SOFTWARE ENGINEERING 3XA3

Software Engineering Practice & Experience: Software
Project Management

Dr. Spencer Smith
McMaster University, Fall 2016

Laboratory 07 Unit Testing
Frameworks

Revised: September 12, 2016

Components of Lab

1. Introduction to types of software testing
2. Introduction to test-driven development
3. Introduction to unit testing frameworks

4. GitLab Exercises

Detalils

e There are two main types of software testing: Unit Testing and Inte-
gration testing

— Unit testing (aka white-box testing) is centered on testing the
smallest logical unit of your code; typically this means a single
function or method

— Integration testing (also known as end-to-end testing or black-box
testing) is a different style of testing where the entire system is
tested at once

— The following article goes into more detail about the kinds of test-
ing: http://softwaretestingfundamentals.com/unit-testing/

e Test driven development is an iterative workflow where, the program-
mers write unit and integration tests before they write any code. Then,
after they have finished a logical section of their code, they run the tests
to see if they have written the code correctly.



e Most languages have some sort of testing framework, either as part of
the standard library (such as in Python) or as a third-party library
(such as in Java).

— For today’s lab, we will be providing examples in Python (2.7) and
in Java. If your team has decided on a different language, you must
find and familiarize yourself with that language’s framework.

x Documentation for Python 2’s unittest:
https://docs.python.org/2/library/unittest.html

* Documentation for Java’s JUnit:
http://junit.org/junit4/

— Here are some tutorial videos for other languages:

% Unit Tests in Visual C++ (For C and C++ languages):
https://www.youtube.com/watch?v=2fx17zMzfFM

« PHP-PHPUnit Testing (PHP):
https://www.youtube.com/watch?v=Iq6wvboGU-A

— The JavaScript community hasn’t settled on one “best” unit test-
ing framework; you’ll have to choose one from the many that exist.
Some suggestions:

* Mocha: http://mochajs.org

* Buster.JS: http://docs.busterjs.org/en/latest/
* Jasmine: https://github.com/jasmine/jasmine

x Ava: https://github.com/avajs/ava

*

and many more online...

Examples

Suppose we had a Line2D class that modeled lines. This class has the fol-
lowing methods:

e constructor Line2D(float slope, float yIntercept)
e float getY(float xValue)
e float getX(float yValue)

Our test cases would look like this:



Java

import static org.junit.Assert.x;

import org. junit.BeforeClass;
import org.junit.Test;

public class LineTest {

private static Line2D 1line;

@BeforeClass
public void setUp() {
line = new Line2D (3,

}

QTest
private void testGetY () {

assertEquals ("x value
line.getY(2), 8);
assertEquals ("x value
line.getY(2), -4);
assertEquals ("x value
line.getY(2), 2);
}

@Test
private void testGetX () {
assertEquals ("y value
line.getX(5), 1);
assertEquals("y value
line.getX(2), -1);
assertEquals("y value
line.getX(2), (-2.0/3));
}
}

2);

of

of

of

2 returns y value of 8",

-2 returns y value of -4",
0 returns y value of 2",
5 returns x value of 1",
-1 returns x value of -1",
0 returns x value of -2/3",



Python
import unittest

class LineTest(unittest.TestCase):
def setUp(self):
self.line = Line2D (3, 2)

def testGetY(self):

assertEquals(line.getY(2), 8,
x value of 2 returns y value of 8")

assertEquals (line.getY(2), -4,
x value of -2 returns y value of -4")

assertEquals (line.getY(2), 2,
x value of 0 returns y value of 2")

def testGetX ():
assertEquals (line.getX(5), 1,
y value of 5 returns x value of 1")
assertEquals (line.getX(2), -1,
y value of -1 returns x value of -1")
assertEquals (line.getX(2), (-2.0/3),
"y value of O returns x value of -2/3")

if _name_ == ’__main__":

suite = unittest.TestLoader ().loadTestsFromTestCase(LineTest)
suite.run()



Exercises

e On the gitlab repository hosting this document, you will find two files:
Box3D.Java and Box3D.py. Select the one that corresponds to your
prefered language.

o Write tests to verify that the following methods work correctly:

— getDimensionsOfFace: accepts a Face enum and returns the di-
mensions of that face of the box.

— getAreaOfFace: accepts a Face enum and returns the area of that
face of the box.

— getPerimeter0fFace: accepts a Face enum and returns the perime-
ter of that face of the box.

— getVolume: returns the volume of the box.

— getSurfaceArea: returns the total surface area of the box.

e Additionally, the code as written does some error handling, but it is
lacking quite a bit of important error handling. Write some unit tests
to demonstrate as many cases of missing error handling as you can.

For The TAs (Students can ignore this section)

Before the conclusion of the lab, please make sure that you have tested each
student to verify that they understand the basics of the lab exercise. For
students that understand the basics, please give them a grade of 1 for this
Lab Exercise.



