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This paper presents a model of software development based on knowledge acquisition. The model was for-

mulated from 10 years of studies of scientific software and scientists who develop software as part of their

science. The model is used to examine assumptions behind software development models commonly de-

scribed in software engineering literature, and compare these with the observed way scientists develop

software. This paper also explains why a particular type of scientist, one who works in a highly risk-averse

application domain, does not conform to the common characterization of all scientists as “end-user program-

mers”. We offer observations of how this type of scientist develops trustworthy software. We observe that

these scientists work outside the ubiquitous method-based software development paradigms, using instead

a knowledge acquisition-based approach to software development. We also observe that the scientist is an

integral part of the software system and cannot be excluded from its consideration. We suggest that use of

the knowledge acquisition software development model requires research into how to support acquisition of

knowledge while developing software, how to satisfy oversight in regulated application domains, and how to

successfully manage a scientific group using this model.

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Scientific software development has been characterized as end-

user programming (Segal, 2004), considered a candidate for Agile it-

erative development (e.g., Ackroyd et al., 2008), and has been reg-

ulated with waterfall-style software quality development standards

(Canadian Standards Association). Scientists themselves characterize

their development approach as “a-methodical” (Truex et al., 2000).

This confusion of views of scientific software development hampers

the creation of useful and useable tools, quality standards, and soft-

ware development paradigms for scientists. Our aim in this paper

is to (1) describe the common characteristics of the scientific soft-

ware developer that we encountered in our studies, (2) argue that

these scientists do not fall under the definition of “end-user program-

mers”, and based on our studies, (3) offer a different model of what

drives software development by these scientific software develop-

ers, and (4) provide a new understanding of the software engineering

research that would benefit this type of scientific software develop-

ment and use.
∗ Tel.: +1 613 541 6000×6171.
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For this paper, we define scientific software as application soft-

are that includes a large component of knowledge from the scien-

ific application domain and is used to increase the knowledge of sci-

nce for the purpose of solving real-world problems. We use the word

scientific” to include engineering applications.

Scientific software, by our definition, includes examples such as

oftware to model loading on bridges, study safe operation of nuclear

lants, track paths of hurricanes, locate satellites in telescope images,

heck mine shafts for rock faults, model medical procedures for can-

er treatment, model dispersion patterns for toxic particulates, and

tudy ocean currents for ecological impact.

The term “scientific software” has been used for a wide variety of

oftware types that do not share the same quality requirements or

he same management priorities. Software written to become a com-

odity product, for example, is managed to meet delivery dates and

udget constraints. Software written to verify the safety of a radiation

rocedure, has to be correct, to the exclusion of all else.

We also exclude from our definition, software whose primary pur-

ose is to control equipment. As explained in Kelly (2008), the qual-

ty goals of software that controls potentially dangerous equipment,

uch as avionics and nuclear reactor shut-down software, are differ-

nt from the quality goals of scientific software that computes mod-

ls of physical phenomena, such as tracking the path of a hurricane.

f there is a failure in avionics software, the preference is that the

http://dx.doi.org/10.1016/j.jss.2015.07.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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oftware degrades as gracefully as possible. If there is a failure in soft-

are tracking severe weather, the preference is that it crashes and

akes the problematic calculation as obvious as possible. One side

ffect is that any software quality standards targeted at control soft-

are are inappropriate to be applied to scientific software.

We also exclude generalized tools from our definition. Even if the

ools are primarily intended for use by scientists, for example mathe-

atical libraries, software layered to hide the complexity of high per-

ormance computing environments, and fourth generation languages

ntended for scientific computation. We include, instead, the applica-

ions built “on top” of these tools, which are aimed at solving a par-

icular scientific problem.

To clarify, we further characterize scientific software with the

ollowing:

(a) a scientific domain specialist is necessarily involved in the pro-

cess of developing the software;

(b) the user of this software has some minimum knowledge of the

associated scientific domain, to allow correct interpretation of

the output data;

(c) the user is the recipient of all output from the software, mean-

ing the software’s purpose is not to control equipment;

(d) the software’s primary purpose is to provide data for under-

standing specific real world problems, meaning that the scien-

tists we study do not develop generalized tools and libraries to

support computational computing;

(e) the overriding software quality is correctness – or more accu-

rately, trustworthiness – and if trustworthiness fails, then all

other software qualities are irrelevant.

This paper is organized as follows:

The next section describes the set of studies of scientific software

evelopers that we carried out from 2004 to 2014. This body of work

rovides the background for our understanding of the scientific soft-

are developer, and a basis for our discussions in the balance of this

aper.

Next, we contrast our findings with the commonly held charac-

erization of scientists as “end user programmers”. Ko et al. (2011)

rovide a definition and detailed discussion of the characteristics of

end user programmer”. We argue that end user programmer does

ot provide an accurate characterization of the type of scientist we

re studying. Hence the body of research on end user programmers

annot be applied unilaterally to this type of scientist and their soft-

are.

In Section 4 of this paper, as an alternative to the view of scien-

ific software developer as end user programmer, we offer a model

f scientific software development based on the scientist acquiring

nowledge from five knowledge domains. We are not proposing a

ew process theory, but an empirical example of an alternative to

methods”. We use our knowledge domain model to explain how ap-

roaches based on methods assume a fragmentation of knowledge

hat is detrimental to the development of scientific software.

In Section 5, we discuss, from our studies, the activities scientists

ngage in to advance their knowledge and to maintain trust in their

cientific software, while not engaging in methods.

Finally, Section 6 concludes with a summary of the contributions

f this paper.

. A set of studies of scientific software development

.1. Overview of a synthesis of research

From 2004 to 2014, we carried out a variety of studies looking at

ifferent aspects of scientific software development. In this section,

e give a brief description of each study, a list of references that pro-

ide further details, and explain the findings salient to the discus-
ion in this paper. The discussions in this paper are a synthesis of this

ork.

The studies took different formats from open-ended interviews

f a group of scientists to working with and observing one scientist.

ur findings are consistent across all studies, that the scientists de-

eloped viable software practices, were well conversant with their

oftware and hardware environments, had adapted testing strategies

hat integrated with their scientific goals, and did not follow any “sys-

ematic” software engineering paradigm.

.2. Longitudinal study of an example of nuclear software

In the first study (Kelly, 2009, 2008, 2004), we examined the struc-

ural characteristics of an example of nuclear simulation software,

ver a 20 year period of its lifetime (1980–2000). Lehman’s Second

aw of Software Evolution (Lehman et al., 1998), states that, “As a

software] system evolves its complexity increases unless work is

one to maintain or reduce it.” Yet, we found no evidence of increas-

ng complexity such that it detrimentally impacted the maintenance

nd use of the software, even though nearly every line of code had

een changed, an observation made by others dealing with scien-

ific software (Boisvert et al., 2000). Instead, we found the software

xhibited stable parts that “provide a firm foundation for continued

evelopment and change” (Kelly, 2008). The stable parts of the soft-

are reflected ties to the application domain. Program design and

se of data structures mapped readily to application domain con-

epts. This agrees with work done by Guindon (1990) who found that

omain specialists tend to organize “knowledge structures by func-

ional characteristics of the domain” in which they are specialists.

ariable names established in the original version persisted through

he 20 year evolution and reflected an established vocabulary used by

he software developers. The software architecture used for the orig-

nal 1980 application is typical of scientific software (Boisvert et al.,

000), is well understood, and is relatively simple. The software suc-

essfully evolved over 20 years, yet it was maintained by scientists

ith no formal software engineering education. The success seemed

o be due to their using simple, well-understood software architec-

ures, conceptually linking structures to the science, and maintaining

onsistent scientific and software vocabulary. There was uniform, un-

ritten agreement on how to make changes to and extend this soft-

are. The study suggests, amongst the scientists who worked on this

oftware, an understanding of coding style, naming conventions, and

oftware architecture, that endured for 20 years and across scores of

eople.

.3. Regression testing of an academic nuclear program

The next study involved a software engineer working with a team

f nuclear scientists to set up automated regression testing of their

pplication (Cote, 2005). The software engineer was working with an

cademic copy of an application that had been successfully commer-

ialized. The academic copy was to further evolve as new scientific

odels became available. The software engineer was frustrated in

er efforts to apply standard software engineering testing practices

e.g. Jorgensen, 1995) to this example of scientific software. Equiv-

lence class testing was impossible to apply because of the difficulty

f reliably defining input data boundaries. Some calculations were ex-

remely sensitive to any changes in data or code, including changes in

ompiler options. Only the scientist, not the software engineer, could

ecide pass/fail criteria for regression tests, due to the sensitivity of

ome calculations, floating point round-off error in all calculations,

nd varying required accuracy for different output values. Run times

or some executions of regression testing were much longer than that

ecommended in standard software engineering. This exercise illus-

rated the difficulty and extensive effort required in applying soft-

are engineering systematic testing to scientific software.
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2.4. Interviews of academic scientists who develop software

In 2008, we published our results from a series of interviews of

scientists working at two academic institutions. Our interviewees

“seldom discussed design as a distinct step in software development”

(Sanders and Kelly, 2008). We also found that “scientists didn’t con-

sider redesigning [their software] a valuable use of their time. Scien-

tists generally want to do science, not write software, and certainly

not introduce [error] by changing software that works.” When ques-

tioning scientists about their software testing practices, we found

that the scientists considered that “the code is tightly coupled to the

theory”, testing is used “to show that their theory is correct”, that

problems uncovered by testing “might be with the theory, the the-

ory’s implementation, the input data, or the [expected] result. All the

scientists we interviewed doggedly pursued causes for their output

not matching [expected results]”. From our interviews, we suggested

that, “We need research in test-case selection methods that deals re-

alistically with computational singularities, long runtimes, large in-

put data sets, extensive output, and software with complex domain

content.” The scientists we interviewed considered the software as

inseparable from their science and testing was a key part of doing

science. None of their testing could be clearly characterized as any of

the systematic testing practices described in the software engineer-

ing literature.

2.5. Study of an astronomer and his testing approaches

Subsequently (Kelly et al., 2011), we paired a software engineer

with an astronomer who had inherited software in order to add a

major new model. The software engineer was interested in assessing

the effectiveness of unit testing and code inspection in the context

of scientific software and output accuracy. The astronomer, as a de-

veloper, wanted to assess his ability to alter the software without de-

stroying the trust he needs while using the software. The results of

this study provided us with “… a more complete picture [of] the dif-

ferences in concepts and priorities between testing as it’s described

in the software engineering literature and as it’s applied to a scientific

application” (Kelly et al., 2011). The astronomer abandoned the unit

testing procedures in favor of activities that allowed him to increase

his intimate knowledge of the software. He invented a new activity

that melded together code inspections with scenario-based testing,

based on the scientific goals of the software. He created a library of

exemplar test cases that could be used in the future and identified

high-risk types of mistakes and how they could impact his work as a

scientist. The scientist’s goal for the testing exercise was to increase

his own knowledge of the software, but then use that knowledge to

assess his trust of the software. The increasing knowledge of the sci-

entist was an integral part of the assessment process. With the scien-

tist considered as part of the software system, the goals, the software

assessment techniques, and the adequacy criteria for the exercise all

work towards improvement of both the scientist’s knowledge and the

trustworthiness of the software. Two key findings emerged from this

study: one, the scientist must be considered as part of the software

system and, two, their testing is not product based, but knowledge

based.

2.6. Examination of testing scientific software for accuracy

We picked up the thread of research on test case selection for sci-

entific software. Hook, in his thesis research (Hook, 2009; Hook and

Kelly, 2009) created a large number of “mutant” variations of com-

putational modules each with different code mistakes. He then ran a

large battery of tests to find the mistakes embedded in the mutant

pieces of code. The surprising outcome of this study was that a very

small number of “well-chosen” tests could identify the vast majority

of the mistakes in the mutant codes. The issue was to identify a-priori
well-chosen” tests. Gray (Gray, 2010; Kelly et al., 2011) used a num-

er of different standard software engineering testing techniques to

iscover what a “well-chosen” test was. He concluded that randomly

reated tests with values within valid and reasonable ranges worked

s well, if not better than systematic testing. However, there seemed

o be a need to augment the test cases with “well chosen” tests for

boundaries”. The testing of boundaries of physical phenomena being

odeled by the software played a key role in selecting effective test

ases. This meant that the tester had to have some knowledge of the

cience embedded in the software. Hook concludes in his thesis that,

Computational scientists need domain specific testing techniques”

Hook, 2009). This suggests that scientists may routinely create small

umbers of “well chosen” tests instead of a large battery of system-

tic tests, using their knowledge of the science and the algorithms in

he software. This appears to be a viable alternative to software engi-

eering coverage-driven systematic testing.

.7. Interviews of industrial scientific software developers

In 2012, we documented (Kelly, 2013) a series of interviews of in-

ustrial scientists who work in high-risk application domains. The

oal was to create a list of software development activities that these

cientists deemed useable and successful in their software devel-

pment efforts. The premise is that these scientists must achieve

uccess with their software or risk catastrophic events in their ap-

lication domains, which included radiation therapy, nuclear power

afety, and mine safety. As part of this study, we sent out a survey

o medical physicists questioning them about their software devel-

pment activities (Kelly and Salomon, 2015). Both these studies re-

ealed that the scientists spent extensive time testing and are wor-

ied about their testing. The software was not conceptualized as a

eparate entity from their application theory or from its use in the ap-

lication domain. As a result, testing activities were integrated with

nderstanding of the application domain. The tests cannot be cate-

orized according to software engineering terms since each scien-

ist designed unique approaches to testing to address the problem

t hand. Testing often was needed to address the difficulty of repro-

ucing published theoretical results. Theory, despite common beliefs,

oes not translate directly to code and “you have to inject a pile of en-

ineering” to get it to work (Kelly, 2013). As well, we observed that the

rocess of software development, investigation of scientific theory,

nd use of the software was a seamless activity with no clear breaks.

he software engineering concept of dividing software development

nto discrete steps, tasks, phases, or iterations was not observed. The

onceptualization, development, and use of the software were often

arried out by one, or a highly integrated team of scientists, to pro-

uce one integrated product: the answer to the scientific question.

The seamless activity of moving from problem to solution via

oftware was supported by “cooperation, communication, and ne-

otiation” (Kelly, 2013). The industrial scientists talked about “a lot

f continuity, hallway conversations, and collaborative work”, that

eamwork was essential with people eager to help each other, and

hat “silos don’t work” (Kelly, 2013).

.8. Knowledge dissemination in a medical computing lab

In spring of 2014, we interviewed people from a medical com-

uting lab (Kelly and Skordaki, 2014). The purpose of this study

as to examine how knowledge was disseminated amongst the

roup of scientists and students who developed or used software in

he lab. There was no mention of any standard software engineer-

ng documents such as design or requirements. The overwhelming

ource of information was the human practitioner, with support doc-

mentation coming in a wide variety of formats and content, some-

imes specifically designed for the needs of the user/developer. There

as no indication of discrete steps or phases in their development
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ork – only one continuous activity from scientific problem to an-

wer. The most important information was who had the necessary

nowledge in order to move the work forward. Knowledge flow was

upported by organization factors that contributed to social com-

unication. Communication was stressed, but likely because of the

upervisor–student authority structure, teams did not exist as in the

ndustrial structure.

.9. Validating five knowledge domains

All the scientists’ work was focused on gaining knowledge in order

o answer the scientific question. Early in our observations, it was ap-

arent that knowledge came from five distinct domains (described in

etail later in this paper). We presented these ideas in workshops at

he IBM Center for Advanced Studies Conferences in 2003, 2009, and

010, as well as in various presentations to scientists. The five knowl-

dge domains were the basis of an analysis of long-term evolution of

n example of scientific software (Kelly, 2004). The graphical repre-

entation (Fig. 1, below) of the five knowledge domains was refined

ith input from the scientists.

Our studies over the past 10 years presented us with a puzzle.

cientists’ approach to software development is at odds with the

ethod-based approaches used by software engineers (Segal, 2005).

et, the scientists we interacted with, did extensive testing, and many

ere very conversant with coding, their compilers, and their operat-

ng systems. They were all well aware of the impact of mistakes on

heir science but usual software engineering concepts (e.g. require-

ents specification, unit testing, test coverage, design documenta-

ion, design reuse, etc.) were missing from their dialogues with us.

We returned to statements we made in an earlier publication: “…

cientific software includes the scientists as an integral part of the

ystem.” The approach to software development “must include the

cientist’s knowledge and goals” (Kelly et al., 2011). This means that

verything the scientist does includes the state of his/her own knowl-

dge relating to the scientific question being answered. There is a

ontinuum from initially posing the scientific question to producing

he final answer. The software, as well as the scientist, is a part of the

ontinuum. It is this unbroken continuum we need to understand.

.10. A characterization of risk-averse scientific software developers

From our studies, we extracted common characteristics of the sci-

ntists and how they work. These characteristics are important for

nderstanding the parameters of our current research and of the con-

lusions that we draw.

To characterize the scientists we studied, we derived a set of di-

ensions (Kelly, 2013) based on our research. Using these dimen-

ions, we describe these specific scientists:

(i) When the scientific application area is highly risk-averse, mis-

takes in the software can negatively impact the safety of the

public or the health/safety of an individual. We observe that
Fig. 1. Model of five domains that contribute knowledge to software development.
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the scientist applies this risk-averse mindset to his/her soft-

ware goals and only engages in software practices that limit

risk-taking.

(ii) When there is deep and complex domain knowledge imple-

mented in the software, output is dependent on successful

interaction of different parts of the software such as input

data, solution techniques, approximations and empirical mod-

els, hardware characteristics, and compiler choices. The output

requires significant domain knowledge for correct interpreta-

tion. We observe that none of these scientists consider them-

selves software experts, yet they have a deep understanding

of their own particular software environment, including hard-

ware, data, operating systems, compliers, etc.

(iii) The scientific developer has formal education in the applica-

tion area, and as such, it is their area of choice for their ca-

reer. After significant investment of time and effort into asso-

ciated software, the scientific developer is usually committed

to the software for 10 or more years. We observed that this

impacts the scientists’ ways of addressing long-term maintain-

ability and knowledge sharing. They build up resources for un-

derstanding their environment and ensure the software clearly

communicates its contents.

We term these scientists as risk-averse scientific application

evelopers.

An important observation is that these scientists use the knowl-

dge that they gain from both developing and using their software

n order to answer their scientific question. While developing their

oftware, they may find that an established empirical model does not

ddress a new situation, or published theoretical results cannot be

eliably implemented in code as published.

As application developers, these scientists see themselves as an

ntegral part of both the software system and the answer to the sci-

ntific question. Often, they see themselves “on the firing line”, that

s, responsible for the answer they give to the scientific question, and

y inference, responsible for their own knowledge and understand-

ng, for the data that they base their knowledge upon, and for the

oftware that has produced the data.

The impact of the scientists’ answers, knowledge, data, and soft-

are can be on a large segment of the population, or can seriously af-

ect the health or safety of individuals. As a result, the software cannot

e managed as if it is divorced from both the scientist and the pub-

ic at large. The product of the software activities is the knowledge of

he scientist and the users of the software are the recipients of this

nowledge.

. Scientists as professional end-user programmer

The most ubiquitous characterization of scientists who develop

oftware is as end-user programmer. This allows the software engi-

eering community to slot scientists into a body of research to help

nderstand and recommend software engineering approaches to im-

rove the scientists’ software work. The most obvious reason to char-

cterize scientists as end-user programmers is because they do not

onsider themselves to be in the software business. Segal (2004) re-

ned the label to “professional end-user developer” where scientists

re characterized as working in highly technical and knowledge-rich

nvironments, are proficient with formal languages and abstractions,

nd have few problems with coding and learning software languages.

egal (2005) illustrated the differences – and the conflicts – in de-

elopment approaches between software engineers and scientists,

here it is concluded that the software itself is not valued by the sci-

ntists and “the process of creating software [is] highly iterative and

npredictable” (Ko et al., 2011).

In this section, we argue that the type of scientists we consider in

his paper are not “end-user programmers”, by the definition given
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by Ko et al. (2011). This allows a comparison and further clarification

of the differences between Ko et al.’s definition of end user program-

mer and the characteristics of the scientist developers included in our

study.

3.1. Definition from literature of end-user programmer

Ko et al. (2011) defined an end-user programmer as “programming

to achieve the result of a program primarily for personal, rather than

public use”. They emphasize that end-user programmer refers to the

intent of the programming task, not the programmer’s identity nor

the tools they use, nor whether the task is related to work or personal

endeavors.

Ko et al. (2011) continue to characterize an end user programmer

as follows:

(i) “the tool and its output are intended to support the developers’

particular task, but not a broader group of users or use cases”;

(ii) “… the key difference between professional software engineer-

ing and end-user software engineering is the amount [sic] at-

tention given to software quality concerns”;

(iii) ‘… professional software developers spend more time [than

end user programmers] testing and maintaining code than de-

veloping it and they often structure their teams, communica-

tion, and tools around performing these activities …”;

(iv) “systematic and disciplined activities that address software

quality issues are secondary to the goal that the program is

helping to achieve”, “… systematic [testing] is often in conflict

with end-user programmers’ goals, because it requires time on

activities that they usually perceive as irrelevant to success”;

(v) “end-user software engineering can be characterized by its un-

planned, implicit, opportunistic nature, due primarily to the

priorities and intents of the programmer …”;

(vi) “they [end-user programmers] may be less likely to learn for-

mal languages in which to express requirements …”;

(vii) “requirements and design in end-user programming are rarely

separate activities”;

(viii) “Regression testing has been used in relation to spreadsheets;

beyond this, these approaches have not been pursued in end-

user development environments”;

(ix) “Where EUSE [end-user programmers] and professional SE

[software engineers] differ is that end-user programmers’ pri-

orities often lead to overconfidence in the correctness of their

programs”;

(x) “Many [end-user programmers] lack accurate knowledge

about how their programs execute and, as a result, they often

have difficulty conceiving of possible explanations for a pro-

gram’s failure … [using] ‘quick and dirty’ solutions, such as

modifying their code until it appears to work.”

This list distinguishes between end user programmers and profes-

sional software developers in the hopes that software engineers are

able to provide guidance in the form of currently accepted software

engineering practices.

3.2. Risk-averse scientific application developers and end user

programmers

In this section, we compare each of the characteristics listed by

Ko et al. (2011) with the characteristics we observed amongst the sci-

entists we studied. We argue that unilaterally including all scientists

as end user programmers ignores significant differences between our

group of scientists and those who apparently conform to the descrip-

tions of end user programmers. Our comparison serves to further

characterize the scientific developers we are discussing in this paper.

First, the distinction of software developed by an end user pro-

grammer as “personal, rather than public use” is problematic. All pro-
ramming done by a scientist as part of his/her professional work

an be considered to be public use. The data generated by his/her

rogram “is used to increase the knowledge of science for the pur-

ose of solving real-world problems” (from our definition in Section

). Whether the data increases the scientist’s personal knowledge or

hether the data is passed along to others for further processing,

oes not lessen the potential impact of that data and its accompa-

ying gain of knowledge (or failure to gain knowledge).

(i) Number of users

Because of the domain knowledge necessary to understand

its use, scientific software seldom has the number of di-

rect (hands-on-the-keyboard) users as other types of software

products, particularly commodity-based products. However,

the concept of “use” of scientific software needs to be far more

encompassing than that of other types of software. Data from

scientific software has to be interpreted by the scientist in

order to make actual use of it. The scientist becomes an ex-

tension of the data – and hence an integral part of the soft-

ware system. The general public cannot look at data coming

from medical physics software and decide if a radiation treat-

ment plan will be effective. But the physicist can and will act

upon that data, to the benefit of the cancer patient. The can-

cer patient becomes the user of that data/human-scientist sys-

tem. Similarly, the general public cannot interpret output from

software tracking a severe weather system, but a meteorolo-

gist can. The data/meteorologist software system can produce

weather warnings for the benefit of the public. There are two

shifts of thinking necessary here. One is that the scientist must

be an integral part of the software system in order for the sys-

tem to be useful. Second, users of this scientist/software sys-

tem are the recipients of such products of the system as radi-

ation treatments, weather warnings, safe bridge designs, and

assurance that the walls of a mineshaft are intact. The use of

products from scientific software directly impacts the public

at large. Even though one scientist may develop and act as the

hands-on user of a particular piece of scientific software, the

software system cannot be considered, based on the number

of users affected by the scientist/software extended system,

the same as a baseball coach tracking his team’s statistics on

a spreadsheet.

(ii) Software quality concerns

From all the scientists that we interacted with, the common

software quality concern was “trustworthiness”. All the scien-

tists equated their professionalism with trust in the software

and trust in the data produced by the software. One scientist

stated that the software must never lie to him. If they could

not trust the software, it was not used. If they had access to the

code, we observed that their pursuit of anomalies in the soft-

ware was relentless. The lack of quality concerns attributed to

end user programmers was not observed.

(iii) Activities other than coding

All scientists we interviewed or observed spent extensive time

testing their code, reading their code, and discussing different

aspects of theory and use of their code. They endeavored to

keep their code as simple as possible in order to reduce the

amount of coding time, and to reduce the clutter that could

hide the science (e.g., Boisvert et al., 2000). Teams working

on a code product were highly functional, each team member

bringing something unique to the table. The teams were not

organized around software engineering processes or tasks, but

around knowledge useful for the project.

Team organization is different from that of software engi-

neers, but time spent on activities other than programming
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may be proportionally even greater than that credited to soft-

ware engineers. One indicator is that the concept of sim-

plicity seems to be more prevalent in discussions of scien-

tific software than in discussions about software engineering

(Floyd and Bosselmann, 2013). Programming simplicity sup-

ports spending more time elsewhere other than coding. Qual-

itative observation suggests this time is spent on testing and

hypothesis building.

(iv) Systematic activities addressing quality

Systematic activities as prescribed by software engineering

were generally not used by any of the scientists we observed

or interviewed. Instead, the scientists used a wide variety of

approaches, often unique, to specifically address the problem

at hand. Their approaches were often integrated with the sci-

ence, such as naming variables the same as scientific quanti-

ties, verifying code against theory equations, validating output

against real world measurements, testing algorithms against

known solutions, and using data structures that reflect the sci-

ence. Software engineering style of systematic testing that cov-

ers the software procedurally from beginning to end, is not

seen as conducive to increasing the scientist’s knowledge, and

so is not used. We found that scientists may have developed

a “well chosen” and targeted approach to testing, centered

around their knowledge rather than prescribed by software

engineering practices.

(v) Unplanned development

Unless forced to follow a prescribed software engineering de-

velopment paradigm, scientists appear to develop their soft-

ware in a random, unplanned manner. In a following section,

we present an alternate model of how scientists develop their

software, showing that there are well considered factors driv-

ing their choices of activities, and these choices are not ran-

dom.

(vi) Formal languages for requirements

Scientists are well versed in mathematics and the formal ex-

pressions of their scientific domains. These expressions, and

their theory, serve as their requirements languages.

(vii) Requirements and design are not separate activities

We have observed that the scientists do not disentangle re-

quirements from design, nor from coding or use of the soft-

ware. There is a continuum from scientific question to answer,

channeled through the software. For the scientists, the phases

of requirements, design, code, and test are intimately tied to-

gether and any attempt to separate them sets up artificial bar-

riers to what the scientists are trying to accomplish. In our ob-

servations, the scientists are working successfully outside the

method-based software development paradigms that dictate

separated phases of requirements, design and implementation.

(viii) Regression testing

Scientists use regression testing where it makes sense in their

environment. Reproducibility is important to the scientists, but

can be achieved by saving previous executables (configuration

management) or by adding new input options to bypass com-

peting code. From the study of Cote (2005), we found that set-

ting up an automated regression suite to achieve high code

coverage was extremely problematic and highlighted why sci-

entists’ find other ways to achieve the same results.

(ix) Over confidence in correctness

The scientists do not separate the software from their science.

If the output from the software is in doubt, the scientist may

blame the theory as much as the software. However, the sci-

entist pursues the questionable output, making changes in a
“feed-back loop” style (Sanders and Kelly, 2008) until he/she

is satisfied that everything is correct and the output can be

trusted. We did not observe over confidence. Conversely, there

was consistent concern with ensuring trust in the software.

(x) Lack of knowledge to pursue program failures

Industrial scientists we interviewed insisted that new hires

need to know fundamentals about operating systems and com-

pilers, and must be willing to learn everything about their new

environment (Kelly, 2013). We’ve talked to a computational

psychologist who had a deep understanding of his multipro-

cessor parallel computing system and a medical physicist who

understood all the different data formats output by his equip-

ment. One scientist commented that they need to know the

“big picture” or risk not recognizing a problem and how to fix

it.

On the surface, scientists may conform to the definition and char-

cteristics of end user programmer: single or small groups of devel-

pers, small groups of users, focused on end use instead of the soft-

are, and lack of visible and systematic software engineering prac-

ices. However, this viewpoint is far too software product centric and

isses the important differences in how scientists work. Because the

dea of scientific software must be extended to include the scientist

s part of the software system, with his/her knowledge as the deliv-

rable, scientific software potentially serves a very large user group.

e are discovering that scientists have developed viable alternatives

o method-based views of software development, focusing instead on

nowledge-building activities.

. A model of knowledge acquisition as a driver for the

evelopment of scientific software

In order to fully understand how scientists view and develop their

oftware, we need to change from a method-based view of software

evelopment where the product is the software, to a non-method

iew of software development where the product is the scientist’s

nowledge.

At least since 1990 (e.g., Guindon, 1990), researchers have consid-

red how knowledge is acquired and expressed in any type of soft-

are. Earlier, researchers (e.g., Curtis et al., 1979) were aware that

uman understanding played a key role in successful maintenance of

oftware. More recently, (e.g., Ralph, 2012) there has been work on

he underlying theories of how the human agent designs a software

ystem without following systematic methods. Ralph (2012) states

hat the software development literature is dominated by “methods”

hich are, by definition, prescriptive and “…include practices, tech-

iques, tools and phase models”, and that, “… phases are also explic-

tly adopted in the official IEEE Guide to the Software Engineering

ody of Knowledge”. We found methods dominate software quality

tandards as well (e.g., Canadian Standards Association).

Ralph (2012) proposes an alternate process theory of software

esign, based on realizing perceptions, refining understandings, and

ecording that understanding in the technological artifact (the soft-

are), in other words a design theory that does not prescribe meth-

ds and is based on acquiring knowledge. The model we propose can

e viewed as an extension of the alternative that Ralph is proposing.

In our model, the act of developing the software contributes to the

cientist’s understanding. Developing software is not solely a means

f producing an executable. For the scientist, recording the under-

tanding after refinement ultimately takes place not only in the soft-

are code, but in scientific reports and other products based on

he scientist’s acquired understanding. This is a much broader view

f “software development” that includes as an end product, the in-

reased knowledge of the scientist, the answer to the scientific ques-

ion, the reports and products associated with the answer to the sci-

ntific question, as well as the software executable.



56 D. Kelly / The Journal of Systems and Software 109 (2015) 50–61

Real world Theory 

Software 

Execution 

Operations 

Problem 

Solution  

Scientist 

Scientist

Scientist

Scientist

Scientist

Fig. 2. Knowledge acquisition model used by scientists to develop software to solve

real world problems. The arrows represent the use of one domain to increase knowl-

edge in another. The solid line represents general (formal) knowledge existing for the

person acquiring specific knowledge, and the dashed line represents specific knowl-

edge being acquired where general (formal) knowledge may be missing in one or both

the accompanying knowledge domains.
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To address this broader view of software development, in

Section 4.1, we introduce a model with five broad knowledge do-

mains that contribute in some way to the development of a piece of

scientific software. The amount of knowledge required from each do-

main depends on the environment of the software and its intent, but

each domain is present to some degree.

In Section 4.2, we illustrate the flow of knowledge with a hypo-

thetical, but typical example of scientific software development. In

Section 4.3, we discuss and illustrate the fragmented knowledge as-

sumed by software development method-based paradigms described

in textbooks, taught in academia, and assumed by software quality

standards. This fragmentation impedes the flow of knowledge and

impairs the coherent understanding of the whole, the understanding

that scientists need to answer their scientific question.

4.1. Knowledge domains

In 1990, Guindon wrote that “high level software design is charac-

terized by the integration of multiple domains of knowledge at var-

ious levels of abstraction.” He points out that “there is little hope of

understanding [the design] process without identifying the domains

of knowledge designers bring to bear …” (Guindon, 1990). In 2004

(Kelly, 2004), we concretized Guindon’s idea of knowledge domains

in a study of drivers for long-term evolution of a sample of scien-

tific software. For this study, we used five knowledge domains that

contribute to the development of scientific software. To some ex-

tent these knowledge domains are involved in all software systems.

Table 1 gives a brief description of each. A longer description can

be found in Kelly (2011). Fig. 1 shows a graphical representation of

our knowledge domain model. The lines in Fig. 1 connect the knowl-

edge domains that scientists commonly consider the most closely

associated.

In building and using a software system, knowledge from each do-

main is acquired, as needed. The knowledge from a particular domain

that is needed for one software system may be trivial, yet for an-

other may be extensive. Almost always, the knowledge needed for a

software system proceeds from general knowledge (usually acquired

through formal education) to specific knowledge. For example, a pro-

grammer may know how to code in C, but does not, as yet, know the

conventions and particular implementations used, or will be used, in

the system he/she is working on. Knowledge from one domain may

suggest knowledge that must be acquired in another domain. For ex-

ample, knowing that the hardware has parallel architecture and that

the theoretical solution technique is computationally intensive may

prompt the developer to acquire software knowledge on how to take

advantage of parallel processing. The scientist may also need to re-

examine the theory to understand how to segment the algorithm into

discrete data packets and independent processes.
Table 1

Knowledge domains that contribute to the development of scientific software

systems.

Knowledge domain Description

Real World knowledge Knowledge of real world phenomena pertinent

to the problem being solved.

Theory-based knowledge Theoretical models that provide (usually)

mathematical understanding and advancement

of the problem towards a solution.

Software knowledge Representations, conventions, and practices used

to construct the software system.

Execution knowledge Knowledge of the software and hardware tools

used to create, maintain, control, and run the

software system related to the problem being

solved.

Operational knowledge Knowledge related to the use of the computer

software system in order to solve the Real World

problem.
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In the next section, we augment the knowledge domain model to

llustrate the scientist’s progress from scientific question to solution

here software is part of the solution.

.2. Knowledge acquisition view of the development of scientific

oftware

Using observations from our sets of studies with scientists, we

rovide a view of the underlying processes that drive scientists’ ap-

roach to software development, or more correctly, their approach to

aining knowledge to answer their scientific question.

We explain using a hypothetical, but typical, example of scien-

ific software development as part of answering a scientific question.

ig. 2 provides a general view of scientific software development.

In our example, the problem to be solved involves an industrial

lant where fluids are transported to different points around the

lant via a complex piping system with valves, pumps, bleed points,

njection points, and other pieces of equipment that contribute to

hanges in temperature, pressure, flow rate, and quantity of fluid in

he system. The problem to be solved concerns the integrity of the

iping system when equipment fails, such as pumps stopping, valves

amming, pipes leaking, and feed systems failing.

Scientists can move smoothly from the Real World Knowledge Do-

ain to the Theoretical Knowledge Domain because of their train-

ng. They move from theory to software in order to both confirm

he theory and construct a computational exploration of the prob-

em. Knowledge and trust are acquired in the process. Often, there is

n interaction with the other Knowledge Domains. For example, the

cientists can choose a set of governing equations that describe the

ow of fluid in a piping system. They decide on a discretization ap-

roach to move from the continuous equations to the discrete, algo-

ithmic world of the computer. Next, a solution technique is chosen.

nce this is coded in the software language, a set of data is used to

enerate values for the equations, and the software is run to produce

ata. Several problems could emerge at this point. The algorithm may

ot converge or the input data used may not be sufficiently accurate.

cross the entire piping system, scientists may realize that the algo-

ithm does not conserve mass or energy. The source of the problem

ay be the wrong set of governing equations for the particular prob-

em being tackled, inappropriate assumptions or simplifications, in-

ccurate measurement data from the real world plant, inappropriate

olution techniques for the equations being solved, truncation error

rom the simplifications, round-off error from the hardware, catas-

rophic cancellation because of particular values being combined in

he code, and incompatible discretization techniques for the input
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ata. As discovered during the case study described by Cote (2005),

ven the optimization option chosen for the compiler can affect the

utput by several orders of magnitude. The interaction of input data,

heory, discretization choices, solution technique, machine precision,

nd order of coded calculations require significant exploration and

cquisition of knowledge from all five knowledge domains.

In this exploration, the scientist may decide that the pump model

eeds more detail to provide a more accurate pressure profile. This

ay require getting field data from the plant or manufacturer (Real

orld), developing an empirical model (Theory world), setting up

ew input data parameters (Operational world), and adding a new

odule in the software code (Software Knowledge). After the new

odule is running, the scientist may code certain pump parameters

o be calculated and plotted in order to compare to plant data. Each

ctivity increases knowledge in one or more knowledge domains.

owhere is the software considered the end product. The software

s a part of the integrated acquisition of knowledge from all knowl-

dge domains. The end product is the scientist’s increased knowledge

oving him/her towards an answer to the scientific question.

Fig. 2 illustrates how the five knowledge domains (including soft-

are) are integrated and feed into the solution to the Real World

roblem. There is no division between Problem domain and Solution

omain as described by the method-based approaches. The software

s not considered a separate product, but is a part of the Software

nowledge domain, constructed to help in the exploration. The scien-

ists work by spending time in areas where their knowledge is lack-

ng until sufficient understanding is achieved to move elsewhere. The

cientist is an integral part of the system and makes the decisions on

hat is to be done next. What may appear to the outside observer

s a random walk, the scientist’s activities are all focused on increas-

ng knowledge and building the scaffolding (the software code, the

heory, the input data, conversations with others, etc.) to support this

ncrease of knowledge.

Typical with scientific software, there are dependencies amongst

ll the elements that are a part of the development and use of the

oftware. These dependencies cannot be predicted ahead and have

o explored to understand their effects in specific sets of circum-

tances. It is the dependencies that require the greatest exploration

nd knowledge acquisition, all within specific contexts. Fig. 2 shows

he scientists working in a manner that is essentially represented by

fully connected flow graph, motivated by the “solution”, and where

he scientist is free to move from any knowledge domain to any other

t any time.

.3. Using the knowledge domains to explore method-based software

evelopment

We acknowledge that software development outside the scientific

omains ranges from something that looks similar to what we have

bserved for scientists to something that approaches a strict method

pproach of, say, the waterfall model (Royce, 1970).

The discussion in this section explains how a strict methods ap-

roach to software development assumes that the software system is

andled in disconnected fragments. Our discussion then presents the

mpact that this assumption makes on the flow of knowledge. This

s important in understanding why the imposition on scientists of,

ay, quality standards based on the waterfall model, is detrimental

o the development of scientific software. In other words, the coher-

nt understanding that the scientist is trying to achieve is contrary

o the assumption that the system can be handled in fragmented

ieces.

Traditionally, the interaction between a user and a professional

oftware developer begins with requirements engineering. Whether

he outcome of requirements engineering is recorded as a doc-

ment, such as in document-driven development methodologies

Boehm and Turner, 2005), or requirements engineering is carried
ut as a continuing dialogue, as in agile methodologies (Boehm and

urner, 2005), the assumption is that the user is in possession of the

eal World knowledge of his/her environment, and the developer is

ot. The reason for the large amount of research in the area of re-

uirements engineering is succinctly stated by Jackson (2001), “…

t’s widely recognized that many systems have failed – often very

xpensively or even disastrously – because their requirements were

ot properly determined. The hardware and software functioned cor-

ectly, but the function they performed was not what was needed.

he developers’ failure was in capturing and understanding the prob-

em, not in devising or implementing the solution”.

The dialogue between the user and the developer requires the

ser to abstract away the specific problems in his/her Real World, in

ther words, abstract away the specific problems being addressed,

nd describe his/her needs in terms of an idealized solution. The user

oves away from the Real World to a Theoretical world, describing

hat he/she thinks will afford a solution. Often the user is not well

ersed in doing this type of abstraction.

Through the emphasis on requirements engineering, the software

eveloper is assumed not to be knowledgeable about either the Real

orld or the Theoretical world of the user. Through dialogues with

he user, the developer acquires some knowledge of the user’s Theo-

etical world, but the developer interprets that knowledge by what is

elevant to the software product.

The developer creates the software product; the user does not par-

icipate in the coding or understanding of the software or execution

omains of the product. However, the user may participate in accep-

ance testing of the product. In absence of the user, the developer may

est the product against the requirements document.

Delivery of the software product most often does not include the

ource code. Little or no knowledge from the Software Domain is

assed to the user. Flow of knowledge from the developer to the

ser is typically confined to the knowledge domain we label as “Op-

rational Knowledge”. The developer can provide a “user’s guide”

n how to operate the software. The knowledge the developer pro-

ides for operational knowledge is “general” knowledge. This general

nowledge is based on the Theoretical Knowledge from requirements

ngineering and Software and Execution Knowledge possessed by the

eveloper. The user must acquire specific Operational Knowledge on

ow to use the software to solve his/her Real World problems, based

n the “user’s guide” and without knowledge of the Software or Ex-

cution domains. The developer has no mandate to solve the user’s

eal World problems. Indeed, the developer does not have the abil-

ty to do this. The developer is not expected to acquire knowledge of

he user’s Real World beyond what is garnered during requirements

ngineering.

Fig. 3 illustrates the sharing of domain knowledge by user and

oftware developer. The lines in the figure represent knowledge be-

ng acquired. The arrows indicate where knowledge from one domain

s used to increase knowledge in another. The labels on the lines

re the agents (either developer or user) acquiring knowledge. The

ashed lines represent specific knowledge that is being acquired, but

he agent lacks general knowledge in one or other of the connecting

nowledge domains.

The illustration shows the clear division between user knowledge

nd developer knowledge. Software development methods expect

his divide to exist and label them as the “problem domain” and the

solution domain”. The link between the two domains is the “soft-

are product”, considered to be the Solution to the user’s Problem. In

act, with the software product in hand, the user still has to acquire

he specific knowledge in order to formulate the Solution to his/her

eal World problem.

Our model showing flow of knowledge amongst five knowl-

dge domains illustrates the fragmentation of knowledge, not only

mongst the human participants in the exercise, but also in the flow

aths. This is the view assumed by the dominant methods literature.



58 D. Kelly / The Journal of Systems and Software 109 (2015) 50–61

Fig. 3. Model of knowledge flow assumed by method-based software development

paradigms. The arrows indicate acquiring knowledge in one domain based on knowl-

edge in another. The labels indicate who is acquiring the knowledge. The solid lines

indicate existing general (formal) knowledge in both connecting domains. The dashed

lines indicate missing general (formal) knowledge in one or both of the connected

knowledge domains.

c

d

d

t

p

d

s

t

s

5

s

t

q

c

h

h

fi

p

B

t

i

m

m

c

o

a

H

t

t

“

w

m

b

“

a

s

t

t

r

w

g

w

t

i

p

o

r

t

5

o

C

t

This is a view that does not work for scientists developing scientific

software, for the following reasons:

(i) The number of flow paths through this model are substantially

reduced from the fully connected “flow graph” we have ob-

served the scientists following. This restricts freedom of explo-

ration necessary to understand dependencies in their work.

(ii) The software product is designed to be static and is assumed

to be the solution to the Real World problem when in reality it

is not, even with non-scientific software.

(iii) If we assume that the scientist’s role is strictly user, then the

scientist is denied knowledge about a large part of the “solu-

tion” to his/her scientific problem.

5. How scientists develop software outside the “methods”

approach

Our observations (e.g., Kelly, 2013; Sanders, 2008; Sanders and

Kelly, 2008), and that of others (e.g., Sletholt et al., 2012), are that

scientists engage in software development outside the methods

paradigm. But, because methods are so dominant in the software en-

gineering literature (Ralph, 2012) and assumed by many to be the

only valid approach to software development, scientists have been

criticized for not following methods (e.g., Merali, 2010) and have been

offered a plethora of advice on how to apply methods (e.g., Baxter

et al., 2006; Crabtree et al., 2009).

As noted by other research, scientists do not see themselves as

software developers (Sanders, 2008) but as a professional who uses

software as part of their exploration for a solution to a scientific prob-

lem. The model they use is a continuum of activity where the roles of

software developer, tester, requirements engineer, are not separated.

Sletholt et al. (2012) commented, “normally the scientists don’t as-

sume any specific roles” and that “none of [their] interviewees were

able to identify transitions between the activities, as most of these

activities (such as coding, analysis, design, and testing) are carried

out more or less simultaneously.” Sletholt et al. (2012) found that

the two non-commercial projects they studied “ didn’t use any of the

agile practices related to requirements … people involved in these

projects didn’t perceive any particular problems with requirements,

even though they didn’t use the agile practices.” The authors suggest

that, “This might be explained by the fact that the development is

based on personal motivation …”. In our work, we see personal moti-

vation being driven by acquiring knowledge for the problem at hand.

From our observations, scientists engage in a continuous flow of dis-
overy and knowledge acquisition, leveraging that knowledge in or-

er to further explore. As part of this continuous flow, the software is

eveloped and moved towards contributing in a meaningful way to

he solution of the scientist’s real world problem.

Instead of studying how scientists should conform to the methods

aradigm, we chose to study scientists whose application domains

emand extreme care in their work, and to observe how they develop

oftware. The scientists’ approach to supporting knowledge acquisi-

ion and software development can be described within three areas:

oftware implementation, testing, and social communication.

.1. Software implementation

Every scientist we interviewed emphasized two qualities for their

oftware code: simplicity and readability. Readability is defined by

he scientists as ‘making the science in the code obvious’. These two

ualities underlie all the implementation efforts of the scientists, and

ome from their desire to communicate. Software code written in a

igh-level language has two purposes: sending instructions to the

ardware and communicating to the human reader. Obviously, the

rst has to work properly, but in the interviews, the scientists em-

hasized the second.

Simplicity is part of readability. According to research (Floyd and

osselmann, 2013), simplicity is mentioned more in literature related

o scientific software than in literature related to software engineer-

ng. One interviewee called the approach “simple rational program-

ing”.

The scientists’ practices in making the code readable reflected

any software engineering tenets: well named variables, in-code

omments, and cohesive modules. However, the scientists put their

wn stamp on each of these.

Variable names preferably are the same as standard usage in the

pplication theory, for example P for pressure, Rho for density, and

for enthalpy. The goal is to develop a vocabulary that is consis-

ent throughout the theory documentation, the software code, and

he user manual. Naming conventions are agreed on “by everyone”.

You don’t want to obscure the algorithms.” This reflects the scientist

anting to support knowledge acquisition throughout the develop-

ent process, as shown in Fig. 2.

In-code comments are to explain not only what the code is doing,

ut why the code is doing it like that. One comment was that the

documentation in the code has to be very clean”.

Similar emphasis on strong links between the scientific theory

nd the code are reflected in comments about modularization. One

cientist commented, “modularization should reflect the physical en-

ities you’re modeling”. Naming the modules should, again, reflect the

heory. The code within the modules should be consistent in style and

eadable. One scientist commented on self-documentation: “The best

ay to describe what the program does is in the programming lan-

uage. Definitions in natural language are not as clear as definitions

ritten in a programming language.” The preference for the scien-

ists is to use a programming language that looks like the mathemat-

cs of their theory, allowing as simple transition between the two as

ossible.

The overriding approach for the scientists is “write it [the code]

n the assumption twenty years later you’ll have to change it”. This

eflects their long-term commitment to their work and their desire

o communicate clearly.

.2. Testing

Testing for the scientists includes both static and dynamic analysis

f the code.

Static analysis includes various approaches to reading the code.

ode reading is an integral part of their software development rather

han an after-the-fact assessment. The scientists also do not use any
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f the software engineering terminology as defined by the software

ngineering literature. One scientist was specifically asked if he did

code reading”. He answered, no, yet went on to describe reviewing

is own code, and printing it off to sit with another person and “chat”

ver the code.

Another scientist described a process of implementing the code,

aving someone else read it over, and a “fair amount of discussion on

ow to get things done”. A medical physicist described, on obtaining

ode from another medical center, sitting down with a colleague and

eading every line of the new code. He emphasized they always did

his.

The standard use of regression testing is to ensure new changes to

he code base have not altered previous values. According to software

ngineering literature, regression test suites are fully automated, run-

ing a large number of short tests. Scientists typically have the prob-

em that each test could run five to six hours and data sets are “a

ouple of terabytes”, and that “IT balks at the amount of storage re-

uired”. If regression testing is done, it is carried out on a select set of

ey cases, and only strategically important output is checked, usually

y hand due to the differences made by round-off error.

Dynamic analysis, as with static analysis, is integrated into the im-

lementation of the code. Often, the two are combined, as evident in

ur work (Kelly et al., 2011) where an astronomer used, for selected

xemplar cases, a debugger to trace the execution and allow him to

ead the associated code. His main goal of testing was to understand

he entire code. One scientist emphasized that writing and running

he code is part of understanding the problem being solved. He stated,

I can’t just stare at notes for a month … the code reveals the prob-

ems to me, [that you] layer the code on and test as you increase

our understanding”. Another scientist tries “small things for testing,

hings easily verified as correct, then add one thing at a time”. The sci-

ntists stressed needing “intimate knowledge of the hardware” since

ifferent hardware platforms can give different answers, and need-

ng “operating system knowledge to parse error messages and know

ow to handle them”. Validation testing for the scientists is checking

he test results against Real World phenomena, not against require-

ents specifications. For any type of testing, if there is an anomaly

n the test results, all the scientists agreed that it is mandatory to

nderstand why. To move the code towards solving the Real World

roblem, knowledge from the different domains has to be gained and

ntegrated together.

.3. Social communication

The strongest ethos of both teamwork and communication

mongst the scientists we interviewed, existed with the industrial

cientists whom we term risk-averse scientific application develop-

rs. The industrial scientists insisted that it was more important to

get it right” than “to protect turf ”, that there were to be “no heroes

nd no renegades”. A number of observations were made on what

hese scientists do to support transfer of knowledge amongst col-

eagues when working on a project.

With the scientist, there is no boundary between the roles of theo-

ist and developer. The boundary between the roles of user and devel-

per is often blurred. Instead, the scientists we interviewed are part

f multidisciplinary teams, with the disciplines often overlapping and

ased on knowledge domains rather than method roles.

All the interviewees emphasized communication. One intervie-

ee explained, “There’s a lot of hallway conversations and a lot of

ollaborative work. We know what each other are doing. Sharing in

he community is pretty good.”

Particularly interesting were expectations for new hires. They ex-

ected the new staff to interact with experienced staff, know their

imits, ask questions, discuss, and collaborate. New hires were ex-

ected to broaden their knowledge: staying within the boundaries

f his/her discipline does not work. All scientists talked of mentoring,
ands-on learning, and long-term commitment – commitment of at

east five years.

Communication worked best when management assigned a

roject and the scientists self-organized into a team with fluid

oundaries and no fixed roles. The fluid boundaries allowed other

nowledge sources (people) to be drawn into the team as needed,

nd roles were filled as necessary for the length of time needed. One

erson typically took on several roles in achieving a specific goal.

he management paradigm we observed was not the task-based, seg-

ented approach that is typical of much software development, but

as a human-centric paradigm typical of knowledge-based organi-

ational models in business management (e.g., Kochan et al., 2002).

. Summary and conclusions

None of the current software engineering views on how scientists

o – or should – develop software are universally applicable to the

ide and varied range of what is termed, scientific software.

The most ubiquitous view is that scientists are end user program-

ers. This is based on observations that scientists do not self-identify

s professional programmers, that they do not produce software as

nd products, that their user base is small, and that scientists are

ot using “systematic and disciplined activities that address software

uality issues” (Ko et al., 2011).

We argue that this characterization does not fit the scientists we

tudied. The scientist must be considered as part of the software

ystem, since the knowledge the scientist acquires is a key output

f the system. With the scientist’s acquired knowledge as an out-

ut of the system, that output (his/her knowledge) is used to make

ecisions about products that could affect the public at large. In ef-

ect, the user base of that output is enormous. The software develop-

ent approaches used by the scientists we studied do not conform to

ethod approaches, yet they are successful in their risk-averse appli-

ation domains, and should be considered as systematic, but system-

tic based on knowledge acquisition, not on a list of tasks.

We present an alternative model of software development based

n the idea of knowledge acquisition. Instead of following a sequence

f tasks related to a software engineering method paradigm, the sci-

ntist interacts with software artifacts in order to fill gaps in his/her

nowledge. The order and nature of these interactions are deter-

ined by the needs of acquiring knowledge by the individual or

losely-knit team of scientists. To the outside observer, the activities

ay appear random and uncoordinated. In reality, they are driven by

he need to interact with trustworthy sources of knowledge – none of

hese sources, including the software, must ever lie to the scientists.

he scientist carries out a series of activities involving the software in

rder to acquire knowledge and to ensure the software – and other

ources of knowledge – can be trusted.

From our studies, we make the following observations:

(i) Scientific teams who develop software do not identify mem-

bers of the team according to software tasks, such as designer,

tester, or requirements engineer. Instead, members of scientific

teams are identified by their science or engineering specialty

such as heat transfer specialist or two phase fluid specialist.

Each are expected to explore their specific scientific problem

from “cradle to grave”, including development, testing, assess-

ing trustworthiness, and use of software modules specific to

their scientific goals.

(ii) Clearly delineated chunks in developing software such as iter-

ations, phases, tasks, sprints, etc. are not evident as scientists

develop software. Our model of knowledge acquisition sug-

gests an uninterrupted flow of development with the scientist

at the center, and ending when the scientific question is an-

swered. Development can encompass the theory, the data, the
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code, the hardware in the environment, and the scientist’s un-

derstanding of the whole.

(iii) Testing is integrated into development in such a way that the

trustworthiness of the developed software is ensured along the

way. Scientists use a variety of assessment techniques, often

designed specifically for the problem at-hand, including code

reading, verification against theory, validation against real-

world data, checks for self-consistency, and algorithm check-

ing. Our research shows that mistakes in computational type

code can reveal themselves with a small number of well-

designed tests. We do not observe scientists using end-to-

end “systematic” testing as described by software engineer-

ing literature. Instead, scientists appear to be successful in

their testing using approaches that are highly integrated with

their objective, and may constitute the “small number of well-

designed tests”. This alternative approach to “systematic” test-

ing deserves more in-depth study.

(iv) One of the scientists we interviewed saw the work of her group

as fitting “amethodical” development as described by Truex

et al. (2000). Our model of knowledge acquisition shows how

knowledge is acquired from five knowledge domains as the sci-

entist develops software and moves towards answering their

scientific question. The benefit from this view is to rethink how

to support scientists in their endeavors, using knowledge ac-

quisition as the driver rather than imposing methods.

(v) We observed a number of activities that our risk-averse scien-

tists use to assure trust in their software. These activities are

carried out without invoking methods. These activities poten-

tially form a basis for future research into successful software

development outside method-based paradigms.

There are three main impacts from our observations.

One, the knowledge acquisition view of software development of-

fers an alternative to the ubiquitous method-based view. It opens a

body of research on how to integrate testing with development and

with knowledge acquisition, and how to integrate knowledge acqui-

sition into other software development activities without prescribing

and controlling how and when the developer does his/her work. The

hope is that there are creative scaffoldings that will support acquisi-

tion of knowledge as an integral part of software development.

The second impact is related to safety-related scientific develop-

ment in industries that come under the auspices of software quality

oversight. Software development in these industries is currently be-

ing assessed using methods-based software quality standards (e.g.,

Canadian Standards Association). Our model suggests that imposition

of such standards may be detrimental to software quality, rather than

improve it. Works needs to be done to explore how oversight can be

satisfied within a knowledge acquisition development paradigm.

Third, the knowledge acquisition view of software develop-

ment requires a different management paradigm. In this different

paradigm, methods, prescribed tasks, and designated software roles

are replaced with collaborating, knowledge-sharing teams, goal-

based instead of task-based organization, and recognition that the

scientists and their knowledge are a more important asset than the

“software product”.

Scientific software development within the risk-averse scientific

application domains presents a very different “ecosystem” of soft-

ware, developer, user, theory, and real-world problem. The outcomes

of the interdependencies amongst all the elements of this ecosystem

cannot be predicted before the software is constructed, and the soft-

ware itself becomes an interacting part of the ecosystem along with

hardware, theory, users, data, and knowledge. No one piece of this

ecosystem can be isolated and considered effectively on its own. Our

knowledge acquisition model is offered as a view of this type of sys-

tem and provides a basis for further research and understanding on

how best to provide software-based answers to scientific questions.
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