [6] where a corrected product exits the process.
Inspection hereis regarded as an eva uation or mea-
surement process and not as a corrective process.
This reduces the inspection interval, focuses atten-
tion on the inspection activity, and decouples the
correction of defects from the inspection activity. It
is particularly appropriate for legacy software,
where defects can be fed into a parallel change con-
trol process while the inspection exercise is till
ongoing.

Simple metrics were gathered during the experi-
ment, i.e., identifying findings and recording times
taken to complete the inspection. Only the findings
were subsequently used to analyze the experimental
results.

The importance of the work of the individual
inspector has been realized for many years. Parnas
and Weiss [13] pointed out the need to match the
inspector’s skills with "... aspects of the [product
under inspection] that they are best suited to evalu-
ate." They suggested that inspectors be guided in
their individual work by questionnaires, where
answering the questions requires the inspectors to
work with the product. In other words, the inspec-
tors take an active role in their examination of the
product (hence the term "active design review",
ADR).

Knight and Myers [10] extended these views in
describing their phased inspections (PI). They point
out that it is often desirable that software products
exhibit various qualities such as maintainability,
portability, and reuseability as well as correctness.
Each partial inspection, called a phase, focuses on a
single specific property of the product. The entire
product is inspected for compliance with a specific
property, with checklists guiding the inspectors to
look for known areas of difficulty. Inspectors are
chosen so their qudlifications meet the needs of the
phase.

An important conclusion came from a large
experiment carried out a Lucent Technologies by
Porter, Siy, Toman, and Votta where they investi-
gated several aspects of the inspection process [15].

3

During the 18-month experiment involving profes-
sional software development, they studied varia-
tions such as numbers of inspectors used in each
inspection team, running paralel and sequential
inspections, and fixing the product being inspected
between sequential inspections. The most signifi-
cant finding from this experiment is that "...struc-
tural changes (team size, number of sessions, etc.)
to the [inspection] process ... did not always have
the intended effect." Instead, significant improve-
ments to the inspection process "... will depend on
the development of new defect detection tech-
niques." In other words, improvements will come
with techniques that increase the effectiveness of
the individual inspector.

Porter, Votta, and Basili [14] note that in many
cases, individual inspections are carried out in a
manner that can be characterized as
e non-systematic - the inspector is given no guid-

ance on how to proceed through the product,

e general - the inspector looks for all issues
related to the product,

e identical - inspectors in multiple-person teams
are reviewing the product for the same issues.

Their preferenceisto haveindividual inspectors
participate in exercises that are

e systematic - the inspector has clear instructions
on how to proceed through the product,

« specific - the inspector is focused on specific
classes of defects,

e distinct - there is minimal overlap in responsi-
bilities amongst severa inspectors looking at
the same product.

Porter et a in [14] carried out an experiment
that investigated the effectiveness of a specific,
orthogonal, and specialized technique for individual
inspections. Thistechniqueis called Scenario-based
reading. A Scenario describes activities that should
be performed by the inspector. As described in [14],
the activities are accompanied by questions and
provide a procedure for detecting a particular class
of defects. Each inspector executes a single Sce-
nario and multiple inspectors are coordinated to
achieve broad coverage of the software product. In
other words, these are multiple parallel inspections
with each inspector focused on a specific, non-over-
lapping issue. The experiment compared three

defect detection methods: ad-hoc, checklist, and

Scenario. They came to the following conclusions:

 the defect detection rate for the Scenario tech-
nique is superior to that obtained with ad hoc or
checklist methods - an improvement of about
35%;

» Scenarios help inspectors focus on specific fault
classes;

» the checklist method is no more effective than
the ad hoc method;

* ingpection meetings contribute nothing to defect
detection effectiveness.
On this last point there is conflicting evidence

as pointed out in [17].

Extensive work [1][2][3][11][12][19] has since
been carried out developing and investigating Sce-
nario based techniques to guide the individual
inspectorsin their work. Scenarios have been devel-
oped for documents such as software requirements
specifications, object oriented designs, UML design
documents, and code.

Results from the above research indicate that
systematic, specific, and distinct techniques for the
individual inspectors should be used. However,
defining the structured technique can itself be prob-
lematic [20] and involve extensive work. Having a
structured technique that is easily defined can prove
to be a great advantage.

3. A Case Sudy of the First Use of Task-
Directed I nspection

The inspection exercise defined at (OHN) [8]
combined the need to update documentation with
the need to closely examine a body of complex
computational code. One of the authors has
observed in her own work that the act of creating
careful documentation often shows up defectsin the
product being documented. By having inspectors
produce well-defined documentation, they will be
encouraged to examine the source code thoroughly
and systematically. With each separate document,
inspectors can be given different viewpoints with
which to examine the source code. The inspectors
can then produce tangible products needed for the
continuing health of the software system at the
same time as they carry out the inspection. This
should make inspection more cost-effective as it is

“piggy-backed” on another activity that lends itself
to being combined with an inspection exercise.

Three tasks were defined and trials were carried
out during the summer of 1996. In March 1997, the
inspection exercise was started, using a process
shown in Figure [1]. There was a total of twenty
people involved over a period of about a year.

Ongoing parallel process Production
S Change
roducts
Control (CC
from tasks / Proce(ss)
passed to
cC
Coordinafor Findings
collects & passed to
reviews all CcC
output
Tnspectors
Kickoff work
meeting| |individually

Figure 1: Process for the OHN Inspection Exercise.

The process used for the OHN inspection differs
from the Fagan-style inspection in several respects.

* The kick-off meeting is the only meeting with
all participants present.

* A coordinator was responsible for the process,
reviewing products produced by the inspectors,
and passing findings identified in the inspection
to a production change control process that runs
in parallel to the inspection exercise.

e There were no forma inspection meetings:
meetings between the coordinator and the
inspectors or the coordinator and a software
author were held as necessary to answer ques-
tions as the inspection proceeded.

e The source code was not fixed as a part of the
inspection process; the inspection process was
strictly an evaluation exercise.

* Theexit criteriafor the inspection exercise were
the completion of the individual tasks by the
inspectors and the hand-off of the inspectors
findings by the coordinator to the production
change control process.

* The inspectors produced products required for
the continued maintenance of the software sys-
tem.

» Corrections to the source code were done in a
production change control process that was
decoupled from the inspection process; the two
processes ran in parallel.

e Theonly consistent metrics kept throughout the

exercise was the record of the findings identi-
fied by the inspectors.

Two considerations were important in defining
the tasks and assigning the inspectors. None of the
inspectors had any familiarity with inspection pro-
cesses, but all had extensive expertise in a variety
of engineering fields. Tasks were defined to be sim-
ple and to make use of the inspectors’ experience.
Each inspector was assigned modules in the code
based on the engineering model the module was
implementing and the inspector’'s own expertise.
For example, a module calculating heat transfer
would be assigned to an inspector knowledgeable
about heat transfer models.

Three tasks were defined for the inspectors:

e Provide a data dictionary for the module
assigned. A template was provided with alist of
the variable identifiers in the module. The
inspector had to add definitions for each use of
each variable identifier, units of measure if
appropriate, meanings for lists of discrete values
if appropriate, and indicate whether the variable
participates as a parameter in the module calling
sequence. The completed template was later
added to the top of the source code.

« Give a complete description of the logic of the
module. The inspectors embedded their under-
standing of the modul€e’s logic in comments in
the source code.

» Cross reference the source code with the techni-
cal manual that gives the specifications for the
models in the code. Inspectors provided cross
reference tags, embedded in source code com-
ments and added to the technical manual indi-
cating matches of equations or theory with the
source code.

An additional template, called a Review Sum-
mary, was provided to the inspectors to record any
findings they uncovered while performing these
tasks. The inspectors were not limited in what type
of finding they were allowed to record.

Given the background of the inspectors, the
tasks were straightforward enough that apart from
being provided with completed examples, the
inspectors had no need for training. The three tasks
guided the inspectors through the modules from
three different viewpoints, potentially using three
different sets of resources to support their work.
Any existing resource (manuals, textbooks, papers,
colleagues, source code itself) was available for the
inspector’s use. Most inspectors merged the three
tasks into a process most efficient for themselves.
The inspection rate for the professiona developers
doing al three tasks was typically 20 lines of code
per hour, that same rate as the student inspectors
doing one task in the experiment.

For the sake of efficiency, it made sense to have
one developer do all three tasks on a given portion
of code. The complexity of the code required spe-
cific domain knowledge and substantial lead time
for familiarization.

During the design of the exercise, the option of
using checklists was considered and rejected. There
was no previous track record to know what would
be found by the inspection exercise, and hence no
basis to create a comprehensive checklist. The ten-
dency for people to complete a checklist and look
no further was considered to be too strong. The
shortcomings of checklists are discussed in [12].
The task-directed inspection technique was
intended to provide a broader, more open context
for the inspectors to explore complex issues and
examine the source code in possibly new ways.

A number of comments can be made as a result
of this inspection exercise. Most are primarily sub-
jective and not supported by hard evidence.

« thetask-directed technique provides a structured
guide for the inspector without constraining the
investigation,

« theinspection is accompanied by tangible deliv-
erables for later use,

« thetasks can be adapted to the inspector’s skills,
eliminating the need for extensive training,

« tasks can be defined that help focus the inspec-
tor on specific concerns,

« theinspectors had a sense of ownership for their
part of the process,

» theinspectors had a sense of making useful con-
tributions to the software development process,
i.e., producing tangible products needed for the
future life of the software system,

« theinspectors had achance to apply their partic-
ular expertise to the exercise,

 the inspectors had a chance to learn more about
apart of the software of interest to them,

« the process made good use of the inspector’s
expertise,

 the process reduced overlap of work,

« only one large group meeting (the kickoff meet-
ing) had to be scheduled,

* one-on-one meetings were scheduled as neces-
sary to address specific questions,

» work was carried on in parallel with little syn-

chronization necessary; bottlenecks were elimi-
nated.

It is important to note that the three products of
the inspection tasks were products required for doc-
umentation purposes for this particular software
system, independent of whether inspection work
was done. The inspection exercise described here
was an opportunistic activity to introduce inspec-
tion on a large scale, with as little impact on exist-
ing schedules and work plans as possible. The
results were extremely successful based on subjec-
tive evaluations of the deliverables and positive
comments from the participants.

It was well after this exercise was carried out
that the author involved became aware of scenario-
based reading techniques. These are similar to task-
directed techniques, but there are three main differ-
ences:

* Preparation of suitable scenarios can be difficult
and time consuming, but once prepared, the sce-
narios should be reusable. Tasks are based on
previously defined products that are part of the
software development cycle, so little prepara-
tion time is needed to define the tasks. Tasks
however may not be reusable, being specific to
aparticular software system.

* The benefit of atask-directed technique is being
examined at the individual level, not at the team
level. The benefit of scenario-based techniques
is expected to be seen at the level of teams
where severd different scenarios are combined
to improve coverage of the product under
inspection [1].

e The products of the tasks in the task-directed
inspection are not artifacts of the inspection, but
are products to be put into use in the software
system. There is an advantage in reducing the
number of inspection artifacts from the inspec-
tion exercise.

Of highest interest at this point is the effective-
ness of the task-directed inspection technique and
in particular, establishing more objective measures
of effectiveness.

4. Resourcesfor the Experiment

The purpose of the experiment was to further
investigate the effectiveness of task-directed
inspection. A secondary purpose was to observe the
use of the technique in an environment different
from the environment where it was devel oped.

There were three main considerations in the
experiment:
* the code to be used for the inspection,
 theinspection techniques to be defined,
* suitable participants.

Since task-directed techniques were first
defined for computational code, the preference was
to continue with computational code as the inspec-
tion vehicle. Sincethereisastrong interest to apply
results directly back to industry, preference was to
locate code that wasin current usein a“rea world”
application. A civil engineering code called Cana-
dian Vehicle Military Load Classification
(CAVMLC) was offered for our use. The code was
about five years old, under continuous develop-
ment, written in Visual Basic, tested, but never
inspected. The author of CAVML C was available as
a consultant through the experiment. The three por-
tions of the CAVMLC code used in the experiment
are comparable in complexity and understandability
(using the McCabe cyclomatic complexity metric
and judgement from CAVML C’s author).

The code was not seeded with defects for the
experiment. Predetermining the types of defects and
inserting examples of those into the code would
violate the goal of the experiment: to determine the
types of defects found using the different tech-
niques. On the other hand, if the code was very

clean, then the inspectors would not find anything
to report. To assess this risk, we inspected a small
portion (about 70 lines of active code) of CAVMLC
and readily found 11 issues, suggesting that there
would beissues in the code to be inspected.

Three inspection techniques were defined for
the experiment.

The first was amethod description task-directed
technique. A product, a method description, is pro-
duced asthe driver for the inspection. Thisinvolves
the inspector recording in a document, an under-
standing of the source code in pseudocode, table
format, and/or natural language. Extensive rigor
(such as stepwise abstraction used in [12]) was not
demanded of the students.

The second was a white-box test plan task-
directed technique. The inspectors produce a test
plan, proposing values for variables that would be
set outside the code portion and determining the
values that the code portion would set.

A third inspection technique was needed to pro-
vide a reference point for the two task-directed
techniques. A frequently used detection technique
is the Ad-hoc technique, a nonsystematic technique
where the inspector looks for any defects in the
source code or other software product. For the
experiment, this technique was referred to as
"visual paraphrasing”, where the inspector exam-
ines the code but has no obligation to record any
understanding of the code, other than that implicit
in the inspector’s findings.

The comparison for the experiment was
between each task-directed technique and the ad
hoc technique.

There were twelve participants in the experi-
ment, all students of a graduate Software Verifica
tion and Validation course [18]. There was, among
the participants, a range of experience and training.
Of concern were the effects of these differences on
the experiment. The one that was most evident was
the split of the class between six students registered
in Queen's graduate programmes (Master's pro-
grammes in either Computer Science or Electrical
and Computer Engineering) and six students regis-
tered in RMC graduate programmes (either Mas-

ter’s or PhD programmes in software engineering in
the Electrical and Computer Engineering Depart-
ment). This split was significant because the
Queen’'s students had little or no industry experi-
ence in software development; the RMC students
had extensive experience in software devel opment
with the Canadian Military. Two of the RMC stu-
dents had experience doing inspections.

None of the students had any experience with
the application domain of CAVMLC, modeling
stresses on bridges. It was not expected that the stu-
dents would understand and be able to comment on
the engineering theory underlying the models
implemented in CAVMLC. All students had some
familiarity with object-oriented programming lan-
guages. All the students had an undergraduate
degree in either computer science, computer engi-
neering, or electrical engineering, so each had suffi-
cient programming skills to feel comfortable with
Visual Basic relatively quickly. Two of the Queen’s
students had recently taken a half-year course using
Visual Basic; two of the RMC students had used
Visual Basic for a brief period, one three years ago
and one six years ago.

5. Experimental Design

Several concerns [5], [14] are of particular inter-
est when planning an experiment such as this. The
major confounding effect is the wide variation in
human performance. Differences have been stated
as varying from 4 to 1 to 25 to 1 [12]. This high
variability can easily mask any effects from the
inspection techniques being studied. Both the
design of the experiment and the analysis of the
data have to be cognizant of this fact. One of the
means of addressing this problem is by a "repeated
measures design”, where every participant in the
experiment uses every inspection technique. This
provides an opportunity to observe and perhaps bal-
ance out the uncontrolled effects of human perfor-
mance. Each participant acts as his’/her own control.

The maturation of the participants over the
course of the experiment is another problem. Each
time a participant uses another inspection tech-
nique, the participants' skill level may increase,
confounding the results from the use of subsequent
techniques. As well, while using different inspec-
tion techniques, the participants may apply skills

learned earlier. Different approaches can be used

here. For example,

* introduce the inspection technique first that is
less likely to cause carry-over effects, for exam-
ple, the visual paraphrasing technique;

» don’t give feedback during the experiment;

» conduct a"warm-up" exercise before the start of
the experiment to provide controlled learning;

» use different source code for each inspection
done by a participant.

If each participant uses a different portion of
source code for each inspection, then variations in
the complexity, length, or understandability of the
source code portion is another concern. Often
impossibleto avoid, it can be partially controlled by
having all participants work with all portions of
source code.

In some experiments [1], a problem occurs
where it is unclear if the participants have faithfully
followed the experimental process. This can be a
difficult problem where either close supervision or
an incentive to follow the process may help.

The design of our experiment addressed these
concerns as far as possible. Using a repeated mea-
sures design, each participant used each of the three
inspection techniques once, withthe visua para
phrasing technique always first. Since we wanted
each student to use the weakest inspection tech-
nique first, we did not use a counterbalanced
design. Two students had experience with inspec-
tions and had personally developed disciplined
inspection habits. Introducing them to a more struc-
tured technique first chanced carry-over effects.

We chose three different code portions from
CAVML C so that each inspection done by a partici-
pant was conducted on a different portion of code.
To prevent any biasing by the order or combination
in which a code portion is inspected with a task-
directed technique, a partial factorial design was
used.

To explain the experimental design, we use the
following abbreviations:

I nspection techniques:

P = visual paraphrasing

T = task-directed technique using white box test
plan

D = task-directed technique using method
description

The three code portions from CAVMLC are
designated 1, 2, 3. A participant inspecting a por-
tion of code with a different technique is caled a
round.

The final design of the experiment is given in
Table 1 , where students 1 to 6 are the RMC stu-
dents and students 7 to 12 are the Queen’s students..

Sudent Round1 | Round2 | Round 3
1 P/3 D/1 T/2
2 P/2 D/3 T/
3 P/3 T/2 D/1
4 P/1 D/2 T/3
5 P/2 T/1 D/3
6 P/1 T/3 D/2
7 P/2 D/1 T/3
8 P/2 T/3 D/1
9 P/1 D/3 T/2
10 P/1 T/2 D/3
11 P/3 T/1 D/2
12 P/3 D/2 T/

Table 1. Partial Factorial Experimental
Design

The body of the table gives the technique/code por-
tion used by each student in each round. The
assignment of the students to the participant roles
required some care due to the students' back-
grounds. From initial surveys filled in by the stu-
dents, there were two concerns: the clearly different
backgrounds of the RMC and Queen’s students and
the two RMC students who had inspection experi-
ence. If the students had similar backgrounds, then
it would make sense to assign the students ran-
domly to the participant roles. Instead, the assign-
ments were made to evenly distribute the RMC and
Queen’s students among the different variations in
the experiment.

The experimental design is described in more
detail in [9].

6. Experimental Operation

The participants were supplied with a set of
documents to support their understanding of the
code portions being inspected and their work during
the inspections. At appropriate times through the
experiment, the students were supplied with worked
examples, electronic templates, el ectronic copies of
the source code, and design description and back-
ground information for the CAVMLC application.
The students were not given examples of findings,
purposely not to bias the type of findings the stu-
dents werelooking for.

Although the experiment design addressed most
issues of confounding influences, a concern still
remained about the use of the weakest technique
(visual paraphrasing) first, possibly introducing a
negative bias into the first round. It was decided to
add a short exercise before the experiment proper,
commonly known as a "warm-up". The warm-up
familiarized students with Visual Basic, with the
coding style of the code author, with a small seg-
ment (about 70 lines of active code) of the
CAVMLC application, and with using the Visual
Paraphrasing technique.

At the beginning of each round of the experi-
ment proper, the students were assigned their code
portion and inspection technique. Classes met
weekly and results were handed in the next class.
Students were to budget their time for each inspec-
tion round to ten hours.

Students were encouraged to record all issues
they thought suspicious. It was emphasized that an
inspector’s job is to raise issues even if there is
uncertainty asto their validity. Issuesraise aflag on
code areas needing a second look. Inspector’s
issues may indicate poor documentation, obscure
logic, bad style, as well as code errors. The view
taken in this experiment is that there are no false
positives, i.e. no findings that are not indicative of
some problem with the software product. The
inspectors were asked to not self-critique their find-
ings. Their findings may point out other issues not
originally identified.

7. Orthogonal Defect Classification
(ODC-CC) for Computational Code

The primary goal of this inspection experiment
was to measure the difference in effectiveness
between an unstructured and a task-directed inspec-
tion technique. A means was needed to measure
this difference. The strength of the task-directed
techniques is to encourage a deeper understanding
of the code under inspection. By examining the
types of findings recorded by the inspectors while
using different inspection techniques, we can assess
the level of understanding attained. However, we
need a means of translating findings to levels of
understanding. We do this by means of a new
Orthogonal Defect Classification. The IBM Orthog-
onal Defect Classification (ODC), described in the
paper by Chillarege et a [4] in 1992, was consid-
ered for this purpose. However, IBM’s ODC proved
to be unsuitable for the needs of this experiment. It
did not provide enough detail or cover all defects
identified during the OHN inspection exercise.
More details are given in [9]. A new Orthogonal
Defect Classification for Computational Codes
(ODC-CC) was developed from the OHN exercise.
This allowed the findings from the experiment to be
categorized then anayzed to assess differences in
the results from the different inspection techniques.

The ODC-CC iscomposed of multiple levels of
defect type categories, each level adding more
detail. The top level is composed of five categories:

« Documentation: documentation against which
the code may be compared. The issues classified
here are with respect to the documentation. This
includes commentsin the code.

e Calculation/Logic: issues of implementation
related to flow of logic, numerical problems,
and formulation of computations.

* Error Checking: issues related to data values
(conditions and bounds), pre- and post- condi-
tions, control flow, data size, where specific
checks should be included in the code (defen-
sive programming).

e Support Code: issues in supplementary code
used for testing, debugging, and optional execu-
tion.

* External Resources: issues in interactions with
the environment or other software systems.

Defect subtypes are added in successive levels.
Each level provides more detail for the defect type,
subdividing it into finer categories. In the ODC-CC
as it currently exists, four levels were found to be
sufficient. The multiple levels help direct the classi-
fication of the inspection finding. The multiple lev-
els also dlow the flexibility of a very fine grained
classification or a very course classification. This
has advantages in different ways, for example in
training inspectors (the more detailed levels help to
make the classification clear) and in adjusting the
level of effort desired in an inspection (by requiring
more or less detail). The ODC-CC is specific to
computational code, but provides a framework that
can be followed for classification of software prod-
ucts in other software areas. Potentialy, the type
classification at the top level can be kept constant
for different software areas.

Five defect qudifiers are included in the ODC-
CC:

¢ M =missing

« W =wrong

e S=superfluous
e | =inconsistent
e O=obscure

Each inspection finding is fully categorized by a
defect type and a defect qualifier. There should be
only one defect type and qualifier into which the
finding fits. This was validated to some extent
when the findings from the inspection experiment
were categorized.

As well as providing a tool for analyzing the
types of findings identified by the inspectors, the
ODC-CC dso provides a means to separate
reported findings. Inspectors may record what are
actually several findings, rolled into one finding
report. By subsequent inspection of the finding
reports, the rolled up findings become evident and
can be identified as multiple distinct findings. This
helps to provide consistency amongst the reports of
the various inspectors.

7.1. Levelsof Understanding for the ODC-CC

To aid in the anaysis of the experimental data,
each category in the ODC-CC is associated with a
level of understanding. These levels of understand-

10

ing are referred to as CISL which stands for Com-
parative, ldentifier, Structural, and Logical levels
of understanding. They are defined by the depth of
understanding an inspector must attain to identify a
defect. The lowest level of understanding is at the
Comparative Level, where the inspector compares
the code to documentation. Conceptually, by expe-
rience, the easiest defects to identify in source code
are those found by comparing the code against
other documentation. The next level in conceptua
difficulty is Identifier, where the inspector deter-
mines the use of variable identifiers and whether
those uses are consistent and unique for each vari-
able. The third level is the Structure of the code,
where the inspector obtains an understanding of the
structure of the software to identify the coherence
of structure with semantics of the different compo-
nents in the structure. The level requiring the great-
est understanding is the Logical Understanding,
where the inspector must understand the logical
flow, the formulation of equations, and the handling
of error conditions. The CISL categorization devel-
oped here is admittedly subjective, based on one of
the authors experience as software developer and
code inspector. Thisis currently alimitation in this
experiment and needs to be validated by further
research.

The following table gives a high level descrip-
tion of the CISL correspondances to the ODC-CC.

Defect Description

Comparison of active codeto User Doc-
umetation, Theory Documentation,
internal comments, etc. Naming con-
ventionsfor variables, modules. For-
matting styles.

I Naming of variables and modules ver-
sus use.

Sematic or logical structure of data,
active code, and modules. Supporting
infrastructurefor testing, optional fea-
tures, and debugging.
Calculation/logic and error conditions.

L
Table 2. CISL correspondance to Defects

8. Experimental Analysis

The primary data from the experiment were the
findings identified by each student during the use of

each ingpection technique. Anaysis of this data

proceeded in severa steps:

» the raw findings were categorized using the
ODC-CC;

« dl findings reports, plus a summary, were given
to the author of CAVMLC for review;

« tota findings per student and per technique
were graphed and examined for trends;

e the ODC-CC categorized findings were tagged
by CISL levels;

» the number of findings in each of the CISL lev-
els were normalized to create C-, |-, S-, and L-
proportions; this gave the fraction of each stu-
dent’s findings that were at each of the CISL
levels;

» the CISL proportions were analyzed graphi-
cally;

* adatistical analysis was done for the C- and L-
proportions,

» time reports from the participants were exam-
ined and graphed,;

» results of the statistical analysis were compared
against student comments gathered during the
experiment.

Using the most detailed levels of the ODC-CC,
all findings from the three rounds of the experiment
were categorized by one of the authors and a pro-
fessional developer. In future replications of the
experiment the plan is to have the participants do
the categorization.

The total number of findings per technique was:
* Ptechnique: 179
« D technique: 138
e T technique: 129
» Total findings for the experiment: 446

An example of the CISL classification of the
findings is shown in Table 3 for the P technique
(round 1).

The number of findings identified by each stu-
dent varied dramatically. There was no consistent
trend due to inspection technique, round number, or
code portion used. However, there was an obvious
trend determined by the program in which each stu-
dent was enrolled. The RMC students turned in an
average of 24, 15, and 17 findings using the P, D,

11

and T techniques. The Queen's students turned in
an average of 6, 6, and 5 findings for the three tech-
niques. It was decided after the experiment was
completed to do all analysis on the data from the
two groups separately.

C [S L
p1 5 1 2 1
p2 16 4 1 6
p3 18 5 3 3
p4 18 1 2 1
p5 16 7 0 2
p6 4 3 2 1
p7 0 2 0 5
P8 1 0 0 7
P9 2 5 0 4
p10 0 0 0 1
pll 1 1 0 1
p12 4 1 0 2

Table 3: Example of Finding Counts for CISL Levels of
Understanding: P Technique

Generally, the raw number of findings for the
two task-directed techniques should be lower. The
students were given the same amount of time to
complete each round, but for the task-directed tech-
niques, the students had to produce a product as
well as a findings report. In each case, the product
was extensive and required substantial time to pre-
pare. In essence, the students had more time to look
for findings using the visua paraphrasing technique
than they had with the two task-directed techniques.
There is some trend to lower findings counts with
the two task-directed techniques for each student,
but the trend is not consistent.

8.1. Normalization of the CI SL Finding Counts

The number of findings generated by the
inspectors using each technique is affected by the
technique itself and the performance of each
inspector. As discussed earlier, the performance of
an individual can vary significantly. This variation
can easily mask the influence of the technique on
the inspection results.

The repeated measures design of the experiment
allows each participant to act as his’her own con-
trol. Even at that, we want to normalize the individ-
ual variations in findings counts. We do this by
dividing each individual’s count of findingsin each
category of CISL by the individual’s total findings

for that round. This gives a proportion of CISL
findings for each round for that individua. The
most valid comparisons, then are across the results
for each individual.

For example, student pl, using the P technique,
has a total of nineteen findings. Fifteen of those are
in the Comparative (C) level of understanding, one
in the Identifier (I) level of understanding, two in
the Structural (S) level of understanding, and onein
the Logical (L) level of understanding. For student
1 and the P technique, the counts are divided by
nineteen to give the proportions C: 0.79, 1: 0.05, S:
0.11, L: 0.05. This normdization is done for each
individual in the experiment.

Alternative normalizations were examined and
are discussed in [9].

8.2. Graphical Results

The number of contributions in the |- and S
Levels of understanding were low in this experi-
ment, so no further analysis was perfomed on the I-
and S- findings. Results in the C-proportions and
the L-proportions were analyzed. But in both these
categories, the number of findings turned in by the
Queen’s students were low, making the Queen’s
results dubious.

The C-proportions represent findings identified
through comparisons of the code with some form of
documentation (including the code itself). There is
aclear split between the RM C and Queen’s students
in their level of C-proportions, with the RMC stu-
dents being more consistent. Averages for the RMC
students for the P, D, and T techniques are 0.6, 0.6,
0.5; averages for the Queen'’s students for the three
techniques are 0.2, 0.6, and 0.3.

Looking at the results of the C-proportions (see
Graph 1) leads to two possible conclusions. For the
experienced RMC participants, identifying defects
that are at alow level of understanding can be done
consistently regardless of inspection technique
used. For the inexperienced Queen’s participants,
the more structured inspection techniques aid even
in identifying defects that require less understand-

ing.

12

The L-proportions represent findings that
require the deepest understanding of the source
code. The difference between the RMC and
Queen’'s students was again evident (see Graph 2).
The results from the RMC students showed a gen-
eral increase in the L-proportions with the use of
the task-directed techniques. Student 4 had inspec-
ton experience and had developed his own disci-
plined habits. The test plan technique in particular
“got in hisway”. Student 6 had no L findings using
the D technique in round 3, even though his total
findings were comparable to the other two rounds.
In an interview afterwards, it was found he had had
family distractions that had made work difficult.

For the RMC students the results suggest that
the use of the task-directed techniques increases the
proportion of L-level findings. This implies that
task-directed techniques encourage the identifica-
tion of findings that require deeper understanding
of the code. For the Queen’s students, lack of expe-
rience doing documentation impeded effective use
of task-directed inspection techniques.

As discussed earlier, two other possible con-
founding factors in the experiment were the code
portions used by each student and the round in
which a student used a different technique. A two-
way ANOVA examing the interaction between the
code portions and the inspection techniques and
between the rounds and the inspection techniques
showed little interaction between these factors; that
is, the code portions used and the rounds in the
experiment had no appreciable effect on the results.

We used a matched pairs one-tailed t-test to
compare each task-directed technique with the ad
hoc technique, keeping RMC and Queen’s as sepa-
rate groups. The interpretation of the t-test indicates
that there was no effect for the Queen’s group using
the task-directed techniques over the ad hoc. There
was an effect for the RMC group using the task-
directed techniques over the ad hoc (p=0.068 for
the D-technique, and p=0.039 for the T-technique,
power = .59 and .80 respectively).

There seems at this point evidence that for the
experienced participants in the experiment, using
tasks to structure the inspection resulted in propor-
tionally more L level findings being identified.

124

P Technique B D Technique O T Technique

0.8 7

0.6

0.4

0.2 7

=

B

1 2 3 5 6 7 8 10 11 12
Participant Number
Graph 1: C-Proportions by Technique
1.2
1 P Technique B D Technique © T Technique

Participant Number

Graph 2: L-Proportions by Technique

8.3. Internal and External Validity of the Experi-
ment

Internal validity is the ability to control
unwanted effects on the dependent variable, in our
case, the proportion of findings for each individual.
Separating the students alows anaysis of two
diverse groups. The within-subjects design has

13

alowed a statistically vaid comparison of an indi-
vidual’s own work across the three rounds.

External validity is based on the generalizability
of results to other populations and settings. There
are severa elements of this experiment that reflect
conditionsin industry:

« the software under inspection was a working
product in a military application with limited

support documentation;

» the software under inspection was not seeded
with defects for the sake of the experiment;

e products created by the inspectors during the
inspection were successfully used by the soft-
ware code author to improve the application;

» the inspectors had a wide spectrum of external
experience;

» the inspectors experienced time pressures and
externa distractions during the course of the
experiment.

All these elements made the experimental data
more difficult to analyze, but contributed to the
prospect of carrying these results over to industry.
More detail ed descriptions of the experiment and of
the analysis of the results can be found in [9].

9. Conclusions

The performance of the participants in the
experiment became an important issue when ana-
lyzing the results of the experiment. If all students
had |acked outside experience, then the experiment
would have produced only limited results.

The analysis of the experimental data provides a
number of conclusions on the use of the task-
directed technique:

» for experienced inspectors, the task-directed
technique appears in most cases to provide posi-
tive results in increasing each inspector’s under-
standing of the code;

» tasks must be appropriate to the inspector’s
background and experience;

* ingpectors require a minimum level of experi-
ence to be effective.
Apparent from the comments of the participants

were the following conclusions:

» task-directed inspections require concentration
and inspectors should be provided with the
opportunity to accomplish the task free from
distractions;

» theintent isthat the products of the task provide
useful documentation for other stakeholders of
the software under inspection, beyind being
only inspection artifacts; this was true both at
OHN and for the author of CAVMLC;
Task-directed inspection and other structured

techniques such as scenario-based reading promise

to be powerful tools to improve the inspection pro-

cess. Further research can address how task-
directed techniques can be used with products other
than computational codes and how specific inspec-
tion goals can be targeted with appropriate tasks.
Further research can also address the use of orthog-
onal defect classifications and levels of understand-
ing to analyze inspection findings. Inspection
processes such as the one that served as the frame-
work for this experiment can provide flexibility that
can encourage wider use of inspection in industry.

10. Biogr aphies

Diane Kelly isan instructor and Ph.D. candidate
at the Royal Military College of Canada Previ-
ously, Diane worked in the Nuclear Division at
Ontario Hydro where she participated in a wide
variety of roles in software development, from pro-
grammer to project leader, trainer to QA advisor.
Diane has an M.Eng. in Software Engineering from
the Royal Military College, a B.Sc in Mathematics
and a B. Ed. in Mathematics and Computer Sci-
ence, both from the University of Toronto, Canada.

Terry Shepard is a professor in the Department
of Electrical and Computer Engineering a the
Royal Military College of Canada, where he has
played the lead role in creating strong software
engineering programs. This includes working
extensively with a number of Canadian military
software projects, and creating and teaching gradu-
ate and undergraduate courses on software design,
V&YV, and maintenance. He has over 25 years of
software experience in industry, government and
academia. Terry received his B.Sc. and M.A. from
Queen's University in Kingston, and his Ph.D. from
the University of Illinois, al in Mathematics. He is
a Registered Professional Engineer. He has pub-
lished a number of papers in software design and
verification, and has worked with ObjecTime Ltd.
for several years.

11. References

[1] Basili, Victor R., Scott Green, Oliver Laiten-
berger, Filippo Lanubile, Forrest Shull,
Sivert Sorumgard, Marvin V. Zekowitz;
"The Empirical Investigation of Perspective-
Based Reading"',Empirica Software Engi-
neering: An International Journal, 2(1),
1996, pp. 133-164

(2]

(3]

[4]

(5]

€]

[7]

8]

(9]

[10]

[11]

[12]

Basili, Victor, Gianluigi Caldiers, Filippo
Lanubile, and Forret Shull; "Studies on
Reading Techniques', Proceedings of the
Twenty-First Annual Software Engineering
Workshop, Goddard Space Flight Centre,
Greenbelt, MD, December 1996 (Software
Engineering Laboratory Series, SEL-96-
002, pp 59-62)

Cheng, Benjamin and Ross Jeffery; "Com-
paring Inspection Strategies for Software
Requirement Specifications', Proceedings
of the 1996 Australian Software Engineer-
ing Conference, pp. 203-211

Chillarege, Ram, Inderpal S. Bhandari, Jarir
K. Chaar, Michael J. Halliday, Diane S.
Moebus, Bonnie K. Ray, Man-Yuen Wong;
"Orthogonal Defect Classification - A Con-
cept for In-Process Measurements”, |EEE
Transactions on Software Engineering, Vol.
18, No. 11, November 1992, pp. 943-956

El Emam, Khaled and Isabelle Wieczorek;
"The Repeatability of Code Defect Classifi-
cations', Proceedings of the 9th Interna-
tional Symposium on Software Reliability
Engineering, 1998, pp322-333

Fagan, M.E.; "Design and Code Inspections
to Reduce Errors in Program Development”,
IBM Systems Journal, Vol.15, No.3, 1976,
pp. 182-211

Johnson, Phillip M.; "Reengineering Inspec-
tion", Communications of the ACM, Febru-
ary 1998/Vol 41, No.2, pp. 49-52

Kelly, Diane and Terry Shepard; "A Novel
Approach to Inspection of Legacy Code",
Proceedings of PSQT'00, Austin Texas,
March 2000

Kelly, Diane; “An Experiment to Investigate
a New Software Inspection Technique’,
Master's Thesis, Royal Military College of
Canada, July 2000.

Knight, John C. and E. Ann Myers; "An
Improved Inspection Technique', Commu-
nications of the ACM, November 1993/
Vol.36, No.11, pp. 51-61

Laitenberger, Oliver, Colin Atkinson, Maud
Schlich, and Kahled EI-Emam; "An Experi-
mental Comparison of Reading Techniques
for Defect Detection in UML Design Docu-
ments, December 1999, NRC 43614
Laitenberger, Oliver, Khaled El Emam, Tho-
mas Harbich; “An Internaly Replicated

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Quasi-Experimental Comparison of Check-
list and Perspective-based Reading of Code
Documents’, [onling], http://
www.iese.fhg.de/network/I SERN/pub/
technical_reports/isern-99-01.pdf; 1999
Parnas, David L. and David M.Weiss;
"Active Design Reviews:Principles and
Practice", Proceedings 8th International
Conference on Software Engineering , Lon-
don UK, August 1985

Porter, Adam A., Lawrence G. Votta, Jr.,
Victor R. Basili; "Comparing Detection
Methods for Software Requirements Inspec-
tions:. A Replicated Experiment", |EEE
Transactions on Software Engineering, Vol.
21, No. 6, June 1995, pp. 563-575

Porter, Adam A., Harvey P. Siy, Carol A.
Toman, Lawrence G. Votta; "An Experiment
to Assess the Cost-Benefits of Code Inspec-
tions in Large Scale Software Develop-
ment", |EEE Transactions on Software
Engineering, Vol. 23, No. 6, June 1997, pp.
329-346

Russell, Glen W.; "Experience with Inspec-
tion in Ultraarge-Scale Developments”,
IEEE Software, Vol.8, No.1, Jan. 1991, pp.
25-31

Sauer, Chris, D.Ross Jeffery, Lesley Land,
Philip Yetton; "The Effectiveness of Soft-
ware Development Technical reviews. A
Behaviourally Motivated Program of
Research”, IEEE Transactions on Software
Engineering, Vol. 26, No. 1, January 2000,
pp. 1-14

Shepard, Terry; “On Teaching Software Ver-
ification and Validation”, Proceedings of the
8th SEI Conference on Software Engineer-
ing Education, New Orleans, LA, 1995, pp.
375-386

Travassos, Guilherme H., Forrest Shull, Jef-
frey Carver, Victor R. Basili; "Reading
Techniques for OO Design Inspections’,
Proceedings of the Twenty-fourth Annual
Software Engineering Workshop, Goddard
Space Flight Centre, Greenbelt MD, Decem-
ber 1999

University of Maryland, Notes on Perspec-
tive Based Scenarios; http://
www.cs.umd.edu/projects/ SoftEng/ESEG/
manual/pbr_package/node21.html,[onling],
November 1999.

