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ABSTRACT
About 20 years ago the need for scientists and engineers to have
basic knowledge of software development skills and tools became
apparent. Without these so-called software carpentry skills, devel-
opers were wasting time and compromising the quality of their
work. Since that time great progress has been made with software
carpentry, as evidenced by the growing understanding of the im-
portance of tools, and by the growth of the namesake Software
Carpentry foundation and other similar projects. With scientific
software developers now prepared to move forward, we should
turn our attention to the next logical step after carpentry: Software
Engineering (SE) applied to Scientific Computing Software (SCS).
Past attempts with SE for SCS have not always been successful;
therefore, this paper proposes a vision for future success, including
SE specifically adapting ideas to SCS, SCS recognizing the value of
software artifacts other than the code, and all parties increasing the
emphasis on empirical evidence and the quality of replicability. Sev-
eral ideas are proposed for turning the proposed vision into a reality,
including promoting requirements documentation for replicability,
building assurance cases for correctness (and other qualities), and
automatic generation of all documentation and code.
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•Mathematics of computing→ Mathematical software; • Soft-
ware and its engineering→ Requirements analysis; Software ver-
ification and validation;
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In 1998 the volunteer organization Software Carpentry was formed
with the goal of improving the productivity of scientists by teaching
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them basic computing skills, such as version control, programming
and task automation (https://software-carpentry.org/). In this paper,
the term software carpentry, in lower case letters, will be used to
denote these skills, while the same term with leading capital letters
will reference the Software Carpentry foundation. Thanks to the
efforts of this organization, and others, the situation has greatly
improved over the last 20 years. For instance, in 2006 only 11%
of Wilson’s software development skills graduate class had prior
experience with version control software [46], but in a similar
course that I taught in the Fall of 2017, almost 70% of the class had
prior experience with version control. Furthermore, in my class the
students from outside of computer science (physics, biology etc.)
were just as likely to be familiar with software development tools
as their computer science colleagues.

The work of the Software Carpentry volunteers, and the efforts
of scientists, should be commended. Although there is still room for
improvement in the basic software development skills for scientists,
the time seems ripe to ask the question: What is the next step for
improving the quality Scientific Computing Software (SCS) and the
productivity of SCS developers? What should software engineers
and tool developers aim for as the scientific community prepares
to move beyond software carpentry?

The need to move past carpentry is obvious if we explore the
carpentry/engineering analogy. For instance, carpentry is adequate
for framing residential homes, but engineering is required to con-
struct large bridges, institutional buildings, nuclear power plants,
etc. Just as for physical construction projects, as SCS problems
get larger and more complex, carpentry alone is not adequate. As
Parnas defined it, Software Engineering (SE) is necessary for “multi-
person construction of multi-version programs” [21]. The need for
engineering is even more pronounced when one considers the soft-
ware developer’s responsibility to the public. We need to ensure
that our confidence in SCS software is not misplaced, especially
when it is employed for design, analysis and decision making in
areas that impact health and safety, such as nuclear safety analysis
and medical imaging. Ensuring confidence will generally involve
documentation and mathematical specification. Historically, these
tasks have not always been popular with SCS developers, so the
path forward needs to be carefully planned.

An example that highlights the need for increasing the emphasis
of SE is the recent white paper proposal for future High Energy
Physics (HEP) software development [41]. HEP software is used
to support the Large Hadron Collider (LHC) facility at CERN as
researchers attempt to answer fundamental questions about the
structure of the universe. The HEP software is huge, with over 5 mil-
lion lines of code [20], and yet the white paper says very little about
SE. The software that has been created is an impressive accomplish-
ment, and the writers of the paper identify important challenges,
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like the enormous amounts of data that will need to be processed,
technology transitions and training. However, the emphasis in the
report is almost completely on the code and tools. Although words
like sustainability, maintainability and reproducibility are used, lit-
tle is mentioned about how these qualities will be achieved, or how
the theories and algorithms will be documented and inspected so
that others outside the immediate community can build confidence
in the software and its results.

Section 1 presents evidence for the success of software carpentry
and thus lays the foundation for the transition to a future emphasis
on SE. Although SE for SCS has been attempted in the past, the
efforts have often not been successful; therefore, Section 2 outlines a
potential vision for future success in research in SE for SCS. Specific
ideas for future SE for SCS research, consistent with the presented
recommendations, are given in Section 3.

1 SUCCESS OF SOFTWARE CARPENTRY
The success of the concept of software carpentry is evident by the
success of the foundation for Software Carpentry. In a four year
period between 2011 and 2015, Software Carpentry delivered over
500 workshops, impacted over 16 000 learners and engaged over
450 instructors [48]. Since 2015, the number of learners impacted
has grown to over 22 000 (https://software-carpentry.org/about/).
Software Carpentry has not only engaged the scientific community;
it has improved the productivity of software developers. Although
difficult to measure [48], positive evidence of impact is available.
Software Carpentry workshops participants have shown a two-fold
(130%) improvement in performance on a computing skills test [2]
and an overwhelming number (95%) of workshop participants have
reported that they would recommend the workshop to others [2].
Pre and post workshop surveys have shown that participants end
the workshop with higher perceptions of their computational abil-
ity, computational understanding and Python coding skills [19].
Moreover, Simperler and Wilson [30] show evidence that a major-
ity of workshop participants were able to use their new skills to
improve their productivity. The data in a recent report of the Soft-
ware Carpentry’s post-workshop surveys [12] shows, for instance,
that pre-workshop 72% of participants have no experience with
Git, while post-workshop 88% said their confidence increased by at
least a bit, and almost 50% said their confidence increased greatly.

The success of the Software Carpentry organization is far from
the only evidence of the growing realization of the importance of
computing skills for scientific software developers. Since the time
of Software Carpentry’s inception in 1998, many researchers have
investigated software engineering practices applied to scientific
programming. A recent survey of this topic [43] has 194 entries in
the bibliography and a recent book [4] provides advice, research re-
sults and case studies of software engineering applied to SCS. Other
organizations besides Software Carpentry have cultivated the im-
portance of sustainable research software, such as the SSI (Software
Sustainability Institute) (https://www.software.ac.uk/) andWSSSPE
(Working toward Sustainable Science for Software: Practice and
Experiences) (http://wssspe.researchcomputing.org.uk/). Govern-
ments have invested in research to improve scientific software for
research, such as the recent Software Infrastructure for Sustained
Innovation (S2I2) grants for the NSF (National Sciences Foundation)

in the United States and the Research Software Program for Canarie
in Canada.

The proliferation of the use of Concurrent Versioning Systems
(CVS) is further evidence of the growth in the use of software
carpentry tools. The poor adoption rate that Wilson lamented in
2006 [49] has greatly improved in the intervening years, as shown
by Table 1. This table shows CVS usage in several scientific domains
both in 2014 and in 2018. The percentages are based on software
quality studies for domains such as mesh generation [36], seis-
mology software [39], Geographic Information Systems [18] and
statistical software for psychiatry [38]. The studies each identified
approximately 30 software packages from their domain using au-
thoritative lists produced by the respective communities. In Table 1
Alv and Ded stand for Alive and Dead, respectively. A software
package is considered dead if it has not been updated in over 18
months. CV stands for Concurrent Versioning and the suffix A and
D, refer to the alive and dead software, respectively. If CVS usage
for a particular project cannot be gleaned from the available infor-
mation, it is conservatively assumed to not employ a CVS. With
the exception of the seismology domain (in both years) and the
statistics domain in 2014, the percentages in the CVA column are
quite high, especially for 2018.

Table 1: Usage of Version Control Software

2014 2018
Dom Alv CVA Ded CVD Alv CVA Ded CVD

Mesh 59% 75% 41% 27% 41% 100% 59% 38%
Seis 73% 41% 27% 0% 37% 36% 63% 37%
GIS 63% 89% 37% 9% 63% 95% 37% 9%
Stats 80% 17% 23% 0% 47% 100% 53% 0%

Although there is certainly still work to do in promoting software
carpentry to computational scientists and engineers, as shown
by lower than expected adoption rates for CVS for seismology
software, the situation is certainly much improved since the start
of Software Carpentry. The work of organizations such as Software
Carpentry should certainly continue, but it also seems appropriate
to investigate a transition from software carpentry to software
engineering. Previous attempts with applying SE ideas to SCS have
not always been successful; therefore, in the next section, we discuss
a vision for future software engineering research.

2 RECOMMENDED VISION
Although the reality is more nuanced, for the purpose of discussion,
a simplified version of the history of SE for SCS starts with software
engineers attempting to apply “textbook” SE methods to SCS. As
the case study of Segal [27] highlights, traditional SE failed to meet
the expectations of scientists. Roache was also negative toward
at least some aspects of SE, considering reports for each stage of
software development as counterproductive [25, p. 373]. Based on
reports and experiences like these, the gap between SE and SCS has
been characterized as a chasm [16].

In our simplified history, the bad experiences with early appli-
cations of SE led to an increased emphasis by SE researchers on
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understanding SCS developers. Multiple studies have been con-
ducted to understand how SCS software is developed [5, 7–9, 14].
At times the failure of traditional SE and the results of the studies
have led to conclusions that SCS should possibly be developed using
an agile approach [1, 5, 7, 27], or an amethododical process [13], or
a knowledge acquisition driven process [14]. Although the current
SCS approach may turn out to be the best, the fact that it is usually
(unconsciously) used by developers is not evidence on its own that
it is the ideal approach. Attempts should at least be made to adapt
SE knowledge that has been successfully applied in other domains,
like safety critical real time systems, to SCS software.

Our admittedly simplified view of the current relationship be-
tween SE and SCS motivates two recommendations:

(1) SE methods, tools and techniques should be specifi-
cally tailored to SCS.

(2) SCSdevelopers should recognize the value of documen-
tation. SE is not just programming languages and tools;
it is a true engineering discipline.

Documentation, written before and during development, can
provide many benefits [23]: easier reuse of old designs, better com-
munication about requirements, more useful design reviews, easier
integration of separately written modules, more effective code in-
spection, more effective testing, and more efficient corrections and
improvements.

An argument could be made that previous attempts at collabora-
tion between SE and SCS was premature. Maybe SCS developers
needed to master software carpentry first, and software engineers
needed to learn the nuances of SCS? Success going forward requires
a true collaboration, one that is only possible by working together.
Therefore, the next recommendation is:

(3) Software engineers and scientific software developers
should work together on real projects of mutual inter-
est, from the start of the project.

Everyone is busy, so to achieve full engagement, the projects
have to have something of value for everyone. This lesson was
reinforced in a study of document driven design for scientific soft-
ware [32]. Many of the conclusions were uncertain because the
software developers did not have time to review the full documen-
tation for a redeveloped version of their project; they had moved
on to other projects.

As in any scholarly activity, our path forward should be guided
by empirical evidence. Fortunately there is a growing emphasis on
empirical studies for software engineering research [47]. This trend
should also be applied to SCS software:

(4) Research on SEmethods, tools and techniques for SCS
should include empirical evidence whenever possible.

The final recommendation is:
(5) SCS software should include documentation that im-

proves the quality of replicability
Replicability means that the documentation provided for the

software, not the software itself, is sufficient for an independent
third party to reproduce the computational results. As described
by Benureau and Rogier [3], scientific software should achieve five
successively more difficult qualities: re-runnable, repeatable, re-
producible, reusable and replicable. Although progress has been

made up to the level of reproducibility, through the use of Virtual
Machines (VMs), VMs do not help when there are problems in the
original code. What if our trust in the original code is in doubt?
What if we need to reproduce the results not starting from the code,
but starting from the original theory? Unfortunately, multiple ex-
amples exist [6, 11] where results from research software could not
be independently reproduced, due to a need for local knowledge
missing from published documents. Examples of missing knowl-
edge includes missing assumptions, derivations, and undocumented
modifications to the code. In the future, we wish for it to be easier
to independently replicate the work of others, starting from their
theory documentation, without needing to rely on their code.

3 POTENTIAL FUTURE DIRECTIONS
This section provides three potential ideas for future research on
SE applied to SCS. There is no effort to be exhaustive. The ideas
listed were selected because they appear promising and little prior
work exists for them, and because these are areas with which the
author is familiar. Ideas like testing and code inspection, were
excluded because they have already received attention in the SE for
SCS literature. For each of the ideas, it is first described and then
potential research steps are listed. Where appropriate reference is
made to the motivating recommendations (Rec #) from Section 2.

3.1 Requirements for Replicability
A Software Requirements Specification (SRS) describes the function-
alities, expected performance, goals, context, design constraints,
external interfaces, and other quality attributes of the software
[10]. In a scientific context, an SRS records the necessary terminol-
ogy, notations, symbol definitions, units, sign conventions, physical
system descriptions, goals, assumptions, theoretical models, data
definitions, instanced models and data constraints [35]. With this
definition, this section’s heading “Requirements for Replicability”
can be read as both posing a question and providing an answer. The
question is: “What are the requirements for replicability?” and the
answer is: “Requirements are needed for replicability.”

To achieve Rec 5, we need an SRS, since journal articles are in-
adequate for an independent researcher to replicate computational
results. The problem for journals is that the constraints on space
and scope make it impossible to record all details. An SRS provides
a place to record everything that is necessary. The SRS can system-
atically be reviewed [33] to check that every symbol is defined; that
every symbol is used at least once; that every equation either has a
derivation, or a citation to its source; that every general definition,
data definition, and assumption is used by at least one other com-
ponent of the document. When the code is complete, verification
can be done to ensure that every line of code either traces back to
a description of the numerical algorithm (in the design documenta-
tion), to a data definition, to an instance model, to an assumption,
or to a value from the auxiliary constants table in the SRS.

An example SRS for a Solar Water Heating System (SWHS)
incorporating Phase Change Material (PCM) [26] is available at:
https://github.com/smiths/swhs/tree/master/SRS. SWHS simulates
the temperature of the water and the PCM in a solar water heated
tank over time. The purpose of the PCM is to reduce the tank size,
since PCM stores thermal energy as latent heat, which allows higher
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thermal energy storage capacity per unit weight. Figure 1 shows an
excerpt from the SRS for SWHS showing some of the assumptions
that are used for the theory and the derived models. This is the kind
of information that is necessary for another researcher to verify,
and potentially replicate, the computational results.

4.2 Solution Characteristics Specification

The instance models (ODEs) that govern SWHS are presented in Subsection 4.2.5. The
information to understand the meaning of the instance models and their derivation is also
presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by
filling in the missing information for the physical system. The numbers given in the square
brackets refer to the theoretical model [T], general definition [GD], data definition [DD],
instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: The only form of energy that is relevant for this problem is thermal energy. All other
forms of energy, such as mechanical energy, are assumed to be negligible [T1].

A2: All heat transfer coe�cients are constant over time [GD1].

A3: The water in the tank is fully mixed, so the temperature is the same throughout the
entire tank [GD2, DD2].

A4: The PCM has the same temperature throughout [GD2, DD2, LC1].

A5: Density of the water and PCM have not spatial variation; that is, they are each constant
over their entire volume [GD2].

A6: Specific heat capacity of the water and PCM have no spatial variation; that is, they
are each constant over their entire volume [GD2].

A7: Newton’s law of convective cooling applies between the coil and the water [DD1].

A8: The temperature of the heating coil is constant over time [DD1, LC2].

A9: The temperature of the heating coil does not vary along its length [DD1, LC3].

A10: Newton’s law of convective cooling applies between the water and the PCM [DD2].

A11: The model only accounts for charging of the tank, not discharging. The temperature of
the water and PCM can only increase, or remain constant; they do not decrease. This
implies that the initial temperature (A12) is less than (or equal) to the temperature
of the coil [IM1, LC4].

A12: The initial temperature of the water and the PCM is the same [IM1, IM2, LC5].

A13: The simulation will start with the PCM in solid form [IM2, IM4].

A14: The operating temperature range of the system is such that the water is always in
liquid form. That is, the temperature will not drop below the melting point of water,
or rise above its boiling point [IM1, IM3].

8

Figure 1: Sample assumptions for SWHS.

An SRS provides many benefits for scientific software, as dis-
cussed in [34] and [35]. In addition to replicability, discussed above,
other benefits include:

• An SRS improves the verifiability of the code. If the theory
is not explicitly recorded, other researchers may have a dif-
ferent understanding of the assumptions applied. Without a
clear statement of what the software is supposed to do, one
cannot judge its correctness.

• An SRS improves maintainability. Over time the require-
ments will inevitably change. The SRS facilitates change by
capturing the traceability between knowledge in the SRS (as
shown in Figure 1) and between the SRS and code modules.

• An SRS improves communication, which in turn improves
training. In large SCS projects, like software for HEP, getting
new developers up to speed is challenging. An SRS will
facilitate their training by providing an introduction and
answering questions that require understanding definitions,
sign conventions, assumptions, etc.

Documenting requirements is not particularly popular for sci-
entific software. In part because of the opinion [5, 29] that require-
ments are impossible to determine up-front. However, there is noth-
ing about the SRS that requires it to be created following a waterfall
process. As Parnas and Clements [22] point out, documentation
can be “faked” as if a rationale (waterfall) process were followed.
Some other arguments debunking the common complaints against
requirements documentation include: scientific theories have a high
potential for reuse (with the right abstraction); scientific theories
are fairly stable over time; variabilities for a family of related the-
ories are predictable; and, the usual design pattern for SCS is the
relatively simple pattern: Input⇒ Calculate⇒ Output [31].

If SCS developers are to recognize the value of SRS documents
(Rec 1), then the SE approach for collecting, documenting and veri-
fying requirements will need to be tailored to the SCS community
(Rec 2). Some specific ideas on how to accomplish this follow.

(1) Investigate the best SRS template for SCS requirements. Fill-
ing in the template sections is like following a checklist for
providing the standard information. For SCS, a specific tem-
plate is available [34, 35]. However, this template has not
been empirically validated (Rec 4). This template, and others
inspired by the required documentation in the nuclear, med-
ical and aeronautical domains, should be studied for their
effectiveness in real projects. This study can be facilitated
by the document generation techniques in Section 3.3.

(2) As mentioned in Rec 3, the SRS should be applied to real
projects. A good starting point is projects that require certifi-
cation, where certification consists of official recognition by
an authority, or regulatory body, that the software is fit for
its intended use. Examples domains include nuclear safety,
automotive safety, medical imaging, etc.

(3) Although verification and inspection techniques have been
developed for SCS code, little attention has been paid to
verification of the other design artifacts, including the SRS.
One option may be a task-based inspection approach, like
that used by Kelly and Shepard [15] for code. One poten-
tial option may be to assigned reviewers a set of questions,
like “Are the units consistent in each equation?”, “Are all
symbols defined?” and “Is the information on a given topic
sufficient to implement a solution?”. The questions could
be managed over GitHub (or equivalent issue tracker) to
take advantage of the growth of software carpentry skills for
SCS developers. It will also be necessary to verify that the
implementation provided matches the given requirements.
Verifying the pieces, and how they all fit together, can be
approached using assurance cases as discussed in Section 3.2.

(4) As the success of software carpentry shows, SCS develop-
ers are willing to adopt tools. Therefore, SE tools should
be specifically tailored for SCS (Rec 1). For instance, tools
should be developed to assist with verification of properties
like consistency and completeness of an SRS. Such tools have
been developed by the R community, and they have facili-
tated an improvement of software quality so that a single
developer can produce code of comparable quality to a team
of developers [38].

(5) A potential high impact tool for SRS documentation is pre-
sented in Section 3.3. With this tool, it may be possible to
automatically generate and SRS from a scientific knowledge
base combined with recipes pulling out the required informa-
tion and formatting guidelines. This will facilitate automatic
verification, in the same sense that a compiler complains
when there is missing information. If the SRS can be gener-
ated, then many of the complaints the community has about
requirements documentation can be removed [32].

3.2 Assurance Case
From [24], an assurance case is “[a] reasoned and compelling ar-
gument, supported by a body of evidence, that a system, service
or organization will operate as intended for a defined application
in a defined environment.” Assurance cases have been successfully
employed for safety critical systems, but using this technique for
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SC software is a new idea. The Goal Structuring Notation (GSN)
[40] seems like a good framework for initial investigation.

Scientific software, such as medical software, is often subject to
standardization and regulatory approval. While applying such ap-
provals and standards has had a beneficial effect on system quality,
it does not provide good tracking of the development stages, as the
compliance with the standards is mostly checked after the system
development. Once a system is implemented, its documentations
must be approved by the regulators. This process is lengthy and
expensive. In contrast, assurance case development usually occurs
in parallel with the system construction, resulting in a traceable,
detailed argument for the desired property. Moreover, since the as-
surance case is integrated into the system construction, the domain
experts are involved from the start.

Putting the argument in the hands of the experts means that they
will work to convince themselves, along with the regulators. They
will use the expertise that the regulators do not have and they will
see the value of documentation (Rec 2); they will be engaged. This
engagement will hopefully help bridge the current chasm between
software engineering and scientific computing [16], by motivating
scientists toward documentation and correcting the problem of
software engineers failing to meet scientists’ expectations [28].
Significant documentation will still likely be necessary, but now
the developers control the documentation. What is created will be
relevant and necessary.

For SCS a top level claim could read “Program X delivers correct
outputs when used for its intended use/purpose in its intended
environment.” The next step would be to decompose this claim into
sub-claims that will be easier to prove. The sub-claims will likely
also be further divided until the bottom of the graph, where the
measurable evidence is provided. Typical evidence will consist of
documents, expert reviews, test case results etc.

Using the specific example of preparing an assurance case for pre-
existing medical image analysis software (3dfim+) [37], the top level
can be decomposed into four sub-goals, as shown in Figure 2. This
example follows the same pattern as used for medical devices [45].
The first sub-goal (GR) argues for the quality of the documentation
of the requirements (SRS). The second sub-goal (GD) says that
the design complies with the requirements and the third proposes
that the implementation also complies with the requirements. The
fourth sub-goal (GA) claims that the inputs to 3dfim+ will satisfy
the operational assumptions, since we need valid input to make an
argument for the correctness of the output.

Preparing an assurance case for the pre-existing 3dfim+ soft-
ware justifies the value of assurance cases for the certification of
SCS [39]. Although no errors were found in the output of the ex-
isting software, the rigour of the proposed approach did lead to
finding ambiguities and omissions in the existing documentation,
such as missing information on the coordinate system conven-
tion. In addition, a potential concern for the software itself was
identified from the GA argument: running the software does not
produce any warning about the obligation of the user to provide
data that matches the parametric statistical model employed for
the correlation calculations.

Potential objectives for research on assurance cases applied to
SCS are as follows:

(1) Creation of an assurance case templatewill require looking at
a variety of SCS projects, which will require engaged project
partners (Rec 3); therefore, the initial approach should be to
target domains where certification is required, or domains
where verification is critical, but challenging, like the High
Energy Physics (HEP).

(2) Evidence is provided at the bottom of an assurance case, but
what is the best form for this evidence? As mentioned for
the SRS, we need an approach for verification. We also need
an approach to verify the other software artifacts, the trace-
ability between them, the team of developers, the team of
reviewers, etc. The question for the future is what combina-
tion of tools and processes will provide convincing evidence?

(3) Creation of assurance cases is challenging with existing tools.
In the future, the goal should be automatic generation (see
Section 3.3) of the visual assurance case documentation from
the arguments and evidence

(4) Creating a revelation on the value of documentation (Rec 2)
may require a pseudo adversarial approach. SCS developers
should be explicitly challenged to present their verification
efforts so that their work can be independently verified. Al-
though SCS developers have developed many successful
theories, techniques, and testing procedures for verification,
the evidence is generally presented in an ad hoc manner.
Developers should be asked to connect all the pieces of their
evidence in a coherent argument. As a bonus, the act of creat-
ing the assurance case may also lead developers to discover
subtle edge cases, which would not have been noticed with
a less rigorous and systematic approach.

3.3 Generate All Things
A knowledge-based approach for scientific software development
holds promise. The SRS (Section 3.1) and other software artifacts are
considered useful to developers, but many believe that the imposed
workload is too onerous [32]. Ideally, developers should be able to
create high quality documentation without the drudgery of writing
and maintaining it. A potential solution is to generate the documen-
tation automatically by using Domain Specific Languages (DSLs)
over a base of scientific knowledge. This is the approach that is pro-
posed for a new scientific software development framework called
Drasil [44]. The Drasil framework will be described below as one po-
tential approach for software artifact generation. The presentation
focuses on what a tool like Drasil could accomplish, although the
Drasil framework itself is far from complete. The current version of
Drasil can be found at: https://github.com/JacquesCarette/Drasil.

The principal perceived drawbacks of document-driven design
methodologies are [44]:

• information duplication,
• synchronization headaches between artifacts,
• an over-emphasis on non-executable artifacts.

Successfully improving software qualities, such as verifiability,
reliability, and usability, while also improving, or at least not di-
minishing performance, requires finding a way to simultaneously
deal with the above drawbacks [44]. A generative frameworks also
adds the goal of improving developer productivity, and saving time
and money for certification and re-certification. To accomplish this,
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Figure 2: Top Goal of the assurance case and its sub-goals

tools like Drasil need to remove duplication between artifacts and
provide traceability between all artifacts. In practice, this means
providing facilities for automatic software artifact generation from
high level “knowledge.” Drasil accomplishes this by having a single
“source” for each relevant piece of information, as illustrated by
the roots of the tree in Figure 3. From this source Drasil generates,
via recipes, all required documents and views, as shown by the
branches of the tree. Drasil aims to provide methods, tools and
techniques to support a literate process for developing scientific
software analogous to Knuth’s [17] Literate Programming, but more
general. Unlike other document generation tools, like LP and Doxy-
gen, the focus is on all software artifacts (SRS, design documents,
test plans, build scripts, etc), not just the code and its comments.

As mentioned in the requirements discussion (Section 3.1), gen-
erative frameworks can also potentially check for completeness
and consistency. For example, every symbol could be checked for
a definition, along with a verification that the same symbol is not
given more than one definition, at least not within the same name
space. In the case where different symbols have the same meaning,
like during the transition from a typeset document to ASCII code,
the traceability can be explicitly identified between the symbols
and the concept. The generation process can also check that the
specification is complete and disjoint. That is, if behaviour is only
given for x > 0, the tool can ask about the case x ≤ 0. The tool could
also highlight cases of overlap, say when behaviour is specified for
x ≥ 0 and x ≤ 0.

Drasil works by building a representation of the scientific and
computing knowledge, including scientific theories (like the con-
servation laws), data definitions (like the definition of a coordinate
system), assumptions (like dimensionality), and algorithms (like
interpolation or solving systems of equations). As an example, the
following equation is part of the knowledge for software to calcu-
late the risk of failure (B) for a plane of glass with dimensions a by
b; thickness h; material propertiesm, k and E; load duration factor
LDF; and, stress distribution factor J .

B =
k

(a × b)m−1 ((E × 1000)(h)2)m × LDF × e J

In Drasil this knowledge can be represented in a generic form using
the following code.

risk_eq :: Expr
risk_eq = ((C sflawParamK) / (Grouping ((C plate_len) *

(C plate_width))) :^ ((C sflawParamM) - 1) *
(Grouping (C mod_elas * 1000) *
(square (Grouping (C act_thick)))):^ (C sflawParamM) *
(C lDurFac) * (exp (C stressDistFac)))

Drasil can then take this captured knowledge and generate the
corresponding data definition for the SRS. The SRS itself can be
in formats such as LATEXor html. The same knowledge can then be
translated into different programming languages, like Python, Java
or C#. Once the investment is made in capturing the knowledge,
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Figure 3: Drasil Knowledge Tree

regeneration for changes, or reuse for new problems, is a mechan-
ical/automated, process. For instance, if a change is made in the
original Drasil code, regeneration will fix the error in all generated
targets. The generator can also include selection of design choices,
like whether to include logging information in the generated code.

Initial development of Drasil began in 2014 with 5 case study
applications, including glass breakage, solar water heating, slope sta-
bility analysis, etc. Scientific software developers that have learned
about the project are excited about the documentation, but they do
not have the time or expertise to work with the current Domain
Specific Languages, written in Haskell. Future work is necessary
to create a tool that will be more complete and practically useful.
Specific steps going forward are listed below.

(1) Although a framework like Drasil could start by building an
ontology of scientific knowledge, a more bottom up, example
driven, approach seems more fruitful. This means that going
forward more examples from the SCS community (Rec 3)
will need to be converted into the Drasil language, and the
language refactored to work with the new knowledge. A
Grounded Theory (GT) approach could be used for building
the Drasil language, and organizing the scientific knowledge.
GT is appropriate because the problem scope is too large for
a top down approach, but in GT the theory is inductively
generated from data [42].

(2) In the future, the utility of document and code generation
can be illustrated by exploring Computational Variability

Testing (CVT). For numerical techniques that rely on a grid,
like partial differential equation solvers, CVT can use code
generation to build confidence in the generated code, anal-
ogous to how grid refinement is currently employed. Grid
refinement calculates solution changes by varying run-time
parameters like grid density. CVT, on the other hand, can
generate code to “refine” build time parameters, such as order
of interpolation, or degree of implicitness. These parame-
ters can be systematically varied and the results compared
against the expected trend.

(3) In the future, code generation can be employed to optimize
over build-time parameters. Optimization is generally done
over run-time parameters, but code generation allows for
variations that usually occur at build time. If the variations
are computational parameters, then the idea of CVT can be
extended to improve performance, since the different com-
binations of variabilities can be profiled to optimize perfor-
mance. Another option is variation of modelling parameters
through code generation, including variations that change
the underlying assumptions. For instance, an optimization
could be done over the constitutive equation to allow varia-
tion from elastic to elastoviscoplastic behaviour.

4 CONCLUDING REMARKS
The arguments in this paper suggest that, thanks to the efforts of
the Software Carpentry Foundation, and others, software carpentry
practices have improved the quality of SCS and the productivity of
its developers. The improvements have started with basic software
tools, like version control and task automation. If their construction
is made a priority, more powerful tools can be available in the fu-
ture, like tools for document and code generation. If the carpentry
analog for the current tools are hammers and hand saws, then an
appropriate analog for future tools will be 3D printers. Moreover,
with current and future software carpentry tools, it should be pos-
sible to move beyond software carpentry to SE. Staying with our
construction analogy, just like engineers focus on the “big picture”
of solving problems, future computational scientists will be able to
focus on their science, rather than worry about documentation and
programming details.

The paper recommends some goals and priorities for future
research on SE applied to SCS, such as SE specifically adapting
ideas to SCS, SCS recognizing the value of software artifacts other
than the code, and all parties increasing the emphasis on empirical
evidence and the quality of replicability. Several ideas are proposed
for turning the proposed vision into a reality, including promoting
requirements documentation for replicability, building assurance
cases for correctness (and other qualities), and automatic generation
of all documentation and code.
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