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Abstract

A reliable mesh generation infrastructure is designed based on software engineering principles. Formal methods, software design

documents and clear modular decomposition criteria are introduced to improve the quality of mesh generation software. The design

document for a simple 2D mesh generation data structure is presented using a semi-formal specification. The proposed semi-formal

documentation system avoids any ambiguity during the software design process and will help in driving the software test cases. Using the

proposed software, design techniques result in a consistent software design that is easy to extend and modify.
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1. Introduction

Mesh generation is an essential component in many

numerical methods used for physical simulation. The

accuracy of the finite element and the finite volume methods

heavily depend on the mesh to be used for the discretization

process. The requirements of adaptive numerical methods

where mesh modification is needed to increase the accuracy

of the solution increases the design complexity of the mesh

generation toolboxes. Attempts have been made to improve

the design of mesh generators [3,16]. These attempts have

identified many of the mesh generation software require-

ments [3]. One of the major drawbacks of these attempts is a

high dependency on a specific implementation language,

which was CCC in both cases. In the current practice

object oriented methods are usually confused with software

engineering principles. It should be clarified that object

oriented languages facilitate and encourage many software

engineering principles such as data abstraction, information

hiding, encapsulation, module generalization and template

implementation, but all these concept can be implemented

by any well-designed imperative language in combination

with disciplined programming practices.
0965-9978/$ - see front matter q 2004 Published by Elsevier Ltd.

doi:10.1016/j.advengsoft.2004.06.012

* Corresponding author.
Instead of software specification many programs

substitue informal descriptions and comments throughout

the program code. Visual specification languages like

UML [10] can be used effectively for a pictorial

representation of architectural concepts, but these cannot

be used to specify mathematical operations or pre- and

post-conditions and they lack a mathematically rigorous

semantics [6]. This informal way of designing and

specifying software poses hardships on all the stages of

the software development process that follow. The ability

to verify and validate the correctness of the system is

missing because of the absence of a reference that

specifies the correct software behavior. As a consequence

of the above point, software reuse, maintainability and

extendability are extremely difficult within the current

mesh software development practices.

Recent work [5] suggests that software engineering

principles can help with these problems. Whereas Ref. [5]

takes a breadth approach and considers several stages of the

software cycle, the current work will take a more specific

perspective by incorporating three major ideas to improve

the quality of mesh generation software. These ideas are

formal methods, software design documents and a clear

modular decomposition criteria for mesh generation

software systems. Formal methods are collections of
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mathematical notations and techniques for describing

and analyzing systems [14]. This paper will embrace formal

methods as a particular method for increasing software

quality and will focus on the process of describing software

systems with formal methods. The process of analyzing the

software description can be done through the verification

process, which can be done deductively, or by testing. Some

tools like PVS can be used in the verification [17], but they

are hard to use and limited to simple data structures.

Software design documents are a set of separate

documents targeting different stages of the software design

process. In many cases, these documents are ambiguous or

not complete. Specification documents are important for

communicating ideas between different parts of the software

development team. In this paper, we suggest using a semi-

formal language for documenting mesh generation software

design so that we can be as specific as necessary.

The ultimate goal of any mesh generation software is to

be correct and this correctness is based on analyzing the

relation between the computer program p and the specifica-

tion s. This relation can appear in three different classes of

problems. If we are given the specification s and a program p

that satisfies these specification needed, then we are dealing

with a design problem. If both the specification s and

program p are given we can check whether p satisfies s and

hence we are dealing with a validation problem. The third

case is when we have a program p and we want to extract the

specification s of this program. In this case, we are dealing

with a reverse engineering problem. The previous three

problems may initially look different, but they have many

overlapping issues, such as the syntax and semantics to be

used and the underlying mathematics of the specification.

The last idea suggested for increasing the quality of the

meshing software is the use of a clear modular decompo-

sition criteria. Modular decomposition is the process of

dividing a big job into a set of jobs which are small, easy to

understand and as independent as possible. The decompo-

sition process may be based on different goals such as,

design generality, simplicity, efficiency or the flexibility for

certain changes. Identifying the criteria for decomposition

rules will result in software code that is consistent with the

targeted design.

This paper starts with defining the notation used to

specify software components semi-formally. A discussion

of the theoretical bases of modelling software systems as

state machine is also presented. A simple way for specifying

the Module State Machines (MSMs) by both defining the

Module Interface Specification (MIS) and the semantics of

the transition functions is outlined. The basic rules of

modular structure design of software system will be

discussed. Finally, a sample design specification document

of a 2D unstructured mesh generation data structure

followed by the specifications of the Delaunay insertion

algorithm is presented. This algorithm will show how to

apply the formal methods to this class of problem.
2. Notations

The semi-formal language used throughout this paper is

based on simple set notations and first-order logic. This

language has atomic types int, bool, char, string and real.

These atomic types can be used in tuples or collections. The

syntax used for tuples is (Type1, Type2,.,TypeN) with a

semantics of N elements of types TypeI where IZ1, 2,.,N.

Internal fields in the tuple can be referenced using the dot

notation. For example, if TB is a tuple (var1: Type1, var2:

Type2) then the first field can be referenced as TB.var1.

Collections of elements are stored in containers, which may

be ordered or un-ordered collections with unlimited size.

For unordered collections without duplicate elements, the

syntax (Type1)set is used for describing a set of Type1 which

has no limit on the size, in the same sense as an abstract

datatype; that is, a set is a mathematical notion independent

of any concrete implementation.

One way for defining sets is by constructors that select all

the elements of some type that satisfy a given predicate. For

example, SZ{x: intjODD(x)} is a predicate specification for

set S of all odd integers [15]. Ordered collections are

described by sequences with (Type2)seq as a syntax for

sequences. Sequences are unlimited in size in the same

sense as an abstract datatype. Sequences are indexed using

conventional array notation: sZhs[0], s[1],.,s[nK1]i.

Adding elements to sequences is done be using the

appending symbol s. Concatenation of two sequences

is done using the same symbol. The concatenation can be

done from the head or the tail of the sequence only. To

specify the size of a sequence, or set, a norm notation is

used; for example, jsj is used to show the size of the

collection s.

Simple prepositional logic operators will be used

throughout our specification language. Propositional vari-

ables with binary value of TRUE or FALSE are used, along

with simple formula including the boolean operators o, n
and l. First order quantifiers like c and d will be used as

prefix for formulas especially when dealing with sets and

sequences. A comprehensive introduction to prepositional

logic can be found in Ref. [8].
3. Modelling of meshing software

Modelling is the process of abstraction of the system

while preserving a limited number of original details. In this

process, the main properties of the system are highlighted to

allow better management of complex systems. Modelling

software system relies on the concept of state. The state of

software can be abstracted into a set of state variables. The

size of this set depends on the level of refinement of the

model. These state variables capture information about

certain steps in the executions path of the software. This

information may be the size and content of some data

structure or may be a flag for some condition. The set of
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state variables can be called initial, intermediate or final

state depending on the point of program execution. The

relation between the initial state and the final state is of great

importance because it can be used in defining both pre-

conditions and post-conditions, which are widely used in the

verification process.

A software system is composed of smaller pieces of

software called Modules. A module is a self-contained

work assignment for a programmer or programming team

[12]. A module can be modelled mathematically as a state

machine. A simple form of the formalism for this model

as a state machine is a tuple (S, s0, I, O, T, E) [7] where

S is the set of states and s0 is the initial state and so2 S,

I is a set of inputs, O is a set of outputs and T is the

transition function T: S*I/S and E is the output function

(E: S*I/O). The domain of both T and E are S*I where

the * denotes the Cartesian product. This way of

description as MSMs [7] can provide an easy mathemat-

ical basis for specifying software modules. Comprehen-

sion of the state machine in relational form may be

tedious and time consuming. However, a simple method

for a complete description of the MSM can be done by

listing the state variables and specifying the interface of

access functions which change the state variables and

produce outputs. The state variables definition is done by

listing the name and type of each state variable. Access

function are defined by listing the name of the function

and types of the input and return values of the function.

A mathematical description of the semantics of each

function also needs to be given. This method of

specifying modules is referred to as a MIS.
4. The modular structure

The first step of designing any software system is to

decompose the software into a set of simpler problems

through what is called the modular decomposition process.

The five goals of modular decomposition as highlighted by

Parnas [12] are:
(1)
 Each module should have a simple structure that can be

understood by any programmer who is not a member of

the development team.
(2)
 Each module should be self-contained and the coupling

between modules should be minimized. This allows

changing the implementation of one module without

complete knowledge of other modules and without

affecting the behavior of other modules.
(3)
 The module interface should be flexible so that it can

accommodate internal changes of the module without

any external changes. Interface changes are avoided

because this would export the effect of internal module

changes into other modules.
(4)
Fig. 1. A hierarchy for the designed meshing data structure.
Ideally major changes in the software should be done as

a set of independent changes to individual modules.
(5)
 Understanding the functionality of each module should

be possible without knowing the internal details of the

module design.
The adopted module decomposition criteria are based on

the principles of information hiding, design for change and

stepwise refinement. According to information hiding

principle, details that are likely to change should be the

secrets of separate modules [13].

These ideas of Modular Decomposition can be applied

easily to the data structures used in the mesh generator. Any

data structure which is expected to change under any

circumstances should be hidden inside one module. The

access to the data inside this module is done through the set

of access functions of this module. This is done to reduce the

ripple effects when modifying or extending the program.

Drawbacks of extensive use of modularization are the

reduction of the efficiency of the whole software system and

an increase in the development time. The efficiency problem

can be reduced with inline access functions, which are

allowed by most modern compilers.

Flexible interfaces may be a challenge in the implemen-

tation phase, but generic programming through function

pointers and templates offers a solution to achieve the

needed flexibility. It should be noted that the level of

assumed generality should not be applied to every data

structure used in the program, based on the trade-off

between generality and efficiency. Certain assumptions

should be made on some major data structures and a

software design decision can be assumed that this data

structure will not change. If such decisions are made, a

detailed description of the reasons behind it should be

appended to the software design documentation.
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5. A simple 2D triangular mesh data structure

The purpose of the section is not to design a complete 2D

triangular mesh generator, but to demonstrate how the semi-

formal specification methodology outlined can be applied to

mesh generation software. The simplest modular decompo-

sition can be found by assigning a module to each of the

geometrical entities of vertex, edge and triangle. After

defining these basic entities, a module for storage of these

basic elements should be defined. A software design

decision should be made on whether to use the same

container structure for the three elements or not. After

defining the basic sets of data structures, the algorithms

applied on these data structures should be analyzed and

divided into modules. Simple geometric operations can be

contained in one module. The higher-level algorithms,

which are the core of the mesh generation algorithm, should

be localized in a set of independent modules because of the

possibility of changing the algorithms. It should be noted

that modular decomposition is not an easy job to be done in
Fig. 2. Specifications of the H
one step, instead a series of steps using stepwise refinement

is applied. The previous decomposition can be represented

by a uses hierarchy. We say that a module A uses a module B

if correct execution of B may be necessary for A to complete

its work [11]. Fig. 1 shows a uses hierarchy for the designed

mesh generation software. The level of the graph shows the

dependency where modules at the bottom use no other

modules and considered to be at level 0. Modules at level i

are the set of modules which use at least one module of level

iK1 and do not use any module at level higher than iK1.

The goals of our 2D mesh design can be summarized as

following:
(1)
and
Having a separate and flexible representation for each

mesh entity. For instance, the representation of the

vertex, edge or triangle that can be easily modified or

extended to accommodate different mesh generation

algorithm requirements.
(2)
 Having a complete separation between the geometry or

physical data on the mesh and the topology or
le Server Module.
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connectivity information of the mesh. This is done to

ease the extension of the 2D mesh generator into surface

meshing.
(3)
 The mesh generator should be able to work with

different coordinate systems.
(4)
 A flexible data structure to store sets of vertices, edges

and triangles, which can be changed based on the

meshing algorithm requirements.
(5)
 The mesh generation can be done by different mesh

generation algorithms available in the literature with a

minimal amount of local changes.
The first step in our design is to define new datatypes.

For example, one new datatype is introduced because of

the need for each entity like the vertices, edges and
Fig. 3. Specifications of the Co
triangles to have a global index or Handle. Manipulating

the handle information through adding and deleting

elements is not simple because of the dynamic nature of

unstructured mesh generation, which allows both refine-

ment and coarsening. Adding and removing entities during

mesh generation makes the use of simple indexing

infeasible. To hide the information of how to deal with

indexing a Handle Server Module is defined to provide us

with unique index for each of the vertices, edges and

triangles. The access function of this module have a

variable of type Handle server within its input parameter to

provide the needed flexibility of the module to deal with

three different handle servers, one for the vertices and one

for edges and one for triangles. Fig. 2 shows the MIS of the

Handle Server Module.
ordinate System Module.



A.H. ElSheikh et al. / Advances in Engineering Software xx (2004) 1–156

DTD 5 ARTICLE IN PRESS
For vertices, the handle should be combined with the

geometrical data in a tuple to completely define the

topology and physical information. The physical infor-

mation in simple applications is limited to the geometrical

data, which can be represented in many different ways. For

example, the coordinate system can be Cartesian or polar.

To hide the information of the coordinate system we used a

Coordinate System Module as shown in Fig. 3. This

module is pre-initialized with two coordinate systems,

namely 2D Cartesian and 2D Polar system. This module is

initialized at compilation time because of the need to

define some functions to manipulate each coordinate

system. The second layer of defining the geometric data

is hidden in the Geometric Coordinate System Module as

shown in Fig. 4. This module has the ability to manipulate

information based on the specified coordinate system. An

extension to this module is made by adding a set of
Fig. 4. Specifications of the Geometr
functions for geometrical operations. Due to the large

number of these geometrical operations, a separate module

is defined for that purpose in Fig. 5.

Combining the handle and coordinate information for

vertices is done in the Vertex Module as shown in Fig. 6.

The edges can be represented explicitly as an element

connecting two vertices or it can be done implicitly as the

element separating two triangles. In our case, a two vertex

representation is assumed because we want to keep the

interface as intuitive as possible. Fig. 7 shows the MIS of

the Edge Module. The triangle elements can also be

represented in two ways: as three edges or by defining

three vertices. It is worth mentioning that the topology or

connectivity data is completely independent of whether the

mesh is embedded in 2D or in 3D space as a surface mesh.

Fig. 8 presents the MIS of the Triangle Module and its

access functions.
ic Coordinate System Module.
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The next step is to define the container specifications of

each entity. A generic container specification is shown in

Fig. 9. A type variable, which may be a vertex, edge or

triangle is used in this specification. A specialization of this

list or container is done to have the VertexList and the

EdgeList and the TriangleList. Finally, a set of some

topological operation commonly used by unstructured mesh

generation algorithms are bundled in the Topological

Operation Module shown in Fig. 10.
6. Specifications of mesh generation algorithms

Mesh generation algorithms can be specified using the

developed infrastructure. Mesh generators usually needs

two types of relation between mesh entities. These

relations can be divided into incidence and adjacency

relations. Betri [2] formalized the definition of the

incidence relation into the relation of a subset. If a

mesh entity f is inside of another entity c then f and c
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are incident. For example, there is an incidence relation

between the start vertex of an edge and the edge itself. It

is clear that elements of the same topological dimension

are never incident, but they may have another type of

relation called adjacency relation. For example, we can

define that two edges are adjacent if they share the same

vertices. The incident relations are specified in the mesh

infrastructure sections, where a downward incidence

relation from elements with higher topological dimen-

sions are connected to elements with only 1D less in

the topological sense. Thus, triangles are defined in

terms of edge and edges are defined in terms of vertices.

On the other hand, the adjacency relation was identified

as being algorithm dependant. For example, Oct-tree

based mesh generators rely on parent/child adjacency

relations between entities of the same topological
dimension, while in Delaunay triangulation each triangle

needs to know the neighboring triangles through

the neighbor adjacency relation. Due to this dependency

of the adjacency relations on the mesh generation

algorithm, these relations are not defined in the mesh

infrastructure.

As an example of using the suggested semi-formal

documentation and specification style, a key operation of

a Delaunay mesh generation algorithm is specified.

Delaunay triangulation is one of the most common

algorithms for triangular mesh generation. These algor-

ithms are usually done incrementally, where an initial

large triangle that geometrically bounds all the domain is

defined. Following this, vertices along the boundaries are

inserted incrementally. Once all the boundary vertices are

inserted, boundary edges are recovered. The recovery is
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also done by inserting vertices along the missing

boundaries. Finally a mesh improvement by refinement

is done for all the triangles that do not meet a certain

quality measure. A new vertex is inserted at the

circumcenter of each triangle that fails the geometrical

quality predicate. A complete description of the Delaunay

refinement algorithms can be found in Ref. [18]. It is

clear from the previous description that vertex insertion

is the core step of this algorithm. This insertion should

maintain the validity of the Delaunay empty circumcenter
property of every triangle in the mesh. Fig. 11 introduces

the specifications of neighbor adjacency relation of the

mesh edges. This relation is needed for the Delaunay

refinement algorithms to identify adjacent triangles.

Additional adjacency relations can be defined in the

implementation process, but if any redundancy in the

stored information is introduced, validity checks

should also be added to avoid any inconsistency. A

pictorial representation of the Bower/Watson point

insertion algorithm [4,19] is shown in Fig. 12. In this
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algorithm, whenever a new vertex is inserted all

the triangles where the new vertex falls within its

circumcircle (encroached) are deleted. The new cavity

is then triangulated by connecting the new vertex to
the vertices on the boundary of the resulting cavity.

Fig. 13 presents the specifications of point insertion as a

part of the Bower/Watson algorithm for Delaunay

triangulations.
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7. Extendability and scalability

The extendability of the introduced mesh generation

system is granted by our modularization. For example, Oct-

tree based meshing algorithms do not share many operations

with Delaunay based algorithms, but our meshing system

can be extended to Oct-tree algorithms in a straight forward

way. Oct-tree mesh generation requires a tree structure to

define the adjacency between the mesh entities. This tree

structure will be specified as a variation of the adjacency

relation module. The mesh generation algorithm can be

considered as a variation of the Delaunay insertion

algorithm where vertices are inserted incrementally with
different criterion to maintain the tree balancing. Once a

node is inserted inside a triangle that includes another

vertex, that triangle should be divided into a pre-specified

number of children followed by a tree-balancing step.

Boundary recovery will also depend on inserting new

vertices. This demonstrates that to adopt a completely

different mesh generation algorithm only two modules need

to be changed. These two modules are the adjacency

relation module and the mesh generation module.

The scalability of this meshing system is assumed to be

similar to the development of matrix analysis libraries

BLAS [9] and LAPACK [1]. The BLAS library provides

the basic vector and matrix operation on different data



Fig. 10. Specifications of the Topological Operation Module.

A.H. ElSheikh et al. / Advances in Engineering Software xx (2004) 1–1512

DTD 5 ARTICLE IN PRESS
types and LAPACK provides high level routines for

different problems like the solution of linear equations,

singular value decomposition and many other problems.

The newly introduced mesh generation infrastructure is

similar in concept to the BLAS library and has been

divided into a storage scheme, topological and geometrical
operation at the lowest level. On top of this different mesh

generation algorithms can be developed. These algorithms

can interface cleanly with different storage and data access

schemes. Finally, the high level mesh based applications,

such as the finite element method can utilize the entire

infrastructure.
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8. Conclusions

Using the specified 2D mesh generation infrastructure

reliable mesh generation software can be developed in a

simple way for any mesh generation algorithm. The clear

high level description of the basic entities of the mesh

and the complete separation between the topological and

geometrical information makes it easy to extend

and modify this tool. The high level of abstraction of
Fig. 12. Bower/Watson poin
the containers as sets leaves the selection of an efficient

representation for storage of mesh entities until a decision

about the meshing algorithm is taken. This can be done in

the next step of specification refinement, or it can be left

for the implementation phase. The specification presented

can significantly help in avoiding any ambiguity during

the design process of mesh generation software. Writing

the design specifications in a formal way, which is

intended for humans and eventually for machine
t insertion algorithm.
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verification is considered by the authors as a very reliable

method. Identifying exception cases early and defining the

proper action to be taken protects the software design

from major changes at the testing stages. The complete
specification with all exception cases defined will

significantly help in driving test cases to check the

correctness of the final product as well as for testing each

module separately.
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