
focus

44	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

deve l op ing s c i en t i f i c s o f t war e

Scientific Software
Development at a
Research Facility

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant, Mike C. Miller,
Christine A. Ramsdale, and Paul C. Stephenson, Daresbury Laboratory

Software engineers
at Daresbury
Laboratory develop
experiment control
and data acquisition
software to support
scientific research.
Here, they review
their experiences
and learning
over the years.

D
eveloping software in a scientific environment has a particular set of challenges
but is particularly fulfilling, if at times frustrating.

Daresbury Laboratory is an internationally renowned scientific research labo-
ratory and is the home of the Synchrotron Radiation Source (SRS) research facil-

ity, (www.srs.ac.uk/srs). At Daresbury the Synchrotron Radiation Computing Group (SRCG)
develops control and data acquisition software for the SRS’s experimental stations. Many of
the group’s members have higher degrees in scientific disciplines, often with some software

development experience as part of that degree. Oth-
ers have computer science degrees. Each member
has roughly 20 years’ experience working closely
with scientists in developing software for scientific
research environments.

Here, we review some of that experience, espe-
cially with reference to the Generic Data Acquisition
(GDA) project, an object-oriented system for data
acquisition and experiment control. Areas of partic-
ular interest include our experience with and use of
development methodology and group management,
including agile programming and Extreme Pro-
gramming (XP); IDEs and tools for version control,
issue tracking, document storage, testing, continu-
ous build, and scripting; and internal and external
collaborative software development.

Organizational structure
The Science and Technology Facilities Council
(STFC, www.scitech.ac.uk) is one of seven UK na-
tional research councils that fall under the Depart-
ment for Innovation, Universities, and Skills. Its aim
is to enable a broad range of scientists to do high-

quality research through a variety of central facili-
ties, expert assistance, and services. It manages sev-
eral major UK facility sites including the Daresbury
Laboratory in Cheshire, the Rutherford Appleton
Laboratory (RAL) in Oxfordshire, Edinburgh’s As-
tronomy Technology Centre, and the UK observa-
tories in La Palma and Hawaii. It’s the main fund-
ing source for physics and astronomy research.

Daresbury Laboratory and the SRS
The Daresbury Laboratory has been home to the
world’s first dedicated SRS since 1979. Synchrotron
sources deliver intense light beams with wavelengths
extending from the infrared to high-energy x-rays.
They offer a range of experimental techniques, in-
cluding x-ray diffraction and spectroscopy for sci-
entific and engineering research. These light beams
are delivered via beam lines of components that al-
ter the light delivered to experimental stations. An
example component would be physical slits that
alter the beam’s shape. The experimental stations
host equipment that lets scientists probe a sample
and measure some of its diffraction or emission.

	 July/August 2008 I E E E S o f t w a r e � 45

Having collected and analyzed the experimental
data, researchers can determine some of the sam-
ple’s properties, such as a protein’s 3D structure.

After a decade of successful operation, the SRS
was becoming outdated and, in some scientific ar-
eas, it was becoming increasingly difficult to meet
experimental requirements. In 1993, an indepen-
dent panel chaired by Michael Woolfson (Engi-
neering and Physical Sciences Research Council)
commissioned a report to assess the academic
community’s needs. This report identified the need
for a new and improved UK-based synchrotron to
supersede the SRS. Synchrotrons are expensive fa-
cilities, so funding for only one was viable. A feasi-
bility study was undertaken, and in 2000, the gov-
ernment decided to site the new synchrotron, the
Diamond Light Source (DLS), at RAL rather than
at Daresbury.

Diamond Light Source
The DLS (www.diamond.ac.uk) is sited at RAL and
is a joint venture between the STFC and the Well-
come Trust (the UK’s largest charity and one that
funds innovative biomedical research). The DLS be-
gan operating in January 2007, and from December
2008, when the Daresbury SRS ceases to operate, it
will be the UK’s only synchrotron source.

Data acquisition software development
The Daresbury Data Acquisition Group was first
established in the late 1970s in preparation for the
SRS. The group developed data acquisition soft-
ware in a project-specific way using a small set of
generic, low-level libraries. At the time, scientists,
managers and developers perceived little overlap in
software requirements for different experimental
techniques.

In the 1980s, under pressure to provide dedi-
cated support to the laboratory research scientists,
each developer became part of a science team,
supporting a specific scientific technique. Conse-
quently, these techniques began to employ differ-
ing hardware and software, making each software
developer a single point of failure and resulting in
similar requirements being met in different ways.
Developers collaborated informally, sharing advice,
support, and some libraries and drivers.

Increasing informal collaboration in software
development, thus maximizing knowledge transfer,
and specific projects led to the SRCG’s formation in
2002. The SRCG’s focus was now on generic data
acquisition software spanning many techniques and
a broad range of hardware. The group developed
the Generic Data Acquisition (GDA) software to
meet these requirements. Unlike previous applica-

tions, the GDA software development was project-
managed, and developers used agile development
methods. This project minimized the duplication of
effort and aimed to meet the requirements of any
SRS experiment through a multilayered, configu-
rable set of software building blocks. Researchers
could, however, use and adapt GDA for other data
acquisition and control environments such as laser
facilities, small laboratory light sources, and auto-
mated data acquisition systems in general.

In the same year, the DLS set up its own data
acquisition group. DLS management decided to
use GDA for data acquisition at the new synchro-
tron, thus requiring substantial knowledge trans-
fer from Daresbury to the DLS. Their collabora-
tion was legally complicated and needed a formal
license agreement between the two organizations.
The Daresbury SRCG and the DLS data acquisi-
tion group agreed on and documented collabora-
tive practices and development strategies, which
had a positive effect on the GDA project—man-
agement improved, releases became formalized,
and collaborative efforts increased internally as
well as between Daresbury and the DLS.

GDA: Conception,
origin, and purpose
The concept of the GDA software suite arose
from an object-oriented (OO) analysis and design
course and the formation of the SRCG. Following
this course, the SRCG formed an internal working
group to design software for the automatic beam-
line alignment project and a new general-purpose
data acquisition system.

To help with the new working process, we
hired an external consultant to act as a mentor.
The consultant suggested an incremental and itera-
tive development process, which we adopted, mov-
ing away from the waterfall model. This approach
helped motivate the team because it allowed real

Acronyms
Bioxhit—Biocrystallography (X) on a Highly Integrated Technology Platform
CCT—Change Control Team
DL—Daresbury Laboratory
DLS—Diamond Light Source
EPICS—Experimental Physics and Industrial Control System
EPSRC—Engineering and Physical Sciences Research Council
GDA—Generic Data Acquisition
RAL—Rutherford Appleton Laboratory
SRCG—Synchrotron Radiation Computing Group
SRS—Synchrotron Radiation Source
STFC—Science and Technology Facilities Council

46	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

deliverables in parallel with analysis and design.
Early attempts at OO code development had been
slow owing to analysis paralysis.

Another major achievement of these projects
has been that we work better as a team and have
common goals. We pooled software into a com-
mon repository and encouraged code reuse. We
had a large investment in existing code, and refac-
toring this to fit into the new scheme proved suc-
cessful—for example, wrapping that code behind
Java Native Interface or communicating with re-
mote daemons via TCP/IP.

In developing a software design for the new proj-
ects, we used an OO approach and adopted Java as
the programming language. Using this, we designed
a layered “pluggable” mechanism to create a flex-
ible solution that would be independent of both the
operating system and underlying hardware.

The GDA has a three-layer core (see Figure 1)
comprising low-level devices, beamline compo-
nents, and a user interface. It provides a single soft-
ware framework for all beam-lines and is flexible,
adaptable, and configurable. A common look and
feel reduces the learning curve for users. A Corba
backbone allows distribution across multiple sys-
tems and the separation of control and interface.
We’ve implemented configurable support for many
hardware types (motors, detectors, temperature
controllers, and so on) and can interface using sev-
eral mechanisms, including serial data communi-
cation, Ethernet, and Epics (Experimental Physics
and Industrial Control System). Anyone responsible
for maintaining an installation can easily config-
ure GUIs and other components (such as hardware
devices) using XML. This gives us an open frame-
work that’s easy to extend and a system that’s rela-
tively simple to maintain.

Development methodology
and group management
The reformed SRCG group needed to adopt a de-
sign and programming methodology that would

suit the requirements of scientific data acquisition.
Computing for scientific research often lacks firm
specifications and is subject to rapid, unexpected
requirement changes. Agile programming, with its
small design phases and regular small deliverables,
seemed ideal for our circumstances. At the time, XP
was the accepted methodology.

To enhance group cohesion, we arranged for
everyone to attend two courses, which covered ad-
vanced Java, unit testing, and XP’s main aspects.
We believed that we’d benefit most if everyone at-
tended the same courses at the same time. This
meant that we’d all receive the same basic knowl-
edge of and exposure to the new methods. Learn-
ing together facilitated our team-building process,
and we recommend this coordinated training ap-
proach to others.

A number of us have attempted to adopt the ba-
sic XP practices. The overall difficulty we found is
that a lack of coordinating control interferes with
adopting group-wide change. We’ve always tried
to operate by consensus; with a group of people
trained for, and used to, making their own deci-
sions, this can be difficult. Here, we summarize
common XP practices and explain how we’ve tai-
lored them for our own purposes:

Planning game. We’ve always had to inter-
pret user requirements ourselves and have had
little success getting users to formalize them.
We prefer requirements organized as a project
plan, which might require breaking down into
smaller tasks (stories). Developers estimate re-
quirements, and users define priorities. We’ve
achieved success by grouping requirements into
regular releases with dates to match priorities.
Commissioning pressures makes it difficult to
stick to these releases.
Small releases. Evolutionary development fits
the scientific research environment. Regular it-
erations and deliverables let users influence de-
velopment and form requirements during the
development process.
Simple design. We strive to do no more than
is necessary to fulfill requirements. Code that
goes beyond requirements has, in some cases,
been found to be difficult to understand and
maintain. Some has ended up getting deleted
and replaced by code that simply fulfills the
requirements.
Testing. This practice has seen much talk and
insufficient action, to our detriment. Develop-
ers have introduced bugs that automated test-
ing could have detected before the code went
into production. We’ve recently begun to ad-

■

■

■

■

GUI Interpreter

EPICS components Beam-line components

EPICS devices Devices

Figure 1. The core
Generic Data Acquisition
software’s three-layer
architecture. The
architecture shows how
the components connect
and build to form a
complete system.

	 July/August 2008 I E E E S o f t w a r e � 47

dress this. The agile community strongly ad-
vocates test-first development. Insofar as we’ve
tried this, we agree, and in the future, we plan
to implement this more. We should use regular,
automated project build, testing, and test-first
development from the start of a project.
Refactoring. We’ve found that code refactoring
can be a powerful tool for improving and main-
taining a code base. Obviously, we must main-
tain a balance between this and adding new
features. The automatic refactorings of IDEs
such as Eclipse are very helpful.
Pair programming. Some group members op-
erate a loose pair-programming system and
find it very useful. This technique requires buy-
in from management because extra resources
are required during the development phase to
reap benefits later on. Limited resources and
differing short-term goals have sometimes pre-
vented pair programming. These reasons, to-
gether with traditional suspicions about inef-
ficiency and personal preferences, have made
it impractical to enforce pair programming ac
ross the group.
Collective ownership. Because we believe any-
one should have the right to modify the code,
we’ve removed all signs of individual ownership,
including author names in source file headers.
However, some remnants of our old working
methods, customers’ reluctance to change, and
the need sometimes to react quickly to problems
have all led to individual developers taking con-
trol of some areas of the project code.
Continuous integration. As a group, we check
new code into our repository regularly. This
keeps code consistent and has helped detect
bugs early. However, all developers must en-
sure that modifications are properly tested if
there is insufficient automated testing. We’ve
found problems when this doesn’t occur.
However beware the “blame culture,” which
can be very destructive.
Coding standards. We adopted standards early
on that have helped readability and understand-
ing. We configured the Eclipse IDE to format
code to a particular standard, and this was very
helpful.
Five-minute daily meeting. This proved unsat-
isfactory, most likely because we didn’t use the
full XP approach. We’ve found weekly meet-
ings more profitable.

The group dynamics proved interesting. People
who’d been used to autonomy were initially keen
to be involved in the collaboration. However, some

■

■

■

■

■

■

members were reluctant to take on the responsi-
bilities associated with working this way and the
constraints of adopting group standards for coding
style and working practices. Conflict sometimes
occurred between group members with different
views of how to do things, and some were reluc-
tant to compromise. With no strong overall control
to enforce compromises, the group neglected some
areas of conflict, even though those areas were im-
portant to the project.

We also had to change our relationship with
our customers—that is, the scientific community.
With the move to greater collaboration, the scien-
tists had to adjust to viewing us as a team. We’ve
had difficulty selling a generic product to some of
our users. The perceived interference of wider is-
sues with users’ own needs has on occasion been
seen as a hindrance to localized progress. Despite
these problems, we’ve developed an appreciation
that working as a group can generate greater mo-
mentum in the project.

When the DLS data acquisition group joined
our project, the need to collaborate over two re-
mote sites meant we had to introduce stricter proj-
ect management. We needed an issue-tracking
system for formally recording bugs and new re-
quirements, and we instituted a release schedule to
prioritize and target bugs and new developments
for particular releases. We appointed a change con-
trol team (CCT) to allocate bugs to developers and
keep the storyboard up to date. The storyboard is
an arrangement of wall panels describing the next
few releases; the CCT place a Post-It note repre-
senting each entry in the issue-tracking system on
the board according to the release to which it will
be assigned, together with the developer working
on it. As different developers work on different
parts of the project, the storyboard gives us a single
point for information on the project’s status and is
a visual representation of “where we are now.” Al-
though this was controversial, it’s been a success.

To bring the two groups together, we arranged
residential workshops. The first aimed to bring the
new collaborators up to speed on the project. Sub-
sequent workshops covered specific parts of the
project that were causing problems or required con-
siderable development.

Tools
We’ve used many tools in the GDA collaboration;
Figure 2 shows these tools’ categories. Our policy
is, whenever possible, to use open source and other
free software that runs on both Windows and Unix.
Our choices are influenced by case studies of suc-
cessful tool use and personal recommendations.

The perceived
interference

of wider issues
with users’
own needs

has on occasion
been seen

as a hindrance.

48	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Core IDE tools
The core IDE provides a language-sensitive editor,
compiler, symbolic debugger, and runtime envi-
ronment. Initially we used Java and Javac from the
command line, with Emacs as our editor. By mid-
2004, IBM’s Eclipse had gained general approval
within the SRCG, so we formally adopted it. The
DLS group had performed its own evaluation and
chosen Borland JBuilder because of a possible
need for future database connectivity. The col-
laboration continued to use both IDEs for a while,
but the DLS group eventually adopted Eclipse as
well. The move to one IDE simplified communi-
cation between the sites and led to greater overall
code consistency.

Version control tools
Any group needs a version control system to safely
store files being produced by several developers.
A few of us had used tools such as the Revision
Control System (RCS) or Concurrent Version
System (CVS) in our own projects. A concurrent
development process was the model that best fit-
ted our working practices. A revision system that
required that files be locked while checked out
(such as RCS) was inappropriate. The numerous
open source projects utilizing CVS persuaded us
to adopt it in 2002, and the adoption of Eclipse
provided built-in support. Early on, we formu-
lated a revision-control policy that we thought
would combine core source code protection with
flexibility for developers.

Revision control policy
Our revision control policy had several charac-
teristics:

Some developers were designated adminis-
trators.
Administrators maintained a lock on GDA
classes that affected everybody—developers
modifying these classes would ask for them to
be unlocked for check-in.
The CCT provided decision making and allo-
cated features and bugs to developers.
Developers could allocate urgent bugs on target
systems individually, without submitting them
to CCT review.
An exclusive Web-based “token” ensured sole
repository access on checking in.
Developers normally committed to the trunk
between planned releases.
Releases had suitably named branches, letting
developers commit bug fixes to their tips.
Major refactoring or features that impact other
programmers were given a temporary branch
that could be merged with the trunk later.

The revision control policy for the repository
structure (see Figure 3) has stood the test of time;
we still adhere to it today. Less successful were
CCT procedures and the locking of the GDA core.
This was perceived to impose restrictions on devel-
opers. Some developers still felt ownership of parts
of the code. Time constraints imposed by the lock-
ing procedure caused bottlenecks and led to frus-
tration. Code locking has since been discontinued,
administrative time was reduced, and the system
is working well. We migrated to Subversion (SVN)
and began using the Eclipse subclipse plugin.

Issue-tracking tools
A project involving several developers needs good
communication, and much of this must be made
permanent. Issue-tracking systems provide “tick-
ets” for bugs and new features in a project and
create an audit trail of activity that ties in with the
version control system’s contents. We required a
lightweight, open source solution and chose Bug-
zilla because Daresbury was already using it suc-
cessfully in various collaborative science projects.

Document storage tools
As a reference for project developers and other
involved parties, static documents must be stored
and managed by a document storage system.
We’ve researched availability and tested several
document-storage tools, including storage on plain
file servers, in revision control repositories and us-
ing various Web-based systems. At various times
during this process, we’ve suffered from these
problems:

■

■

■

■

■

■

■

■

Testing

Document
strorage

Issue
tracking

Version
control

Core IDE

XML
editing

Scripting

Continuous
build

GDA
tools

Figure 2. The various
categories of tools used
in the Generic Data
Acquisition project

	 July/August 2008 I E E E S o f t w a r e � 49

unclear procedure and location of tools due to
instability in policy;
site-specific procedure and policy;
duplicated documents in different tools;
incompatible versioning across different tools;
difficulty in using or understanding tools;
difficulty in “selling” new tools to busy
developers;
problems keeping documents updated and
compatible with other documents and software
releases;
problems tracking and updating Web pages
required as part of a large organization (pub-
lic, corporate, departmental, and private Web
sites);
lack of deployment and clarity of responsibility
for documentation areas;
lack of resources to deal with documentation;
and
poorly defined purposes for online documents,
tools, and Web pages.

Having resolved most of these issues, we now
follow a simple policy at Daresbury:

utilize the “knowledge tree” system for proj-
ect management and computer systems
documents;
use SVN for code, deployment configurations,
license and distribution information, and devel-
oper and user documents stored as the source

■

■

■

■

■

■

■

■

■

■

■

■

■

form (such as Word or Excel); an essential set of
files for building and running an installation;
employ a wiki for processed stable documents
in pdf or html format (read-only) and open fo-
rum and new document areas (writable); and
keep Web sites to a minimum, storing only nec-
essary, abstract, and medium-to-long-term in-
formation such as group purpose and contacts.

Testing tools
As we mentioned previously, the GDA develop-
ment process has insufficiently emphasized test-
ing. Until recently, we had only about 50 JUnit3
test classes. Recognizing this as a problem, we pro-
posed a tool set for testing that included TestNG
as the testing tool, given its superior feature set
and ability to perform higher-level tests as well as
unit tests. However, the wider use of JUnit4 and
a slightly poorer integration of TestNG in Eclipse
led to us selecting JUnit4 as our unit test tool.
We held a joint testing workshop in October this
year, which successfully helped improve test cov-
erage, and we’ve started using Emma to measure
target-class test coverage.

Continuous-build tools
We’ve long seen the need for a tool to continu-
ously check repository modifications and ensure
that the code compiles and builds into a jar. We
initially chose Maven because it offered many ex-
tras, such as code analysis and Web server metric

■

■

“Head” of trunk, for
development of next
release features, as
planned by manager.
Code here may not be
stable but should
compile.

Optional sub-branch
for special develop-
ment of features for
release 5_0_0,
bypassing release
4_1_0

“release_5_0_branch”
[major release branch]

root of branch
is tagged

root of branch is tagged

“release_4_1_branch”
[minor release branch]

“release_4_1_2”

“release_5_0_0”

Bugs were merged
or copied back to
head as necessary

More bug
fixing in
progress

Bug fixing,
quality
control

“release_4_0_1” tag
Code stable, so
generally released

“release_4_0_0” tag
is first alpha release
on branch

“release_4_1_1” “release_4_1_0”

root of branch is tagged

Sub-branch is
merged back to trunk
after conflicts are
resolved. Merge point
is tagged on trunk.

Figure 3. A schematic
of the Generic Data
Acquisition repository
structure and release
policy. This shows main
developments on the
trunk and each major
and minor release as a
separate supportable
branch, giving rise to
point releases at the
branch tips.

50	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

displays. However, we found administering it to
be complex, and it fell into disuse when the de-
veloper responsible for it left Daresbury. We be-
lieved CruiseControl offered a lightweight alter-
native. After evaluation, we began using it to run
the JUnit4 tests as part of the build process on
dedicated Windows and Linux PCs.

Scripting tools
Synchrotrons have many expert users who value
the ability to tune control loops and data acquisi-
tion operations from a command line. This is also
highly desirable for core software engineers when
programming basic experiment control and data
acquisition, because solutions can be delivered and
modified quickly and tests easily written. By us-
ing a Jython interpreter as a scripting engine from
GDA, we’ve created a scripting tool and given our-
selves and our users this functionality. We’ve used
this embedded interpreter for both testing GDA
Java objects and with PyUnit as a unit test frame-
work for Python extension commands in GDA.

Jython’s early versions lacked system functions
present in true Python, so we chose Python as a tool
for writing GDA launchers, a launch validator, FTP
clients, and backup clients. We set up the launch
validator on test machines and now use it to ensure
that the GDA simulator configuration starts suc-
cessfully without errors or warnings.

Collaboration
Throughout Daresbury’s history of data acquisi-
tion computing, we’ve used collaboration to a vary-
ing extent as a strategy to mitigate the effort in de-
veloping software solutions. Developing scientific
software can sometimes be an individual activity,
but using common libraries and object packages
has reduced our development time. Although de-
velopers within collaborations still have individual
tasks, collaborating enables idea sharing, broadens
the knowledge base, and provides insights into dif-
ferent perspectives. Consequently, the likelihood
decreases of having a single point of failure in sup-
port. Collaborating has enhanced group members’
desire to communicate and perform as a team.

SRCG group members have also been part of
specific collaborations funded at a European-wide
level. The DNA (www.dna.ac.uk) and Bioxhit
(Biocrystallography (X) on a Highly Integrated
Technology Platform, www.bioxhit.org) proj-
ects are examples. In these projects, partners have
signed up for specific tasks. Sometimes, these tasks
have been completely autonomous, requiring only
communication at meetings a few times each year,
largely to give and receive feedback on progress.

We’ve found these collaborations work well when
the interfaces to separate work packages have been
well defined. Where requirements and deliverables
have been more intertwined, closer communication
has proved essential for producing effective results.
Making decisions and resolving problems has in-
cluded a human-management element. We’ve had
to trade ideas and buy-in to solutions. Initially, this
was difficult, and progress was slow until we estab-
lished good rapport with our partners. In the long
term, establishing these collaborations has proved
beneficial in many ways. Group members have ac-
quired new skills that have proved valuable in the
GDA collaboration. Members have received mutual
benefit across the project through access to skills
and effort that individual institutions couldn’t af-
ford. Also, it’s given collaborators the opportunity
to see different facilities and how they operate.

As we’ve been involved with the development
of the major new facility, DLS, we’ve witnessed
three broad phases of work—initial development,
commissioning, and long-term development. Dur-
ing initial development, we put an infrastructure in
place, and there was little pressure for deliverables.
The mutual benefit between the two sites was high.
Daresbury staff had exciting new challenges, and
DLS staff gained big rewards from adopting the es-
tablished code base. This proved to be a very suc-
cessful period for the GDA collaboration—produc-
tivity and the focus on shared goals were high.

As DLS moved into the commissioning phase,
the pressure for them to deliver new features
and fix bugs on a short timescale increased dra-
matically. Concurrently, the SRS, having only 18
months left to run, moved into a phase that re-
quired maximum stability and reliability. This dif-
ference in emphasis between the two sites caused
friction within the project because the driving
forces behind the collaboration were pulling in dif-
ferent directions. Political pressures within the or-
ganizations added to the difficulties. At this point,
by mutual consent, the GDA project diverged, and
each site is continuing to develop GDA separately.
At Daresbury, we’ve seen that long-term develop-
ment often involves further cycles of the first two
phases, but on a smaller scale.

In our experience, collaborations work well
while development speeds are in step across the
collaboration and while goals and priorities are
well matched. One group’s stability easily becomes
another’s lack of progress; one group’s rapid de-
velopment easily becomes another group’s un-
planned hacking. How to manage collaborations
successfully when development issues differ con-
siderably will be a challenge for the future. One

Collaborations
work well while

development
speeds are

in step across
the collaboration.

	 July/August 2008 I E E E S o f t w a r e � 51

conclusion we can already draw is that this will
likely happen at some time, so try to plan for it.
Strong leadership to gain buy-in within the team
will be important in maintaining a collaboration
through a difficult period.

As with many good things in life, collabora-
tions aren’t free. They incur overheads in terms
of greater organization, more discussion on deci-
sions, and compromises to reach solutions. If these
overheads are handled well, the benefits more than
outweigh these issues. Progress might seem slow
in certain areas, so it is important to highlight the
benefits of collaborating to those actively develop-
ing and those sponsoring the collaboration, and
they must all buy into it.

Several years’ experience in software collabora-
tions led us to some general advice on attempting
to achieve success. Much of it focuses on commu-
nication issues, without being specific, and isn’t
limited to software projects:

Collaborations have costs. Do a cost-benefit
analysis to ensure you properly account for
them. Sell collaborations’ benefits to your team
and the sponsors on a regular basis.
Collaborations work best when they’re enjoy-
able, which occurs when those involved feel like
part of a team. You can’t force this feeling, but
don’t neglect to give team members opportuni-
ties to forge closer links.
Ensure good communication and don’t rely
on email, even when an international aspect is
present. Face to face is always best.
Interpersonal conflict can cause problems, so
don’t let it continue. There are bound to be
times when problems surface, but as long as
all involved are committed to the project goals,
you can resolve these.
Beware collaborations that turn into talking
shops. Idea sharing can be important by itself,
but ensure that people commit to long-term ac-
tions and follow up.
When people are working on elements that oth-
ers will use, ensure that interfaces are well de-
fined in advance and that everyone agrees on
them.

D eveloping software in a scientific environ-
ment requires a flexible and pragmatic
approach. Scientists in an experimental-

research environment must develop requirements
as their research proceeds. We’ve learned and re-
viewed many ways to help in this endeavor. One
major lesson we took away from this collaboration

■

■

■

■

■

■

is that the scientific-research environment is driven
by highly focused individuals. Success in software
projects for this market demands a close relation-
ship between developers and scientists. Attempting
to impose a solution is unlikely to be successful. A
more satisfactory method is to build mutual respect
between the two disciplines. Having a flexible ap-
proach to requirements usually leads to good work-
ing relationships and a good final product. Scientific
research is, of course, fun and creative, and so is de-
veloping software in that environment.

About the Authors
Karen S. Ackroyd is a senior software engineer at Daresbury Laboratory. She
received her BSc in computational and statistical science from the University of Liverpool.
Contact her at k.s.ackroyd@dl.ac.uk.

Steve H. Kinder is a senior software engineer at Daresbury Laboratory. He received
his PhD in physics from the University of Reading. Contact him at s.h.kinder@dl.ac.uk.

Geoff R. Mant is a senior software engineer at Daresbury Laboratory. He received his
PhD in photophysics and photochemistry from the University of Southampton. Contact him
at g.r.mant@dl.ac.uk.

Mike C. Miller is a senior software engineer at Daresbury Laboratory. He received
his MSc in applied entomology from the University of Newcastle. He’s a member of the
British Computer Society with Chartered IT Professional status (MBCS, CITP). Contact him at
m.c.miller@dl.ac.uk.

Christine A. Ramsdale is a senior software engineer at Daresbury Laboratory.
She received her MSc in radiation physics from the University of London, St Bartholomew’s
Hospital Medical College. Contact her at chris.ramsdale@hotmail.com.

Paul C. Stephenson is a senior software engineer at Daresbury Laboratory.
He received his PhD in theoretical physics from the University of Bath. Contact him at
p.c.stephenson@dl.ac.uk.

