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1 Reference Material

This section records information for easy reference.

1.1 Table of Units

For basic units in SI (Système International d’Unités) the symbol is given in the table below
followed by a description of the unit with the SI name.

symbol unit SI

s time second

Table 1: Table of Units

3dfim+ calculates cross-correlation of two sequences of data. Correlation coefficients are
not influenced by the units and the two sequences of data can be measured in different
units. Indeed, the calculations for correlation coefficients were designed such that the units
of measurement do not affect the calculation. As a result, we do not provide units for them.

1.2 Table of Notations

Through this document, some notations are used to define mathematical expressions. These
notations are given below in table 2 followed by a description. Some of the notations are
chosen from [1].

1.3 Table of Symbols

Table 3 summarizes the symbols used in this document. The symbols are listed in alphabet-
ical order.

symbol type description

a R variable

A Rn sample dataset of size n

Average R average quantity for fMRI dataset
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b R variable

B Rn sample dataset of size n

base Rn baseline signal

Baseline R baseline quantity for fMRI dataset

cval R a threshold variable

d N+ sample size

f N number of frames

k N index of best ideal signal

M Rm×n data model consisting of baseline, orthogonal and ideal time series

MSE R mean square error

p R threshold for voxel’s intensity

pnum W degree of the polynomial in the baseline model

r Rn ideal signal

rk Rn best ideal signal

s R sample variance

sb Rm×n×p sub-brick

slc Rm×n slice

SSE R sum of squared errors

t R time

Topline R topline quantity for fMRI dataset

v R voxel

X Rm×n×p×q 3d+time dataset

α R fit coefficient for ideal signal

β R fit coefficient for baseline

β∗ Rn vector of fit coefficients

ε Rn noise vector

γ R fit coefficient for orthogonal time series

σ R sample standard deviation

σr R standard deviation of the residuals

ρ R Pearson correlation coefficient

ρs R Spearman correlation coefficient

ρq R quadrant correlation coefficient

φ Rn orthogonal time series

Table 3: Table of Symbols
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symbol Description

¯ over bar indicating arithmetic mean

N set of natural numbers

Nn set of natural vectors of size n

Nm×n set of natural 2D matrices of size m× n
R set of real numbers

Rn sequence of real numbers (set of real vectors) of size n

Rm×n×p set of 3D real matrices of size m× n× p
Rm×n×p×q sequence of length of q of 3D real matrices of size m× n× p
ai ith entry of a matrix

aij entry (i, j) of a 2D matrix

aijk entry (i, j, k) of a 3D matrix

aijkl entry (i, j, k) of a 3D matrix in a sequence of 3D matrices at time l

AT transpose of a matrix: ATij = Aji

rank(aij,A) rank of element (i, j) in a 2D matrix A

Table 2: Table of Notations

1.4 Abbreviations and Acronyms

Table 4 contains the abbreviations and acronyms used in this document.

symbol description

2D 2-Dimensional

3D 3-Dimensional

3dfim+ 3-Dimensional Functional Intensity Map+

4D 4-Dimensional

A Assumption

AFNI Analysis of Functional NeuroImages

DD Data Definition

DICOM Digital Imaging and Communications in Medicine

fMRI functional Magnetic Resonance Imaging

GS Goal Statement

IM Instance Model

LC Likely Change

LPI Left-Posterior-Inferior
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LPS Left-Posterior-Superior

MRI Functional magnetic resonance imaging

NIfTI Neuroimaging Informatics Technology Initiative

R Requirement

RAI Right-Anterior-Inferior

RAS Right-Anterior-Superior

SRS Software Requirements Specification

T Theoretical Model

WCS World Coordinate System

Table 4: Abbreviations and Acronyms

2 Introduction

This document provides an overview of the Software Requirements Specification (SRS) for
the program 3dfim+ [2]. 3dfim+ mainly calculates the cross-correlation of an ideal reference
signal versus the measured fMRI time series for each voxel. The current section explains the
purpose of this document, the scope of the software, the organization of the document and
the characteristics of the intended readers.

2.1 Purpose of Document

The main purpose of this document is to provide sufficient information to understand what
3dfim+ does. The goals and theoretical models used in the 3dfim+ implementation are pro-
vided, with an emphasis on explicitly identifying assumptions and unambiguous definitions.

2.2 Scope of Requirements

The responsibilities of the user and the 3dfim+ are as follows:

• User Responsibilities: Users are responsible to provide appropriate inputs to the pro-
gram and ensure that the inputs meet the assumptions mentioned in 4.2.1.

• 3dfim+ Responsibilities: Upon receiving appropriate inputs, the program is intended
to compute the cross-correlation of each voxel’s activity over time with a user specified
reference time series. Other outputs are mentioned in R6 to R13.

2.3 Organization of Document

The organization of this document follows the template for an SRS for scientific computing
software proposed by [3] and [4]. The presentation follows the standard pattern of presenting
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goals, theories, definitions and assumptions. The goal statements are refined to the theoret-
ical models, and theoretical models to the instance models. For readers that would like a
more bottom-up approach, they can start reading the instance models in Section 4.2.4 and
trace back to find any additional information they require.

3 General System Description

This section provides general information about the system, identifies the interfaces between
the system and its environment, and describes the user characteristics and the system con-
straints.

3.1 System Context

Figure 1 shows the system context. A circle represents an external entity outside the soft-
ware, the user in this case. A rectangle represents the software system itself. Arrows are
used to show the data flow between the system and its environment.

User 3dfim+
Inputs

Figure 1: System Context

3dfim+ is mostly self-contained. The only external interaction is through the user interface.
The responsibilities of the user and the system are as follows:

• User Responsibilities:

– Provide the input data to the system

– Ensure the input meets the necessary assumptions

– Run the appropriate experiment to obtain the required data

• 3dfim+ Responsibilities:

– Calculate the required outputs

3.2 User Characteristics

The end user of 3dfim+ should have an understanding of undergraduate Level 1 Linear
Algebra.
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3.3 System Constraints

Intended environment to run the program on are the Unix+X11+Motif systems [5].

4 Specific System Description

This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, definitions and finally the instance models.

4.1 Problem Description

The main purpose of 3dfim+ is to calculate the cross-correlation between voxels and a
reference signal over time. Other outputs of the program are mentioned in R6 to R13.

4.1.1 Background

This section provides information necessary to understand the correlation.

4.1.1.1 Basics of Correlation

Correlation is used to measure strength of association between two variables. Correlation co-
efficients are standardized; they vary between +1 and -1 and describe strength and direction
of the association.

If a variable is correlated to itself, the resulting value is called autocorrelation or serial
correlation. In this case the variable is being compared to itself with a time shift. Otherwise,
if we have two different variables, the output is called cross-correlation.

If the value of the correlation coefficient is near to +1 or -1, there is a strong degree of
association between the two variables. A value near to zero represents a weak correlation
between the variables.

4.1.1.2 Visual Representation of Correlation

To study the possible correlation between two variables, we can produce a graph called
scatter diagram or scattergram. Axes represent values of two variables, and corresponding
values are shown by a dot. Figure 2 shows a sample of a scattergram of two sample variables
a and b.
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Figure 2: A sample of a scattergram and regression line of two variables a and b

The red dashed line in the graph shows linear regression, which represents the best-fit straight
line through the points. The nearer the points are to this line, the stronger the association
between the two variables is.

4.1.1.3 Different Types of Correlation

We can categorize correlation based on the nature of inputs and the relationship between
them as follows:

• Positive and Negative Correlation: Positive correlation occurs when two variables
change in the same direction. In other words, both variables either increase or de-
crease. A sample scattergram of a positive correlation is shown in Figure 3 .

2 4 6 8

2

4

6

8

a

b

Figure 3: A sample positive correlation

There is a negative correlation between variables if one variable increases while the
other decreases. In other words, two variables change in the opposite directions. A
sample scattergram showing a negative correlation is shown in Figure 4.
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Figure 4: A sample negative correlation

• Linear versus Non-Linear Correlation: If the ratio between two variables remains the
same, there exists a linear correlation between them. In this case, there is a straight
line relationship between those variables. If the ratio does not remain constant over
time, the correlation is called non-linear. When a relation is non-existent or random,
correlation coefficients are near zero.

• Parametric versus Non-parametric Correlation: Parametric correlation uses data in-
formation such as mean and standard deviation while non-parametric correlation does
not need such information. So if the data type is interval or ratio, we use a parametric
estimation such as Pearson correlation coefficient and if the level of measurement is
either ordinal or nominal, we use a non-parametric estimation, such as Spearman cor-
relation coefficient. Moreover, to use a parametric correlation data distribution should
be approximately normal. It is important to choose an appropriate correlation to get
valid results.

• Pearson Correlation Coefficient: Pearson correlation is the most commonly used type
of correlations. This correlation, signified by ρ, is a linear correlation used in statistics
to measure the degree of linear relationship between paired data.

• Spearman Correlation Coefficient: Spearman correlation coefficient, denoted by ρS, is a
statistical measure of the strength of a monotonic relationship between the observation
ranks. We can consider this correlation as a non-parametric version of the Pearson
correlation that measures the strength of association between two ranked variables.
This rank-based estimator is highly efficient and is robust to outliers [6].

• Quadrant Correlation Coefficient: As we mentioned previously, an estimation proce-
dure can be endowed with robustness properties by using a rank statistics [7]. Quad-
rant correlation coefficient is a non-parametric estimator that computes the correlation
coefficient between the sign of deviations from medians using ranked data.
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4.1.1.4 Effect Size

The correlation coefficient representing the strength of relationship between two variables
is referred to as the effect size. We can use either Cohen’s (1998) [8] or Evans (1996) [9]
standard shown in Tables 5 and 6 respectively, to interpret the effect size.

Table 5: Cohen’s effect size

Strength of Association Positive Coefficient Negative Coefficient

Small 0.1 to 0.29 -0.1 to -0.29

Medium 0.3 to 0.49 -0.3 to -0.49

Large 0.5 to 1 -0.5 to -1

Table 6: Evans’ effect size

Strength of Association Positive Coefficient Negative Coefficient

Very Weak 0.00 to 0.19 0.00 to -0.19

Weak 0.20 to 0.39 -0.20 to -0.39

Moderate 0.40 to 0.59 -0.40 to -0.59

Strong 0.60 to 0.79 -0.60 to -0.79

Very Strong 0.8 to 1 -0.8 to -1

Note that correlation coefficient of 0 does not imply that there is no relationship be-
tween the variables. For example, a value of 0 for a Pearson correlation coefficient only
indicates that there is no linear association between the variables. However, other relation-
ships, such as quadratic relationship, can exist between them.

Also note that a coefficient of +1 means that there is no variation between the data
points and the line of best fit.

4.1.2 Terminology Definition

This subsection provides definitions for the terms that are used in the subsequent sections
with the purpose of reducing ambiguity and making it easier to understand the requirements.
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• Arithmetic Mean: The arithmetic mean of a set of data, also referred to as mean or
sample mean, is computed as the sum of all the values in the dataset divided by the
count of all data points in the dataset.

• Variance: Variance is a measure of how far the numbers in a set are spread out. It
measures the distance between each number in the set from the mean of the numbers in
the set. It is calculated as the average of the squared differences between each number
in the set and the mean.

• Standard Deviation: Standard deviation is a measure that is used to quantify the
amount of variation of a set of data values. It is computed as the square root of the
variance. Standard deviation is used when a sample of data from an entire population
is available.

• Nominal Data: Nominal data also known as categorical data is a type of data that is
categorized but there is no order between the categories.

• Ranked Data: Ranked data is a set of variables that for any two of them, one is ranked
either equal to or lower than or higher than the other one. The relationship between
these variables is called ranking. More information is provided in DD4.

• Ordinal Data: Ordinal type is when there is a clear ordering of variables, but the
difference between values is inconsistent. Rating between 0 and 10 is an example of
this kind of variables. The difference between rate 2 and 4 is not necessarily the same
as the difference between rate 6 and 8.

• Interval Data: For an interval variable, order is important as for an ordinal variable. In
addition, the interval between the values are equally spaced. For example, temperature
is considered as an interval variable. The difference between 50 degrees and 60 degrees
is the same as the difference between 70 degrees and 80 degrees.

• Ratio Data: A ratio variable has all the properties of an interval variable. Moreover,
when the value of the variable is equal to 0, it means that there is none of that variable.
For example, a value of 0 for a variable such as height means we have no height. Note
that ratio data can also be considered as an interval data and an ordinal data. In other
words, ratio data ⊂ interval data ⊂ ordinal data.

The definition of nominal, ordinal, interval, and ratio variables, known as level of
measurement, was first developed by Stevens (1946) [10]. The level of measurement
determines which statistical measures are appropriate for the specific need. Note that
for calculating Pearson correlation coefficients, variables need to have a level of mea-
surement at least equal to interval. The reason is that we need to compute mean of
variables for Pearson correlation coefficients and computing an average is meaningful
only when the intervals between values are equally spaced.
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If data is ordinal, Spearman correlation coefficients or quadrant correlation coefficients
are used instead.

• Homoscedasiticity: Homoscedacsiticity happens when both variables are normally dis-
tributed around the regression line. It means that the variances along the regression
line remain similar while moving along the line.

When using Pearson correlation coefficient as a measure, violation in homoscedasiticity
may result in over-estimating the goodness of the fit. Figure 5 shows this characteristic.
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(a) Homoscedasiticity
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(b) Heteroscedasiticity

Figure 5

• Bivariate normal distribution: When each variable is normally distributed itself and is
also normally distributed at all levels of the other variable, the distribution is bivariate
normal. If this assumption is met, the only type of statistical relationship that can
exist between the two variables is a linear relationship. However, if the assumption
is violated, a non-linear relationship may exist. It is important to determine if a
non-linear relationship exists between two variables before describing the results using
Pearson correlation coefficient.

• Outlier: An outlier is a data point that does not follow the general pattern of the
data and its value is extremely different from the rest of the data, such that it has a
large effect on some parameters such as mean of the data and consequently on Pearson
correlation coefficient and the regression line. Pearson correlation coefficient is sensitive
to outliers, so if data point removal is not allowed, we should use a non-parametric
estimation such as Spearman correlation coefficient.

• Linearity: Linearity is a mathematical relationship between two variables that can
be represented as a straight line. If the relationship between the variables is non-
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linear, Pearson correlation coefficient is not an appropriate statistic for measuring the
association. Figure 6 visualizes this relationship.
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(b) Nonlinear

Figure 6

• Monotonic function: Monotonic function b(a) is a function where increasing in the
value of a results in either always increasing or always decreasing in the value of b.
Figure 7 visualizes this function.
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(a) Monotonically increasing
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(b) Monotonically decreasing

Figure 7

4.1.3 Coordinate Systems

While working with medical images, it is necessary to be familiar with the different coor-
dinate systems of the medical literarure and how data (voxels’ orientation) is interpreted
in different medical and non-medical software. Each coordinate system uses one or more
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numbers (coordinates) to uniquely determine the position of a point (in the medical context,
we refer to each point as a voxel). The purpose of this section is to introduce some of the
coordinate systems related to the medical imaging. There are different coordinate systems
to represent data. A knowledge of the following coordinate systems is needed to be able to
work with the medical images.

4.1.3.1 Cartesian Coordinate System

A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a
2D plane by a pair of numerical coordinates or in a 3D space by three numerical coordinates.
We assume a right-hand Cartesian coordinate system throughout this document.

4.1.3.2 World Coordinate System

World Coordinate System (WCS) is a Cartesian coordinate system that describes the physical
coordinates associated with a model such as a MRI scanner or a patient. While each model
has its own coordinate system, without a universal coordinate system such as WCS, they
cannot interact with each other. For model interaction to be possible, their coordinate
systems must be transformed into the WCS. Figure 10 shows the WCS corresponding space
and axes.

Figure 8: World Coordinate System Space and Axes [11]

4.1.3.3 Anatomical Coordinate System

Anatomical coordinate system, also known as patient coordinate system, is a right-handed
3D coordinate system which describes the standard anatomical position of a human using
the following 3 orthogonal planes:

• Axial / Transverse plane: is a plane parallel to the ground that separates the body
into head (superior) and tail (inferior) positions.
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• Coronal / Frontal plane: is a plane perpendicular to the ground that divides the body
into front (anterior) and back (posterior) positions.

• Sagittal / Median plane: is a plane that divides the body into right and left positions.

Figure 9 shows this coordinate system.

Figure 9: Anatomical Coordinate System Space and Axes [11]

Medical applications follow an anatomical coordinate system to store voxels in sequences.
Depending on how the data is stored, this coordinate system can be divided into different
bases. The most common ones are:

• LPS Coordinate System:

The LPS coordinate system, also known as DICOM (patient) coordinate system, is a
left-hand coordinate system used in DICOM images. In this system, voxels are ordered
from left to right in a row, rows are ordered from posterior to anterior, and slices are
stored from inferior to superior. In other words, it is an LPI system.
LPS stands for Left-Posterior-Superior which indicates the directions that spatial axes
are increasing.

• RAS Coordinate System:

LPI is a right-hand coordinate system for voxel orientation. It stores voxels from
right to left to create rows, rows from anterior to posterior to create slices and slices
from superior to inferior to create volumes. This system is the preferred basis for
Neurological applications such as 3dfim+ and is used in NIfTI files. The increasing
position order is RAS.
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4.1.3.4 Image Coordinate System

To specify locations in an image we need to know to which coordinate system it is referenced.
Different software may use different orders as their index convention.

• Image Coordinate System for Matlab:

In Matlab, index numbering starts at the upper left corner. To express the position
of point (x, y, z), we should consider that the x axis increases from left to right, the y
axis increases to the bottom and the z axis increases backward.

Figure 10: Image Coordinate System Space and Axes in Matlab [11]

• Image Coordinate System for AFNI:

In AFNI, the lower left hand corner of the image is considered as the origin, which
represents the position of the first voxel (0,0,0).

If we are using different file formats and software, we need to transform their coordinate
systems into WCS.

4.1.4 Physical System Description

We do not study the physical system for MRI or how the data is actually generated.

4.1.5 Goal Statements

Given an fMRI time series (DD6), one or more ideal time series (DD7) and zero or more
orthogonal time series (DD13):

GS1: Estimate the Pearson correlation coefficients between the (best) ideal time series and
the fMRI time series at each voxel over time.
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GS2: Estimate the Spearman correlation coefficient between the (best) ideal time series and
the fMRI time series at each voxel over time.

GS3: Estimate the quadrant correlation between the (best) ideal time series and the fMRI
time series at each voxel over time.

GS4: In case of having multiple ideal signals, report the index number for the best ideal time
series.

GS5: Calculate the percentage change in the fMRI time series due to the (best) ideal time
series relative to the average for each voxel.

GS6: Calculate the percentage change in the fMRI time series due to the (best) ideal time
series relative to the baseline for each voxel.

GS7: Calculate the fMRI time series baseline for each voxel.

GS8: Calculate the fMRI time series average for each voxel.

GS9: Calculate the percentage change in the fMRI time series due to the (best) ideal time
series relative to the topline for each voxel.

GS10: Calculate the fMRI time series topline quantity for each voxel.

GS11: Calculate the standard deviation of the residuals at each voxel between the fMRI
dataset and corresponding data estimation.

4.2 Solution Characteristics Specification

In this section, necessary information to understand the meaning of instance models, pre-
sented in subsection 4.2.4, is provided.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by
filling in the missing information for the physical system. The numbers given in the square
brackets refer to the theoretical model [T], data definition [DD], instance model [IM], or
likely change [LC], in which the respective assumption is used.

The calculation of Pearson correlation coefficient requires the following data assump-
tions to hold:

A1: The variables should be either of type interval or ratio. In other words, they should
be continuous, which is also known as quantitative variable. However, both variables
do not need to be measured on the same scale; one can be of type interval while the
other can be of type ratio [T1, IM1].
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A2: There is a linear relationship between the two variables [T1, IM1].

A3: The variables are bivariately normally distributed [T1, IM1].

A4: Outliers are removed entirely or kept to a minimum [T1, IM1, LC1].

A5: The variables are homoscedastic [T1, IM1].

If data does not meet all of the above assumptions, then Spearman correlation coefficient
or quadrant correlation coefficient can be used, if the data holds the following characteristics:

A6: The variables should be either of type interval, ratio or ordinal. However, both variables
do not need to be measured on the same scale; one can be interval while the other is
ratio [T2, T3, IM3, IM4].

A7: The variables should be monotonically related. One can check whether a monotonic
relation exists between the two variables using a scattergram [T2, T3, IM3, IM4].

It is worth mentioning that Spearman correlation coefficient estimation is not very sen-
sitive to outliers. Hence, if there are outliers in the data, the result should still be valid.

4.2.2 Theoretical Models

This section focuses on the general equations and laws that 3dfim+ is based on. In this
document, we considered indexing starts from 1.

18



Number T1

Name Pearson

Label Calculating Pearson Correlation Coefficient

Equation ρ(A,B) =

n∑
i=1

(ai−ā)(bi−b̄)

[
n∑

i=1
(ai−ā)2

n∑
i=1

(bi−b̄)2]
1
2

Description The equation calculates Pearson correlation coefficients ρ applied to two
datasets A : Rn and B : Rn both of size n.

ā and b̄ are sample means (DD1) of A and B, respectively.

ρ is the Pearson correlation coefficient between A and B.

The equation can be also written as:

ρ(A,B) =

n∑
i=1

aibi−nāb̄

(n−1)σaiσbi

Where σa and σb are standard deviations (DD3).

Assumptions A1, A2, A3, A4 and A5 must hold when calculating
this correlation.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

http://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

Ref. By IM1
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Number T2

Name Spearman

Label Calculating Spearman Correlation Coefficient

Equation ρs(A,B) =

n∑
i=1

(rank(ai,A)−n+1
2

)(rank(bi,B)−n+1
2

)√
n∑

i=1
(rank(ai,A)−n+1

2
)2(rank(bi,B)−n+1

2
)2

Description This formula calculates Spearman correlation coefficient ρs applied to two
sample datasets A : Rn and B : Rn both of size n.

ρs is the Spearman correlation coefficient between A and B.

rank(ai, A) and rank(bi, B) are rank functions (DD4).

This formula can also be written as:

ρs(A,B) = 1−
6

n∑
i=1

h2i

n(n2−1)

hi is the difference between paired ranked variables:
hi = rank(ai, A)− rank(bi, B)

Note that assumptions A6 and A7 must hold while calculating this
correlation.

Source http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf

Ref. By IM3
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Number T3

Name Quadrant

Label Calculating Quadrant Correlation Coefficient

Equation ρq(A,B) =

n∑
i=1

(sign(rank(ai,A)−n+1
2

))(sign(rank(bi,B)−n+1
2

))√
n∑

i=1
((rank(ai,A)−n+1

2
))2((rank(bi,B)−n+1

2
))2

Description This formula calculates the quadrant (sign) correlation coefficient ρq using
the rank function (DD4) and sign function (DD5) applied to two sample
datasets A : Rn and B : Rn both of size n.

ρq is the quadrant correlation coefficient between A and B.

Note that assumptions A6 and A7 must hold while calculating this
correlation.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

https://books.google.ca/books?id=-058B6kg32sC&pg=PA19&

lpg=PA19&dq=quadrant+correlation&source=bl&ots=diTd_

dOtou&sig=vfZXlpyTf2BzVWYUAQYpZQSjiv4&hl=en&sa=X&ved=

0ahUKEwi4g7DP45LSAhXpy4MKHfFPCU04ChDoAQg-MAY#v=onepage&q=

quadrant%20correlation&f=false

Ref. By IM4
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Number T4

Name Linear Regression

Label Linear Regression Model

Equation f(t, x) = x1ω1(t) + x2ω2(t) + · · ·+ xnωn(t)

Description Regression is the task of finding the best fit for a model through a set of data
points. Given data points (ti, yi) where i = 1, · · · ,m, we want to find the
vector x of size n (m > n) of parameters that gives the best fit to the data by
the model function f(t, x). The terms in the linear model f(t, x) are either
constant, i.e. ωi(t) = 1 or the product of a parameter xi and a function ωi(t).

The above equation is called a linear regression equation and the fit-
ting line that it generates is called line of best fit. If the data is linear, then
the line of best fit is straight; otherwise, it is a curve.

One of the common methods for estimating the linear regression is
least squares method. (T8).

Source [12]

Ref. By T5, T8

Number T5

Name SSE

Label Sum of Squared Errors

Equation SSE =
n∑
i=1

(yi − f(ti, x))2

Description SSE is the sum of squared residuals. Here, the residual refers to the differ-
ence between the data yi and the estimated value f(ti, x) (T4).

Source https://en.wikipedia.org/wiki/Residual_sum_of_squares

Ref. By T6, IM12
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Number T6

Name MSE

Label Mean Squared Error

Equation MSE = 1
n
(
n∑
i=1

(yi − f(ti, x))2)

Description MSE is the mean of the SSE (T5).

Source https://en.wikipedia.org/wiki/Mean_squared_error

Ref. By T7, IM12

Number T7

Name Residuals Deviation

Label Standard Deviation of the Residuals

Equation σr =
√

MSE

Description MSE is the mean squared error (T6).

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

https://brownmath.com/stat/infregr.htm

Ref. By IM12
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Number T8

Name Least Squares

Label Linear Least Squares

Equation Ax ∼= b

Description Given the best fit model f(t, x) (T4) and data points (ti, yi), i = 1, · · · ,m,
we want to find an estimation for x. Least squares tries to minimize the
residual as follows:

min
m∑
i=1

(yi − f(ti, x))2

The matrix representation is

b = Ax+ ε

Where:
A is a m× n matrix with entries aij = ωj(ti),
b is a m× 1 vector where bi = yi,
x is a n× 1 vector of parameters,
and ε is a m× 1 vector of errors.

If m > n, the system is overdetermined and there is no exact solu-
tion for x. Instead, our goal is to minimize some norm of the residual
vector r = b− Ax as a function of x :

min‖Ax− b‖2
2

If we use 2-norm as the approximation, the method is called least squares
and takes the form of Ax ∼= b.

We can show that:
x̂ = (ATA)−1AT b

The estimated fit is then given by:

b̂ = Ax̂ = A(ATA)−1AT b

The residual vector ε̂ is : b− Ax̂ = b− A(ATA)−1AT b.

Source [12]

Ref. By T4, IM12
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4.2.3 Data Definitions

This section provides the mathematical formulas of the arithmetic concepts used in this doc-
ument.

Number DD1

Name Mean

Label Calculating Arithmetic Mean

Symbol ¯

Equation ā = 1
d

d∑
i=1

ai

Description This formula calculates arithmetic mean, also referred as sample mean or
mean for a dataset containing d values.

Source http://mathworld.wolfram.com/ArithmeticMean.html

Ref. By T1, IM1

Number DD2

Name Variance

Label Calculating Sample Variance

Symbol s2

Equation s2
a = 1

d

d∑
i=1

(ai − ā)2

Description This formula calculates sample variance of a dataset containing d values.

Source http://mathworld.wolfram.com/SampleVariance.html

Ref. By DD3
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Number DD3

Name Standard Deviation

Label Calculating Sample Standard Deviation

Symbol σ

Equation σa =
√
s2
a =

√
1
d

d∑
i=1

(ai − ā)2

Description This formula calculates sample standard deviation, that is the square root
of the sample variance (DD2) when applied to a dataset containing d values.

Source http://mathworld.wolfram.com/StandardDeviation.html

Ref. By T1
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Number DD4

Name Rank

Label Rank Function

Symbol rank()

Equation rank : R× Rn → N

Description The rank of data points is determined by sorting them in an ascending
order and assigning a value according to their position in the sorted list. If
ties exist, the average of all of the tied positions is calculated as the rank.
Mathematically, the rank of element a in dataset A is defined as follows:

rank(a,A) : R× Rn → N
rank(a,A) ≡ avg(indexSet(a, sort(A)))

indexSet(a,B) : R× Rn → set of N
indexSet(a,B) ≡ {j : N|j ∈ [1..|B|] ∧Bj = a : j}

sort(A) : Rn → Rn

sort(A) ≡ B : Rn, such that
∀(a : R|a ∈ A : ∃(b : R|b ∈ B : b = a) ∧ count(a,A) = count(b, B)) ∧ ∀(i :
N|i ∈ [1..|A| − 1] : Bi ≤ Bi+1)

count(a,A) : R× Rn → N
count(a,A) : +(x : N|x ∈ A ∧ x = a : 1)

avg(C) : set of N→ R
avg(C) ≡ +(x : N|x ∈ C : x)/|C|

The above equations use the Gries and Schneider notation [13, p. 143]
for set building and evaluation of an operator applied over a set of values.
Specifically, the expression (∗x : X|R : P ) means application of the operator
∗ to the values P for all x of type X for which range R is true. In the above
equations, the ∗ operators include ∀, ∃ and + are used.

Source https://en.wikipedia.org/wiki/Ranking

Ref. By T2, T3
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Number DD5

Name Sign

Label Sign Function

Symbol sign()

Equation

sign(a) =


1 a > 0

0 a = 0

−1 a < 0

Description Given a variable a, the sign function returns 1 if a is positive, 0 if a is equal
to zero, and -1 if a is negative.

Source https://en.wikipedia.org/wiki/Sign_function

Ref. By T3

Number DD6

Name 3d+time

Label Mathematical Representation of 3d+time Dataset

Symbol X : Rm×n×p×q

Equation -

Description 3d+time datasets are 4D datasets that have a temporal component, a time
dimension that is the time intervals during scanning, collecting and con-
catenating datasets together. 3d+time datasets are the basic units of the
fMRI.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By GS1, DD8, DD14, DD16, DD17, DD19, IM1, IM2, IM3, IM4, IM9, IM10,
R1
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Number DD7

Name Ideal Signal

Label Mathematical Representation of Ideal (Reference) Signal (Time
Series)

Symbol r : Rn

Equation -

Description Ideal signal is a waveform of choice.

Source https://en.wikipedia.org/wiki/Square_wave

Ref. By GS1, DD16, IM1, IM2, IM3, IM4, IM6, IM9, IM10, IM12, R1, R7, R8, R11

Number DD8

Name Sub-brick

Label Sub-brick

Symbol sb : Rm×n×p

Equation -

Description A dataset (DD6) is comprised of one or more sub-bricks. Each sub-brick is
a 3D array of numbers.

Source https://msu.edu/~zhuda/fmri_class/labs/lab2/afni01_intro.pdf

Ref. By DD9
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Number DD9

Name Slice

Label Slice

Symbol slc : Rm×n

Equation -

Description A sub-brick (DD8) consists of slices. Each move in the Z plane is considered
as one slice.

Source https://msu.edu/~zhuda/fmri_class/labs/lab2/afni01_intro.pdf

Ref. By DD10

Number DD10

Name Voxel

Label Voxel

Symbol v : R

Equation −

Description A slice (DD9) consists of n × n voxels. A real number is assigned to each
voxel which reports its activation significance.
Figure 11 is provided for a better understanding.

Source https://msu.edu/~zhuda/fmri_class/labs/lab2/afni01_intro.pdf

Ref. By GS1

voxel

n

p

m

q

Figure 11: 3x3x3 dataset consisting of 3 sub-bricks
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Number DD11

Name Baseline

Label Baseline Model

Symbol base: Rn → Rn

Equation base(x) = anx
n + an−1x

n−1 + · · ·+ a2x+ a1

Description The average signal level from which a signal departs and to which it returns.
Baseline is modeled as a function of time. pnum (DD12) is used to set the
degree of the polynomial in baseline model.

Source http://dalspace.library.dal.ca/bitstream/handle/10222/37440/

Rukhshinda-Jabeen-MSc-CHEM-August-2013.pdf?sequence=6

Ref. By DD13, IM2, IM6, IM7, IM8

Number DD12

Name Polynomial Degree

Label Polynomial Degree of Baseline Model

Symbol pnum: W

Equation -

Description pnum indicates the degree of the polynomial in the baseline model. For
example, pnum = 0 indicates a constant baseline, pnum = 1 is used to
model a linear baseline and pnum = 2 removes any quadratic trend in data
and so on. The default of the 3dfim+ is pnum = 1.

Source https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dfim+

.html

Ref. By DD11, IM2, IM6, IM7, IM8, R1, IM12
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Number DD13

Name Orthogonal

Label Orthogonal Time Series

Symbol φ : Rn

Equation -

Description Time series that is perpendicular to the baseline (DD11). Two polynomials
are orthogonal if their inner product is zero. We define an inner product
for two functions by integrating their product.

∫ b
a
φ(x)base(x)dx = 0

Source https://www.johndcook.com/OrthogonalPolynomials.pdf

Ref. By GS1, IM2, IM6, IM7, IM8, IM12, R1

Number DD14

Name Threshold

Label Threshold For Voxels’ Intensity

Symbol p : R; 0 ≤ p ≤ 1.0

Equation -

Description p is a variable between 0 and 1. By default p = 0.0999.
3dfim+ calculates the average image intensity for the first sub-brick of the
X (DD6) in the time series and then excludes any voxel whose intensity is
less than p ∗ average. This process decreases the run time of the program.

Source https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dfim+

.html

Ref. By R1
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Number DD15

Name Correlation Coefficient Comparing Value

Label Comparing Value For Correlation Coefficient Screen Display

Symbol cval : R; 0 ≤ cval ≤ 1

Equation -

Description cval is used to control the correlation coefficient values displayed on the
user’s screen as the output of the program 3dfim+. The correlation coeffi-
cient value for each voxel is printed on the screen only if the absolute value
of the computed correlation coefficient is greater than or equal to cval.

Source https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dfim+

.html

Ref. By R1

Number DD16

Name Best Ideal

Label Best Ideal Signal

Symbol rk : Rn

Equation -

Description When multiple ideal signals (DD7) are defined, each of them is separately
correlated with the dataset A (DD6). For each voxel, one of the signals is
the most highly correlated one to that voxel’s activity. We call this signal
the best ideal signal for that voxel.

Consider the g ideal signals r1, r2, · · · , rg. For each voxel:

rk = argmax
ri

i=1···g

| ρ(A, ri) | (DD18)

In this case, rk is the best ideal signal.

Source https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dfim+

.html

Ref. By GS1, DD17, IM5, IM6, IM7, IM8, IM9, IM10, R6, R7, R8, R11
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Number DD17

Name Best Index

Label Index of Best Ideal Signal

Symbol k : N

Equation -

Description The index of the best ideal signal (DD16) is called the best index.
Consider the g ideal signals r1, r2, · · · , rg and a dataset A (DD6). For each
voxel:

rk = argmax
ri

i=1···g

| ρ(A, ri) | (DD18)

In this case, the kth ideal signal is the best ideal signal and k is the best
index.

Source https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dfim+

.html

Ref. By R6, IM5

Number DD18

Name argmax

Label Argmax Function

Symbol argmax: (R→ R)→ (R→ R)

Equation -

Description Given a function f defined on a set D, argmax function is defined as follows:

argmax
x∈D

f(x) := {x | ∀y ∈ D : f(x) ≥ f(y)}

Source https://www.cs.ubc.ca/~schmidtm/Documents/2016_540_Argmax.pdf

Ref. By DD16, DD17, IM5
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Number DD19

Name Peak

Label Peak to Peak

Symbol pp() : R

Equation pp(A) = max
i=1···n

(ai)− min
i=1···n

(ai) where ai ∈ A

Description Peak to peak function calculates the variation among the elements in a
dataset (DD6).

Source -

Ref. By IM9, IM10, IM11

4.2.4 Instance Models

In this section, we express the 3dfim+ functionality mathematically.
The goal GS1 to GS11 is solved by IM1 to IM12.
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Number IM1

Name Pearson Model

Label Calculating Pearson Correlation Coefficient Between the Refer-
ence Signal and the Input Dataset

Input X : Rm×n×p×q, r : Rq

Output ρijk(X, r) =

q∑
l=1

(xijkl−x̄ijk)(rl−r̄)

[
q∑

l=1
(xijkl−x̄ijk)2(rl−r̄)2]

1
2

Description The formula calculates the Pearson correlation coefficient (T1) between the
ideal time series r (DD7) and the 3d+time dataset X (DD6).
x̄ijk and r̄ are sample means (DD1) defining as follows:

x̄ijk =

q∑
l=1

xijkl

q

r̄ =

q∑
i=1

ri

q

Note that assumptions A1, A2, A3, A4 and A5 must hold while cal-
culating this correlation.

We also assumed that r = rk (DD16) in case of having more than
one ideal signal.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R2, R3, LC2
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Number IM2

Name fMRI Dataset Model

Label Mathematical Model of Measured fMRI Dataset To Find Fit Co-
efficients

Input X, φi ∈ Rq, ri ∈ Rq

Output βTijk = [β0, β1, · · · , γ1, γ2, · · · , α1, α2, · · · ]T

Description Correlation analysis of each voxel’s time series in X (DD6) with reference
signal(s) ri (DD7) where:

M =



1 1 · · · φ11 · · · r11 · · ·
1 2 · · · φ12 · · · r12 · · ·
1 3 · · · φ13 · · · r13 · · ·
...

...
. . .

...
. . .

...
. . .

1 f · · · φ1f · · · r1f · · ·



Xijk = yijk =



y1

y2

y3

...

yf


β∗ijk =



β0

β1

...

γ1

γ2

...

α1

α2

...



εijk =


ε1

ε2
...

εf



The equation can be also written as: Xijk = Mβ∗ijk + εijk where:
M is the data model consisting of baseline (DD11), orthogonal time series
φi’s (DD13) and ideal time series ri’s (DD7).
β∗Tijk is the vector of unknown fit coefficients for each voxel vijk.
εijk is the noise at a specific voxel vijk over time.
α ’s are the fit coefficient for ideal signals.
β’s are the fit coefficient for baseline.
γ’s are the fit coefficient for orthogonal time series.

Source
http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By IM6, IM7, IM8, R2, R12
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The fMRI data we get from brain activity can be modeled as a factor of the model M .
The data is composed of baseline, orthogonal time series, reference signal time series and
noise. In the X matrix, the first columns indicate baseline (DD11) of the signals we get from
each voxel’s activity. The first column is for the constant baseline, the second column indi-
cates the linear baseline, etc. pnum (DD12) indicates the degree of the baseline polynomial.
After baseline columns, we have orthogonal time series (DD13) columns shown by φ’s. We
can have zero or more orthogonal time series. The next columns are for the reference time
series. We can define one or more ideal time series.

Number IM3

Name Spearman Model

Label Calculating Spearman Correlation Coefficient Between the Refer-
ence Signal and the Input Dataset

Input X : Rm×n×p×q, r : Rq

Output ρsijk(X, r) =

q∑
l=1

(rank(xijkl,Xkl)− q+1
2

)(rank(rl,r)− q+1
2

)√
q∑

l=1

(rank(xijkl,Xkl)− d+1
2

)2(rank(rl,r)− q+1
2

)2

Description The above formula calculates Spearman correlation coefficient (T2) between
the ideal time series r (DD7) and the 3d+time dataset X (DD6).

Assumptions A6 and A7 must hold while calculating this correlation.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R4
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Number IM4

Name Quadrant Model

Label Calculating Quadrant Correlation Coefficient Between the Refer-
ence Signal and the Input Dataset

Input X : Rm×n×p×q, r : Rq

Output ρqijk(X, r) =

q∑
l=1

(sign(rank(xijkl,Xkl)− q+1
2

))(sign(rank(rl,r)− q+1
2

))√
q∑

l=1
((rank(xijkl,Xkl)− q+1

2
))2((rank(rl,r)− q+1

2
))2

Description The above formula calculates quadrant correlation coefficient between the
ideal time series r (DD7) and the 3d+time dataset X (DD6).

Note that assumptions A6 and A7 must hold while calculating this
correlation.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R5

Number IM5

Name Best Index Model

Label Finding the Index of the Most Highly Correlated Ideal Time Series
with the Dataset

Input X : Rm×n×p×q, ri : Rq

Output k : N such that rk = argmax
ri

i=1···g

| ρ(X, ri) |

Description The program gives an integer upon requesting the best index. argmax
(DD18) returns the best ideal signal rk (DD16) and index k is the best
index (DD17).

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R6
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Number IM6

Name Baseline Quantity

Label Calculating Baseline Quantity for fMRI Dataset

Input X : Rm×n×p×q, ri : Rq

Output Baseline =
c∑
i=1

βi.avg(basei) +
h∑
j=1

γj.avg(φi) + α̂.min(rk)

Description The program returns a real number for the Baseline computed as mentioned
in the output above.
We assume that the polynomial baseline model is of order c (pnum = c
(DD12)) and we have h orthogonal time series (DD13).
basei indicates the baseline model (DD11) of degree i.
avg() function calculates the average value of its input over time.
α̂ is the fit coefficient for the (best) ideal time series (DD16).
min() function outputs the minimum value of the (best) ideal time series
(DD7) over time.
β and γ are defined in IM2.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By IM9, R7, R9
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Number IM7

Name Average Quantity

Label Calculating Average Quantity for fMRI Dataset

Input X : Rm×n×p×q, ri : Rq

Output Average =
c∑
i=1

βi.avg(basei) +
h∑
j=1

γj.avg(φi) + α̂.avg(rk)

Description The program returns a real number for the Average computed based on the
formula mentioned in the output.
We assume that the polynomial baseline model is of order c (pnum = c
(DD12)) and we have h orthogonal time series (DD13).
basei indicates the baseline model (DD11) of degree i.
avg() function calculates the average value of its input over time.
α̂ is the fit coefficient for the (best) ideal time series (DD16).
β and γ are defined in IM2.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By IM10, R8, R10

41

http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf


Number IM8

Name Topline Quantity

Label Calculating Topline Quantity for fMRI Dataset

Input X : Rm×n×p×q, ri : Rq

Output Topline =
c∑
i=1

βi.avg(basei) +
h∑
j=1

γj.avg(φi) + α̂.max(rk)

Description The program returns a real number for the Topline computed based on the
above formula.
We assume that the polynomial baseline model is of order c (pnum = c
(DD12)) and we have h orthogonal time series (DD13).
basei indicates the baseline model (DD11) of degree i.
avg() function calculates the average value of its input over time.
α̂ is the fit coefficient for the (best) ideal time series (DD16).
max() function outputs the maximum value of the (best) ideal time series
(DD16) over time.
β and γ are defined in IM2.

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By IM11, R11, R12

42

http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf


Number IM9

Name Baseline Percentage Change

Label Calculating Percentage Change in the fMRI Dataset Relative to
Baseline

Input Baseline (IM6), ri : Rq

Output %base = 100. α̂.pp(rk)
Baseline

Description The formula calculates the percentage change in the fMRI dataset (DD6)
due to the (best) ideal time series (DD7, DD16) relative to the Base-
line(IM6) for each voxel.
α̂ is the fit coefficient for the (best) ideal time series.
pp() is the peak to peak function (DD19) which calculates the variation of
the (best) ideal time series as follows:

pp(rk) = max
j=1···d

(rkj)− min
j=1···d

(rkj)

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R7
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Number IM10

Name Average Percentage Change

Label Calculating Percentage Change in the fMRI Dataset Relative to
Average

Input Average (IM7), ri : Rq

Output %avg = 100. α̂.pp(rk)
Average

Description The formula calculates the percentage change in the fMRI dataset (DD6)
due to the (best) ideal time series (DD7, DD16) relative to the Average
(IM7) for each voxel.
α̂ is the fit coefficient for the (best) ideal time series.
pp() is the peak to peak function (DD19) which calculates the variation of
the (best) ideal time series as follows:

pp(rk) = max
j=1···d

(rkj)− min
j=1···d

(rkj)

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R8
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Number IM11

Name Topline Percentage Change

Label Calculating Percentage Change in the fMRI Dataset Relative to
Topline

Input Topline(IM8), ri : Rq

Output %top = 100. α̂.pp(rk)
Topline

Description The formula calculates the percentage change in the fMRI dataset (DD6)
due to the (best) ideal time series (DD7, DD16) relative to the Topline
(IM8) for each voxel.
α̂ is the fit coefficient for the (best) ideal time series.
pp() is the peak to peak function (DD19) which calculates the variation of
the (best) ideal time series as follows:

pp(rk) = max
j=1···d

(rkj)− min
j=1···d

(rkj)

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R11
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Number IM12

Name Standard Deviation of the Residuals

Label Calculating The Standard Deviation of the Residuals at Each
Voxel Between the fMRI Dataset and Corresponding Data Es-
timation

Input X : Rm×n×p×q, φi : Rq, ri : Rq

Output σ̂ijk =

√
q∑

l=1
(Xijkl−X̂ijkl)2

q−nb−no−ni

Description Extending the theoretical model T8 to the fMRI dataset, we have:

X̂ijkl = (MTM)−1MTXijkl

Using theoretical models T5, T6 and T7 we can calculate thestandard de-
viation of the residuals:

σ̂ijk =

√√√√√ q∑
l=1

(Xijkl − X̂ijkl)2

q − pnum− no − ni

Where:
pnum is the polynomial degree (DD12),
no is the number of orthogonal time series (DD13),
and ni depends on the number of ideal time series (DD7) such that:

ni =

{
1 if we have 1 ideal time series

2 if we have more than one ideal time series

Source http://homepage.usask.ca/~ges125/fMRI/AFNIdoc/3dfim+.pdf

Ref. By R13

4.2.5 Data Constraints

Data constraints on the input are as follows:

• Dimensions of reference signals (DD7) and orthogonal time series (DD13) should
match.

Data constraints on the output are as follows:
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• Correlation coefficients ρ (IM1),ρs (IM3),ρq (IM4) must lie between -1 and 1.

4.2.6 Properties of a Correct Solution

Whether we use Pearson, Spearman or quadratic correlation coefficient estimation, the value
of the computed correlation coefficients should be between −1 and 1.

5 Requirements

This section provides functional and non-functional requirements for 3dfim+.

5.1 Functional Requirements

R1: Input the following functions, data and parameters:

symbol description

X fMRI data as a 3d+time dataset in NIfTI format (DD6)

pnum degree of the polynomial in the baseline model (DD12)

φ orthogonal time series function(s) (DD13)

r reference time series function(s) (DD7)

p threshold for voxels’ intensity (DD14)

cval comparing value for correlation coefficient screen display (DD15)

R2: Use the inputs in R1 to estimate the vector of unknown parameters β (IM2) at each
voxel (from IM2).

R3: Calculate the Pearson correlation coefficient at each voxel between X and (best) r
(from IM1).

R4: Calculate the Spearman correlation coefficient at each voxel between X and (best) r
(from IM3).

R5: Calculate the quadrant correlation coefficient at each voxel between X and (best) r
(from IM4).

R6: In case of having multiple ideal signals r, report the index number k (DD17) for the
best ideal time series rk (DD16) (from IM5).

R7: Calculate the percentage change in X due to the (best) ideal time series (DD7, DD16)
relative to the Baseline (IM6) for each voxel (from IM9).

R8: Calculate the percentage change in X due to the (best) ideal time series (DD7, DD16)
relative to the Average (IM7) for each voxel (from IM10).
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R9: Calculate the fMRI dataset X Baseline quantity for each voxel (from IM6).

R10: Calculate the fMRI dataset X Average quantity for each voxel (from IM7).

R11: Calculate the percentage change in X due to the (best) ideal time series (DD7, DD16)
relative to the Topline (IM8) for each voxel (from IM11).

R12: Calculate the fMRI dataset X Topline quantity for each voxel (IM8).

R13: Calculate the standard deviation of the residuals at each voxel between the fMRI
dataset and corresponding data estimation (from IM12).

5.2 Non-functional Requirements

Considering the use of this program in the research, as well as keeping an eye on its future use
in the clinical practice, the priority non-functional requirements are correctness, reliability,
verifiability, understandability, reusability and maintainability.

6 Likely Changes

LC1: A4 - Although outliers can have deleterious effects on statistical analyses, some people
prefer not to exclude them reasoning the outliers are parts of the dataset.

LC2: IM1 - There are other methods of calculating correlation coefficients such as Kendall
rank correlation which is likely to be used instead of Pearson correlation. Input data
assumptions might be different from method to method.
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