
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

03 Requirements

Dr. Spencer Smith

Faculty of Engineering, McMaster University

September 12, 2018



Requirements

Administrative details

Questions: project choices?, software tools?

Problem statement and example

Software Engineering for Scientific Computing literature

Scientific Computing Software Qualities

Motivation: Challenges to Developing Quality Scientific
Software

Requirements documentation for scientific computing

A requirements template

Advantages of new template and examples

The template from a software engineering perspective

Concluding remarks

References
Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 2/46



Administrative Details

Can everyone access GitLab?
https://gitlab.cas.mcmaster.ca/smiths/cas741

Create a GitHub account if you don’t already have one

Add smiths to your GitHub repos

Linked-In

Assign the instructor an issue to review your problem
statement

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 3/46

https://gitlab.cas.mcmaster.ca/smiths/cas741


Administrative Details: Deadlines

Problem Statement Week 02 Sept 14
SRS Present Week 04 Week of Sept 24
SRS Week 05 Oct 4
Syst. VnV Present Week 06 Week of Oct 15
System VnV Plan Week 07 Oct 22
MG Present Week 08 Week of Oct 29
MG Week 09 Nov 5
MIS Present Week 10 Week of Nov 12
MIS Week 11 Nov 19
Unit VnV or Impl. Present Week 12 Week of Nov 26
Unit VnV Plan Week 13 Dec 3
Final Doc Week 14 Dec 10

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 4/46



Questions?

Questions about project choices?

Questions about software tools?
I git?
I LaTex?

Partial tex files in the blank project template

Problem statement

Copy the folder structure and README files from the
blank project, but wait for tex files for deliverables

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 5/46

https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/BlankProjectTemplate/docs/ProblemStatement


Problem Statement

Written in LaTeX

Due electronically (on GitHub) by deadline

Generated files should NOT be under source control
(except pdf)

Comments might be typed directly into your source

For all assignments with LaTeX source, include the
LaTeX commands for comments

What problem are you trying to solve?

Not how you are going to solve the problem

Why is this an important problem?

What is the context of the problem you are solving?
I Who are the stakeholders?
I What is the environment for the software?

A page description should be sufficient

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 6/46



Sample Project Statements

SpectrumImageAnalysisPy

Aqueous Speciation Diagram Generator

System of ODE solver library

CParser

FloppyFish

Screenholders

Template in repo

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 7/46

https://github.com/icbicket/SpectrumImageAnalysisPy/blob/master/Doc/ProblemStatement/ProblemStatement.tex
https://github.com/palmerst/cas741_sp/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://github.com/aoananp/cas741/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://gitlab.cas.mcmaster.ca/ThisTooShallParse/3XA3_CParser
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup
https://gitlab.cas.mcmaster.ca/screenholders/screenholders


Definition of Software Qualities

Measures of the excellence or worth of a software product
(code or document) or process with respect to some
aspect

What are some important aspects (qualities) for scientific
software?

User Satisfaction = The Important Qualities are High +
Within Budget

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 8/46



Important Qualities for Scientific Computing

Software

External qualities
I Correctness (Thou shalt not lie)
I Reliability
I Robustness
I Performance

I Time efficiency
I Space efficiency

Internal qualities
I Verifiability
I Usability
I Maintainability
I Reusability
I Portability

Definitions in [6].
Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 9/46



Correctness Versus Reliability Versus Robustness

What is the difference between these 3 qualities?

Can you assess correctness without a requirements
specification?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 10/46



Correctness

A software product is correct if it satisfies its
requirements specification

Correctness is extremely difficult to achieve because
I The requirements specification may be imprecise,

ambiguous, inconsistent, based on incorrect knowledge,
or nonexistent

I Requirements often compete with each other
I It is virtually impossible to produce “bug-free” software
I It is very difficult to verify or measure correctness

If the requirements specification is formal, correctness can
in theory and possibly in practise be

I Mathematically defined
I Proven by mathematical proof
I Disproven by counterexample

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 11/46



Reliability

A software product is reliable if it usually does what is
intended to do

Correctness is an absolute quality, while reliability is a
relative quality

A software product can be both reliable and incorrect

Reliability can be statistically measured

Software products are usually much less reliable than
other engineering products

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 12/46



Robustness

A software product is robust if it behaves reasonably even
in unanticipated or exceptional situations

A correct software product need not be robust
I Correctness is accomplished by satisfying requirements
I Robustness is accomplished by satisfying unstated

requirements

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 13/46



Question on Correctness. Reliability and

Robustness

Reliable programs are a superset of correct programs AND
robust programs are a superset of reliable programs. Is this
statement True or False?

A. True

B. False

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 14/46



Performance

What are some ways you could measure software performance?

What are some ways you could specify performance
requirements to make them unambiguous and verifiable?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 15/46



Performance

The performance of a computer product is the efficiency
with which the product uses its resources (memory, time,
communication)

Performance can be evaluated in three ways
I Empirical measurement
I Analysis of an analytic model
I Analysis of a simulation model

Poor performance often adversely affects the usability and
scalability of the product

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 16/46



Usability

What are some examples of excellent usability?

When you go to a friend’s house, you can likely operate their
microwave without reading the manual. What did human
factors engineers do to make this possible?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 17/46



Usability

The usability of a software product is the ease with which
a typical human user can use the product

Usability depends strongly on the capabilities and
preferences of the user

The user interface of a software product is usually the
principle factor affecting the product’s usability

Human computer interaction (HCI) is a major
interdisciplinary subject concerned with understanding and
improving interaction between humans and computers

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 18/46



Verifiability

The verifiability of a software product is the ease with
which the product’s properties (such as correctness and
performance) can be verified

Verifiability can be both an internal and an external
quality

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 19/46



Maintainability

The maintainability of a software product is the ease with
which the product can be modified after its initial release
Maintenance costs can exceed 60% of the total cost of
the software product
There are three main categories of software maintenance

1. Corrective: Modifications to fix residual and introduced
errors

2. Adaptive: Modifications to handle changes in the
environment in which the product is used

3. Perfective: Modifications to improve the qualities of the
software

Software maintenance can be divided into two separate
qualities

1. Repairability: The ability to correct defects
2. Evolvability: The ability to improve the software and to

keep it current
Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 20/46



Maintainability

What do software developers do to promote maintainability?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 21/46



Reusability

What are the advantages of reusing code?

Why doesn’t it happen more often?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 22/46



Reusability

A software product or component is reusable if it can be
used to create a new product

Reuse comes in two forms

1. Standardized, interchangeable parts
2. Generic, instantiable components

Reusability is a bigger challenge in software engineering
than in other areas of engineering

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 23/46



Portability

A software product is portable if it can run in different
environments

The environment for a software product includes the
hardware platform, the operating system, the supporting
software and the user base

Since environments are constantly changing, portability is
often crucial to the success of a software product

Some software such as operating systems and compilers,
is inherently machine specific

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 24/46



Understandability

The understandability of a software product is the ease
with which the requirements, design, implementation,
documentation, etc. can be understood

Understandability is an internal quality that has an impact
on other qualities such as verifiability, maintainability, and
reusability

There is often a tension between understandability and
the performance of a software product

Some useful software products completely lack
understandability (e.g. those for which the source code is
lost)

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 25/46



Relationship between Qualities

Draw a diagram showing the relationships between the various
software qualities

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 26/46



Measurement of Quality

A software quality is only important if it can be measured
- without measurement there is no basis for claiming
improvement

A software quality must be precisely defined before it can
be measured

Most software qualities do not have universally accepted

Can you directly measure maintainability?

How might you measure maintainability?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 27/46



SRS versus CA

SRS (Software Requirements Specification)
I Requirements for a software product
I Usually for specific physical problems

CA (Commonality Analysis)
I Requirements for a family of related software products
I Sometime for specific physical problems
I Commonly used for a library of general purpose tools
I Distinguish commonalities, variabilities and parameters

of variation

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 28/46



Big Picture View of SRS/CA

Goal statement(s)

Inputs and outputs

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 29/46



Goal Statements for SWHS

What are the goal statement for the Solar Water Heating
System?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 30/46



Goal Statements for SWHS

Given the temperature of the heating coil, initial conditions for
the temperature of the water and the temperature of the
phase change material, and material properties, the goal
statements are:

GS1: Predict the water temperature over time.

GS2: Predict the PCM temperature over time.

GS3: Predict the change in the energy of the water over time.

GS4: Predict the change in the energy of the PCM over time.

(Consider using names instead of numbers for labels.)

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 31/46



Goal Statements for GlassBR

Given the dimensions of the glass plane, glass type, the
characteristics of the explosion, and the tolerable probability of
breakage, the goal statements are:

GS1: Analyze and predict whether the glass slab under
consideration will be able to withstand the explosion of a
certain degree which is calculated based on user input.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 32/46



Goal Statements for Game Physics

G linear: Given the physical properties, initial positions and
velocities, and forces applied on a set of rigid bodies,
determine their new positions and velocities over a period
of time (IM-IM FT).

G ang: Given the physical properties, initial orientations and
angular velocities, and forces applied on a set of rigid
bodies, determine their new orientations and angular
velocities over a period of time. (IM-IM FR).

G dtcCol: Given the initial positions and velocities of a set of rigid
bodies, determine if any of them will collide with one
another over a period of time.

G Col: Given the physical properties, initial linear and angular
positions and velocities, determine the new positions and
velocities over a period of time of rigid bodies that have
undergone a collision (IM-IM C).

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 33/46



Goal Statements for Linear Solver

What would be a good goal statement for a library of linear
solvers?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 34/46



Goal Statements for Linear Solver

G1 Given a system of n linear equations represented by
matrix A and column vector b, return x such that
Ax = b, if possible

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 35/46



References I

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant,
Mike C. Miller, Christine A. Ramsdale, and Paul C.
Stephenson.
Scientific software development at a research facility.
IEEE Software, 25(4):44–51, July/August 2008.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 36/46



References II

Jules Desharnais, Ridha Khedri, and Ali Mili.
Representation, validation and integration of scenarios
using tabular expressions.
Formal Methods in System Design, page 40, 2004.
To appear.

Paul F. Dubois.
Designing scientific components.
Computing in Science and Engineering, 4(5):84–90,
September 2002.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 37/46



References III

Steve M. Easterbrook and Timothy C. Johns.
Engineering the software for understanding climate
change.
Comuting in Science & Engineering, 11(6):65–74,
November/December 2009.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

IEEE.
Recommended practice for software requirements
specifications.
IEEE Std 830-1998, pages 1–40, Oct 1998.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 38/46



References IV

R. Janicki and R. Khedri.
On a formal semantics of tabular expression.
Science of Computer Programming, 39(2-3):189–213,
2001.

Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
’13, pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 39/46



References V

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

K. Kreyman and D. L. Parnas.
On documenting the requirements for computer programs
based on models of physical phenomena.
SQRL Report 1, Software Quality Research Laboratory,
McMaster University, January 2002.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 40/46



References VI

Lei Lai.
Requirements documentation for engineering mechanics
software: Guidelines, template and a case study.
Master’s thesis, McMaster University, Hamilton, Ontario,
Canada, 2004.

David L. Parnas and P.C. Clements.
A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering,
12(2):251–257, February 1986.

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148,
2010.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 41/46



References VII

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Suzanne Robertson and James Robertson.
Mastering the Requirements Process, chapter Volere
Requirements Specification Template, pages 353–391.
ACM Press/Addison-Wesley Publishing Co, New York,
NY, USA, 1999.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 42/46



References VIII

Judith Segal.
When software engineers met research scientists: A case
study.
Empirical Software Engineering, 10(4):517–536, October
2005.

Judith Segal.
End-user software engineering and professional end-user
developers.
In Dagstuhl Seminar Proceedings 07081, End-User
Software Engineering, 2007.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 43/46



References IX

Judith Segal.
Some problems of professional end user developers.
In VLHCC ’07: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing, pages
111–118, Washington, DC, USA, 2007. IEEE Computer
Society.

Judith Segal.
Models of scientific software development.
In Proceedings of the First International Workshop on
Software Engineering for Computational Science and
Engineering (SECSE 2008), pages 1–6, Leipzig, Germany,
2008. In conjunction with the 30th International
Conference on Software Engineering (ICSE).

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 44/46



References X

Judith Segal and Chris Morris.
Developing scientific software.
IEEE Software, 25(4):18–20, July/August 2008.

W. Spencer Smith and Lei Lai.
A new requirements template for scientific computing.
In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on
Situational Requirements Engineering Processes –
Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes,
SREP’05, pages 107–121, Paris, France, 2005. In
conjunction with 13th IEEE International Requirements
Engineering Conference.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 45/46



References XI

W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation.
In R. Muhanna and R. Mullen, editors, Proceedings of the
NSF Workshop on Reliable Engineering Computing, pages
29–51, Savannah, Georgia, 2004.

R. H. Thayer and M. Dorfman, editors.
IEEE Recommended Practice for Software Requirements
Specifications.
IEEE Computer Society, Washington, DC, USA, 2nd
edition, 2000.

The Institute of Electrical and Electronics Engineers, Inc.
Software Requirements Engineering.
IEEE Computer Society Press, 2nd edition, 2000.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 46/46



References XII

Hans van Vliet.
Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in
the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 47/46


