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ABSTRACT 
This paper discusses the organization of 

software that is inherently complex because there 
are very many arbitrary details that must be 
precisely right for the software to be correct. 
We show how the software design technique known 
as information hiding or abstraction can be 
supplemented by a hierarchlcally-structured 
document, which we call a module guide. The guide 
is intended to allow both designers and main- 
tainers to identify easily the parts of the 
software that they must understand without 
reading irrelevant details about other parts of 
the software. The paper includes an extract from 
a software module guide to illustrate our 
proposals. 

I. INTRODUCTION 

More than five years ago a number of people 
at the Naval Research Laboratory became concerned 
about what we perceived to be a growing gap 
between software engineering principles being 
advocated at major conferences and the practice 
of software engineering at many industrial and 
governmental laboratories. The conferences and 
many journals were filled with what appeared to 
be good ideas illustrated using examples that 
were either unrealistically simple fragments or 
complex problems that were not worked out in much 
detail. When we examined actual software projects 
and their documentation, few showed any use of 
the ideas and no successful product appeared to 
have been designed by consistent application of 
the principles touted at conferences and in 
journals. The ideas appeared to be easier to 
write about than to use. 

We could imagine several reasons for the gap: 
(i) the ideas were, as many old style programmers 
claim, simply impractical for real problems; (2) 
responsible managers were unwilling to bet on 
principles that had been not been proven in 
practice, thus creating a startup problem; (3) 
the examples used in the papers were too unlike 
the problems of the practitioners to serve as 
models; (4) the ideas might need refinement or 
extension before they could be used as guidelines 
for projects with the complexity and resource con- 
straints found in the field; and (5) the practi- 
tioners were, as some academics claim, not 
intellectually capable of the tasks given them. 
Our familiarity with both the ideas and the 
practitioners led us to reject (i) and (5); we 
decided to see what could be done about (2) - (4). 
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Our decision was to take an undeniably 
realistic problem and to apply the "academic" 
ideas to it so that if we succeeded, (I) there 
would be evidence of the feasibility for respon- 
sible managers; (2) there would be a model for 
use by others with similar problems; and (3) we 
could refine or supplement the ideas until they 
would work for systems more complex than those in 
the literature. We chose to build an exact 
duplicate of an existing system so that it would 
be possible to compare the system that had been 
built by conventional techniques with one that 
was built in accordance with the new academic 
principles. The project chosen was the Onboard 
Flight Program (OFP) for the A-7E aircraft. The 
current program uses many dirty tricks, barely 
fits in its memory, and barely meets its real- 
time constraints. Consequently, we felt that 
this program, although much smaller than many 
programs, was a realistic test of the ideas. 
Because the current OFP is considered one of the 
best programs of its ilk, we considered the task 
sufficiently challenging that skeptics would not 
attribute our success to the poor quality of the 
program that we are trying to match. 

Although the project is far from complete, we 
have already had some limited success in all three 
of our goals. Our ability to write a complete and 
precise requirements specification for the soft- 
ware has encouraged managers to try the same 
approach and our document [REQ] has served as a 
model for those projects. We have also found 
useful refinements of the principles that we 
advocated before starting the project. For ex- 
ample, the concept of abstract interfaces, which 
we discussed in [AI] has now been refined and 
illustrated in [DIM] and [DIMa]. 

This paper presents another refinement of the 
principles that we set out to use. One of the 
most basic ideas in our approach was the use of 
the principle of information hiding [IH] to de- 
compose a project into work assignments or 
modules. This idea was an excellent example of 
the gap between academic software engineering and 
practice. While it has been considered self- 
evident by some academics, we could find no 
sizable product in which the idea had been 
consistently used. While some authors were 
treating the idea as "old hat", we could not 
persuade those charged with building real 
software to do something so radically different 
from what they had been doing. 
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When we tried to use the idea we found that 
while it was quite applicable, some additional 
ideas were necessary to make it work for systems 
with more than a dozen or so modules. This paper 
discusses the problems that we encountered and 
the additional ideas. 

II. BACKGROUND AND GUIDING PRINCIPLES 

THREE IMPORTANT SOFTWARE STRUCTURES 

A structural description of a software system 
shows the program's decomposition into parts and 
the relations between those parts. A-7E pro- 
grammers must be concerned with three structures: 
(a) the module structure, (b) the uses structure, 
and (c) the process structure. This section 
contrasts these structures. 

(a) A module is a work assignment for a program- 
mer or programmer team. Each module consists 
of a group of closely related programs. The 
module structure is the decomposition of the 
program into modules and the assumptions that 
the team responsible for each module is 
allowed to make about the other modules. 

(b) In the uses structure the components are 
programs, i.e., not modules but parts of 
modules; the relation is "requires the 
presence of". The uses structure determines 
the executable subsets of the software [EXT]. 

(c) The process structure is a decomposition of 
the run-time activities of the system into 
units known as processes. Processes are not 
programs; there is no simple relation between 
modules and processes. The implementation of 
some modules may include one or more proc- 
esses, and any process may invoke programs in 
several modules. 

The rest of this paper discusses the module 
structure. 

DESIGN PRINCIPLE 

Our module structure is based on the decompo- 
sition criterion known as information hiding [IH]. 
According to this principle, system details that 

are likely to change independently should be the 
secrets of separate modules; the only assumptions 
that should appear in the interfaces between 
modules are those that are considered unlikely to 
change. Each data structure is used in only one 
module; it may be directly accessed by one or 
more programs within the module but not by pro- 
grams outside the module. Any other program that 
requires information stored in a module's data 
structures must obtain it by calling access pro- 
grams belonging to that module. 

Applying this principle is not always easy. 
It is an attempt to minimize the expected cost of 
software and requires that the designer estimate 
the likelihood of changes. Such estimates are 
based on past experience, and may require know- 
ledge of the application area, as well as an 
understanding of hardware and software technology. 

Because a designer may not have all of the 
relevant experience, we have developed formal 
review procedures designed to take advantage of 
others that do have that experience. These 
procedures are described in [DIM]. 

GOALS OF MODULAR STRUCTURE 

The primary goal of the decomposition into 

modules is reduction of overall software cost by 
allowing modules to be designed and revised 
independently. Specific goals of the module 

decomposition are: 

(a) each module's structure should be simple 
enough that it can be understood fully; 

(b) it should be possible to change the implemen- 
tation of one module without knowledge of the 
implementation of other modules and without 
affecting the behavior of other modules; 

(c) the ease of making a change in the design 
should bear a reasonable relationship to the 
likelihood of the change being needed; it 
should be possible to make likely changes 
without changing any module interfaces; less 
likely changes may involve interface changes, 
but only for modules that are small and not 
widely used. Only very unlikely changes 
should require changes in the interfaces of 

widely used modules; 

(d) it should be possible to make a major soft- 
ware change as a set of independent changes 
to individual modules, i.e., except for inter- 
face changes, programmers changing the indi- 
vidual modules should not need to communicate. 
If the interfaces of the modules are not re- 
vised, it should be possible to run and test 
any combination of old and new module 

versions. 

As a consequence of the goals above, our 
software is composed of many small modules. In 
previous attempts to use information hiding we 
had seen systems with 5 - 20 modules. We know 
now that we will have hundreds of modules. With 
25 or fewer modules it would not be difficult to 
know which modules would be affected by a change. 

With hundreds of modules that is not the case. 
With 25 or fewer modules careful inspection may 
suffice to make sure that nothing has been over- 
looked. With hundreds of modules we found that 
impossible. We realized that the use of informa- 
tion hiding could backfire. With most maintain- 
ers ignorant about the internal structure of most 
of the modules, maintainers would have to search 
through lots of module documents to find the ones 
that they had to change. We also feared working 
for some time before discovering that we had left 
out some major modules. 

We concluded that we needed some additional 

discipline in applying the information hiding 
principle and that special documentation was 

needed if we were really to reduce the cost of 
maintaining complex software systems. We had to 
find a way to work with small lists of modules so 
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that we could prepare convincing arguments that 
each list was complete. We needed to prepare a 
software module guide that would assist the 
maintenance programmer in finding the modules 
that were affected by a change or could be 
causing a problem. 

As a result of these considerations the 
modules have been organized into a tree- 
structured hierarchy; each nonterminal node in 
the tree represents a module that is composed of 
the modules represented by its descendents. The 
hierarchical structure has been documented in a 
module guide [MG]. The hierarchy and the guide 
are intended to achieve the following additional 
goals: 

(e) A software engineer should be able to 
understand the responsibility of a module 
without understanding the module's internal 
design. 

(f) A reader with a well-defined concern should 
easily be able to identify the relevant 
modules without studying irrelevant modules. 
This implies that the reader be able to 
distinguish relevant modules from irrelevant 
modules without looking at their components. 

(g) The number of branches at each nonterminal 
module in the graph should be small enough 
that the designers can prepare convincing 
arguments that the submodules have no 
overlapping responsibilities and that they 
cover all of the responsibilities that the 
module is intended to cover. This is most 
valuable during the initial design, but it 
also helps when identifying modules affected 
by a change. 

RESTRICTED AND HIDDEN MODULES 

We found that it was not always possible to 
confine information to a single module in a real 
system. For example, information about hardware 
that could be replaced should be confined, but 
diagnostic information about that hardware must 
be communicated to modules that display informa- 
tion to users or hardware maintainers. Any 
program that uses that information is subject to 
change when the hardware changes. To reduce the 
cost of software changes, the use of modules that 
provide such information is restricted. Restrict- 
ed interfaces are indicated by "(R)" in the Guide. 
Often the existence of certain smaller modules is 
itself a secret of a larger module. In a few 
cases, we have mentloned such modules in this 
document in order to clearly specify where 
certain functions are performed, Those modules 
are referred to as hidden modules and indicated 
by "(H)" in the documentation. 

MODULE DESCRIPTION 

The Module Guide shows how responsibilities 
are allocated among the major modules. Such a 
guide is intended to lead a reader to the module 
that implements a particular aspect of the 
system. It states the criteria used to assign a 

particular responsibility to a module and arranges 
the modules in such a way that a reader can find 
the information relevant to his purpose without 
searching through unrelated documentation. The 
guide defines the scope and contents of the indi- 
vidual design documents. 

Three ways to describe a module structure 
based on information-hiding are: (i) by the roles 
played by the individual modules in the overall 
system operation; (2) by the secrets associated 
with each module; and (3) by the facilities 
provided by each module. The module guide 
describes the module structure by characterizing 
each module's secrets. Where useful, a brief 
description of the role of the module is 
included. The detailed description of facilities 
for modules is relegated to other documents 
called "module specifications"; e.g., [DIM]. The 
module guide tells you which module(s) will 
require a change. The module specification tells 
you both how to use that module and what that 
module must do. 

For some modules we find it useful to 
distinguish between a primary secret, which is 
hidden information that was specified to the 
software designer, and a secondary secret, which 
refers to implementation decisions made by the 
designer when implementing the module designed to 
hide the primary secret. 

In the module guide we attempted to describe 
the decomposition rules as precisely as possible, 
but the possibility of future changes in technol- 
ogy makes some boundaries fuzzy. Where this 
occurs we note fuzzy areas and discuss additional 
information used to resolve ambiguities. 

THE ILLUSTRATIVE EXAMPLE 

To show how our techniques work, we give a 
fairly large extract from the module guide for 
the A-7 OFP. We discuss the way that it helps 
during construction and maintenance after the 
extract. 

The design that we present is the module 
structure of the A-7E flight software produced by 
the Naval Research Laboratory. The A-7E flight 
software is a hard real-time program that 
processes flight data and controls displays for 
the pilot. It computes the aircraft position 
using an inertial navigation system and must be 
highly accurate. The current operational program 
is best understood as one big module. It is very 
difficult to identify the sections of the program 
that must be changed when certain requirements 
change. Our software structure is designed to 
meet the goals mentioned above but must still 
meet all accuracy and real-time constraints, 

What follows is an extract from the module 
guide for NRL's version of the software [MG]. A 
complete copy of the guide or any of the other 
NRL reports can be obtained by writing: 

Code 7590 
Naval Research Laboratory 
Washington DC 20375 USA 
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III. A-7E MODULE STRUCTURE 

A: TOP LEVEL DECOMPOSITION 

The software system consists of the three 
modules described below. 

A:I HARDWARE-HIDING MODULE 

The Hardware-Hiding Module includes the 
programs that need to be changed if any part of 
the hardware is replaced by a new unit with a 
different hardware/software interface but with 
the same general capabilities. This module 
implements virtual hardware that is used by the 
rest of the software. The primary secrets of this 
module are the hardware/software interfaces 
described in chapters i and 2 of the requirements 
document [REQ]. The secrets of this module are 
the data structures and algorithms used to 
implement the virtual hardware. 

A:2 BEHAVIOR-HIDING MODULE 

The Behavior-Hiding Module includes programs 
that need to be changed if there are changes in 
the sections of the requirements document that 
describe the required behavior (chapters 3 and 
4). The content of those sections is the primary 
secret of this module. These programs determine 
the values to be sent to the virtual output 
devices provided by the Hardware-Hiding Module. 

A:3 SOFTWARE DECISION MODULE 

The Software Decision Module hides software 
design decisions that are based upon mathematical 
theorems, physical facts, and programming 
considerations such as algorithmic efficiency and 
accuracy. The secrets of this module are NOT 
described in the requirements document. This 
module differs from the other modules in that 
both the secrets and the interfaces are 
determined by software designers. Changes in 
these modules are more likely to be motivated by 
a desire to improve performance than by 
externally imposed changes. 

NOTES ON THE TOP-LEVEL DECOMPOSITION 

Fuzziness is present in the 
classifications for the following reasons: 

above 

(a) The line between requirements definition and 
software design has been determined in part 
by decisions made when the requirements 
documents are written; for example, weapon 
trajectory models may be chosen by system 
analysts and specified in the requirements 
document, or they may be left to the 
discretion of the software designers by 
stating accuracy requirements but no 
algorithms. 

(b) The line between hardware characteristics and 
software design may vary. Hardware can be 
built to perform some of the services 
currently performed by the software; 

consequently, certain modules can be viewed 
either as modules that hide hardware 
characteristics or as modules that hide 
software design decisions. 

(c) Changes in the hardware or in the behavior of 
the system or its users may make a software 
design decision less appropriate. 

(d) All software modules include software design 
decisions; changes in any module may be 
motivated by efficiency or accuracy 
considerations. 

Such fuzziness would be unacceptable for our 
purposes. We can eliminate it by referring to a 
precise requirements document such as [REQ]. 
That document specifies the lines between 
behavior, hardware, and software decisions. 

(a) When the requirements document specifies an 
algorithm, we do not consider the design of 
the algorithm to be a software design 
decision. If the requirements document only 
states requirements that the algorithm must 
meet, we consider the program that implements 
that algorithm to be part of a Software 
Decision Module. 

(b) The interface between the software and the 
hardware is specified in the software 
requirements document. The line between 
hardware characteristics and software design 
must be based on estimates of the likelihood 
of future changes. If it is reasonably 
likely that future hardware will implement a 
particular facility, the software module that 
implements that facility is classified as a 
hardware-hiding module; otherwise, the module 
is considered a software design module. We 
have consistently taken a conservative 
stance; the design is based on the assumption 
that drastic changes are less likely than 
evolutionary changes. If there are changes 
to the aspects of the hardware described in 
the requirements document, it will affect the 
corresponding hardware hiding module. If 
there are radical changes that provide 
services previously provided by software, 
some of the software decision modules may be 
eliminated or reduced in size. 

(c) A module is included in the Software Decision 
Module only if it would remain useful, 
although possibly less efficient, when there 
are changes in the requirements document. 

(d) A module will be included in the software 
decision category only if its secrets do not 
include information documented in the 
software requirements document. 

B: SECOND-LEVEL DECOMPOSITION 

B:I HARDWARE-HIDING MODULE DECOMPOSITION 

The Hardware Hiding Module comprises two 
modules. 
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B: i. i EXTENDED COMPUTER MODULE 

The Extended Computer Module hides those 
characteristics of the hardware/software 
interface of the avionics computer that we 
consider likely to change if the computer is 
modified or replaced. 

Avionics computers differ greatly in their 
hardware/software interfaces and in the 
capabilities that are implemented directly in the 
hardware. For example, some avionics computers 
include a floating point approximation of real 
numbers, while others perform approximate real 
number operations by a programmed sequence of 
fixed-point operations. Some avionics systems 
include a single processor; some systems provide 
several processors. The Extended Computer 
provides an instruction set that can be 
implemented efficiently on most avionics 
computers. This instruction set includes the 
operations on application-independent data types, 
sequence control operations, and general I/O 
operations. 

The primary secrets of the Extended Computer 
are: the number of processors, the instruction 
set of the computer, and the computer's capacity 
for performing concurrent operations. 

The structure of the Extended Computer Module 
is given in section C:I.I. 

B:I.2 DEVICE INTERFACE MODULE 

The Device Interface Module hides those 
characteristics of the peripheral devices that 
are considered likely to change. Each device 
might be replaced by an improved device capable 
of accomplishing the same tasks. Replacement 
devices differ widely in their hardware/software 
interfaces. For example, all angle-of-attack 
sensors measure the angle between a reference 
line on the aircraft and the velocity of the 
surrounding air mass, but they differ in input 
format, timing, and the amount of noise in the 
data. 

The Device Interface Module provides virtual 
devices to be used by the rest of the software. 
The virtual devices do not necessarily correspond 
to physical devices because all of the hardware 
providing a capability is not necessarily in one 
physical unit. Further, there are some 
capabilities of a physical unit that are likely 
to change independently of others; it is 
advantageous to hide characteristics that may 
change independently in different modules. 

The primary secrets of the Device Interface 
Module are those characteristics of the present 
devices documented in the requirements document 
and not likely to be be shared by replacement 
devices. 

The structure of the Device Interface Module 
is given in section C:I.2. 

NOTES ON THE HARDWARE-HIDING MODULE DECOMPOSITION 

Parts of the hardware were considered 
external devices by those who designed the CPU 
but are treated as part of the processor by other 
documents. Our distinction between computer and 
device is based on the current hardware and is 
described in the requirements document. 
Information that applies to more than one device 
is considered a secret of the Extended Computer; 
information that is only relevant to one device 
is a secret of a Device Interface Module. For 
example, there is an analog to digital converter 
that is used for communicating with several 
devices; it is hidden by the Extended Computer 
although it could be viewed as an external 
device. As another example, there are special 
outputs for testing the I/O channels; they are 
not associated with a single device. These are 
the responsibility of the Extended Computer. 

If all the hardware were replaced 
simultaneously, there might be a significant 
shift in responsibilities between computer and 
devices. In systems like the A-7E such changes 
are unusual; the replacement of individual 
devices or the replacement of the computer alone 
is more likely. Our design is based on the 
expectation that this pattern of replacement will 
continue to hold. 

B:2 BEHAVIOR-HIDING MODULE DECOMPOSITION 

The Behavior Hiding Module consists of 2 
modules: a Function Driver (FD) Module supported 
by a Shared Services (SS) Module. 

B:2.1 FUNCTION DRIVER MODULE 

The Function Driver Module consists of a set 
of individual modules called Function Drivers; 
each Function Driver is the sole controller of a 
set of closely related outputs. Outputs are 
considered closely related if it is easier to 
describe their values together than 
individually. For example, if one output is the 
sine of an angle, the other the cosine of the 
same angle, a joint description of the two will 
be smaller than two separate descriptions. Note 
that the Function Driver modules deal with 
outputs to the virtual devices created by the 
hardware hiding modules, not the physical 
outputs. The primary secrets of the Function 
Driver Module are the rules determining the 
values of these outputs. 

The structure of the Function Driver Module 
is given in section C:2.1. 

B : 2.2 SHARED SERVICES MODULE 

Because all the Function Drivers control 
systems in the same aircraft, some aspects of the 
behavior are common to several Function Drivers. 
We expect that if there is a change in that 
aspect of the behavior, it will affect all of the 
functions that share it. 
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Consequently we have identified a set of modules, 
each of which hides an aspect of the behavior 
that applies to two or more of the outputs. 

The structure of the Shared Services Module 
is found in section C:2.2. 

NOTES ON BEHAVIOR-HIDING MODULE DECOMPOSITION 

Because users of the documentation cannot be 
expected to know which aspects of a function's 
behavior are shared, the documentation for the 
Function Driver Modules will include a reference 
to the Shared Services Modules that it uses. A 
maintenance programmer should always begin his 
inquiry with the appropriate function driver. He 
will be directed to the Shared Services Modules 
when appropriate. 

B:3 SOFTWARE DECISION MODULE DECOMPOSITION 

The Software Decision Module has been divided 
into (i) the Application Data Type Module, which 
hides the implementation of certain variables, 
(2) the Physical Model Module, which hides 
algorithms that simulate physical phenomena, (3) 
the Data Banker Module, which hides the 
data-updating policies, (4) the System Generation 
Module, which hides decisions that are postponed 
until system generation time, and (5) the 
Software Utility Module, which hides algorithms 
that are used in several other modules. 

B:3.1 APPLICATION DATA TYPE MODULE 

The Application Data Type Module supplements 
the data types provided by the Extended Computer 

Module with data types that are useful for 
avionics applications and do not require a 
computer dependent implementation. These data 
types are implemented using the data types 
provided by the Extended Computer; variables of 
those types are used just as if the types were 
built into the Extended Computer. 

The secrets of the Application Data Type 
Module are the data representation used in the 
variables and the programs used to implement 
operations on those variables. These variables 
can be used without consideration of units. 
Where necessary, the modules provide conversion 
operators, which deliver or accept real values in 
specified units. 

Run-time efficiency considerations sometimes 
dictate that an implementation of an application 
data type be based on a secret of another 
module. In that case, the data type will be 
specified in the Application Data Type Module 
documentation, but the implementation will be 
described in the documentation of the other 
module. The Application Data Type Module 
documentation will contain the appropriate 
references in such cases. 

The structure of the Application Data Type 
Module is given in section C:3.1. 

B:3.2 PHYSICAL MODEL MODULE 

The software requires estimates of quantities 
that cannot be measured directly but can be 
computed from observables using models of the 
physical world. The primary secrets of the 
Physical Model Module are the physical models; 
the secondary secrets are the computer 
implementations of those models. 

The structure of the Physical Model Module is 
given in section C:3.2. 

B:3.3 DATA BANKER MODULE 

Most data are produced by one module and 
"consumed" by another. Usually the consumers 
should receive a value as up-to-date as 
practical. The Data Banker Module acts as a 
"middleman" and determines when new values for 
these data are computed. The Data Banker obtains 
values from producers; consumer programs obtain 
data from Data Banker access programs. The 
producer and consumers of a particular datum can 
be written without knowing whether or not the 
Data Banker stores the value or when a stored 
value is updated. In most cases, neither the 
producer nor the consumer need be modified if the 
updating policy changes. 

The Data Banker is not used if consumers 
require specific members of the sequence of 
values computed by the producer or if they 
require values associated with a specific time 
such as the moment when an event occurs. 

Some of the updating policies that can be 
implemented in the Data Banker are described in 
the following table, which indicates whether or 
not the Data Banker stores a copy of the item and 
when a new value is computed. 

Name Storase 

on demand: No 

When new value produced: 

Whenever a consumer 
requests the value 

periodic: Yes Periodically. Consumers 
get the most recently 
stored value. 

event driven: Yes 

conditional: Yes 

Whenever the data banker 
is notified, by the 
occurrence of an event, 
that the value may have 
changed. Consumers get 
the most recently stored 
value. 

Whenever a consumer 
requests the value, 
provided certain 
conditions are true. 
Otherwise, a previously 
stored value is delivered. 
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The choice among these and other updating 
policies should be based on the consumers' 
accuracy requirements, how often consumers 
require the value, the maximum wait that 
consumers can accept, how often the value 
changes, and the cost of producing a new value. 
Since the decision is not based on coding details 
of either consumer or producer, it is usually not 
necessary to rewrite a Data Banker Module when 
producer or consumer change. 

B:3.4 SYSTEM GENERATION MODULE 

The primary secrets of the System Generation 
Module are decisions that are postponed until 
system-generation time. These include the values 
of system generation parameters and the choice 
among alternative implementations of a module. 
The secondary secrets of the System Generation 
Module are the method used to generate a 
machine-executable form of the code and the 
representation of the postponed decisions. Most 
of the programs in this module do not run on the 
on-board computer; they run on a more powerful 
computer used to generate the code for the 
on-board system. Some of the programs are tools 
provided with our system, others have been 
developed specifically for this project. 

The structure of the System Generation Module 
is given in section C:3.4. 

B:3.5 SOFTWARE UTILITY MODULE 

The primary secrets of this module are the 
algorithms implementing common software functions 
such as resource monitor modules, and 
mathematical routines such as square-root and 
logarithm. 

C: THIRD-LEVEL DECOMPOSITION 

Note: For the purposes of this paper, only 
third-level modules whose descriptions are 
particularly illustrative are included. Ellipses 
indicate omissions. 

C:I EXTENDED COMPUTER MODULE DECOMPOSITION 

C:I.I.I DATA TYPE MODULE 

The Data Type Module implements variables and 
operators for real numbers, time periods, and bit 
strings. The data representations and data 
manipulation instructions built into the computer 
hardware are the primary secrets of this module. 
Specifically, the representation of numeric 
objects in terms of hardware data types; the 
representation of bitstrings; how to access a bit 
within a bitstring; how times are represented for 
the hardware timers. The secondary secrets of 
this module are how range and resolution 
requirements are used to determine 

representation; the procedures for performing 
numeric operations; the procedures used to 
perform bitstring operations; how to compute the 
memory location of an array element given the 
array name and the element index. 

C:I.I.4 COMPUTER STATE MODULE 

The Computer State Module keeps track of the 
current state of the Extended Computer, which can 
be either operating, off, or failed, and signals 
relevant state changes to user programs. The 

primary secret is the way that the hardware 
detects and causes state changes. After the EC 
has been initialized, this module signals the 
event that starts the initialization for the rest 
of the software. 

C:I.I.7 DIAGNOSTICS MODULE (R) 

The Diagnostics Module provides diagnostic 
programs to test the interrupt hardware, the I/O 
hardware, and the memory. Use of this module is 
restricted because the information it returns 
reveals secrets of the Extended Computer, i.e., 
programs that use it may have to be revised if 
the avionics computer is replaced by another 
computer. 

C:I.I.8 VIRTUAL MEMORY MODULE (H) 

The Virtual Memory Module presents a 
uniformly addressable virtual memory for use by 
DATA, I/O and SEQUENCE submodules, allowing them 
to use virtual addresses for both data and 

subprograms. The primary secrets of the Virtual 
Memory Module are the hardware addressing methods 

for data and instructions in real memory; 
differences in the way that different areas of 
memory are addressed are hidden. The secondary 
secrets of the module are the policy for 
allocating real memory to virtual addresses and 
the programs that translate from virtual address 

references to real instruction sequences. 

C:I.2 DEVICE INTERFACE MODULE DECOMPOSITION 

The following table describes the Device 
Interface submodules (DIMs) and their secrets. 
The phrase "How to read.. " is intended to be 
interpreted quite liberally, e.g., it includes 
device-dependent corrections, filtering and any 
other actions that may be necessary to determine 
the physical value from the device input. All of 
the DIMs hide the procedures for testing the 
device that they control. 

Section Virtual Device Secret: How to . . . 

C:I.2.1 AIR DATA COMPUTER read barometric alti- 
tude, true airspeed, 
and Mach number. 

C:I.2.2 ANGLE OF ATTACK 
SENSOR 

read angle of attack. 
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C:I.2.20 WEAPON RELEASE 
SYSTEM 

ascertain weapon 
release actions the 
pilot has requested; 
cause weapons to be 
prepared and 
released. 

C:2.1 FUNCTION DRIVER MODULE DECOMPOSITION 

The following table describes the Function 
Driver submodules and their secrets. 

Section Function Secret 
Driver 

C:2.1.7 HEAD-UP 
DISPLAY 
FUNCTIONS 

C:2.1.8 INERTIAL 
MEASUREMENT 
SET 
FUNCTIONS 

C:2.1.9 PANEL 
FUNCTIONS 

Where the movable HUD 
symbols should be placed. 
Whether a HUD symbol 
should be on, off, or 
blinking. What informa- 
tion should be displayed 
on the fixed-position 
displays. 

Rules determining the 
scale to be used for the 
the IMS velocity measure- 
ments. When to initial- 
ize the velocity measure- 
ments. How much to rotate 
the IMS for alignment. 

What information should 
be displayed on panel 
windows. When the enter 
light should be turned on. 

C:2.2 SHARED SERVICES MODULE DECOMPOSITION 

The Shared Services Module comprises the 
following modules. 

C:2.2.1 MODE DETERMINATION MODULE 

The Mode Determination Module determines 
system modes (as defined in the requirements 
document). It signals the occurrence of mode 
transitions and makes the identity of the current 
modes available. The primary secrets of the Mode 
Determination Module are the mode transition 
tables in the requirements document. 

C:2.2.4 SYSTEM VALUE MODULE 

A System Value submodule computes a set of 
values, some of which are used by more than one 
Function Driver. The secrets of a System Value 
submodule are the rules in the requirements that 
define the values that it computes. The shared 
rules in the requirements specify such things as 
i) selection among several alternative sources, 

2) applying filters to values produced by other 
modules, or 3) imposing limits on a value 
calculated elsewhere. 

This module may include a value that is only 
used in one Function Driver if the rule used to 
calculate that value is the same as that used to 
calculate other shared values. 

Each System Value submodule is also 
responsible for signaling events that are defined 
in terms of the values it computes. 

C:3.1 APPLICATION DATA TYPE MODULE DECOMPOSITION 

The Application Data Type Module is divided 
into two submodules. 

C:3.1.1 SYSTEM DATA TYPE MODULE 

The System Data Type Module implements 
variables of the following widely used types: 
accelerations, angles, angular rates, character 
literals, densities, Mach values, distances, 
pressures, and, speeds. These modules may be 
used to implement types with restricted ranges or 
special interpretations (e.g., angle is used to 
represent latitude). 

C:3.1.2 STATE TRANSITION EVENT MODULE 

The STE module implements variables that are 
instances of finite state machines. Users can 
await the transition of a variable to/from a 
particular state value, cause transitions, and 
compare values for equality. 

C:3.2 PHYSICAL MODEL MODULE DECOMPOSITION 

The Physical Model Module comprises the 
modules described below. 

C:3.2.1 EARTH MODEL MODULE 

The Earth Model Module hides models of the 
earth and its atmosphere. This set of models 

includes models of local gravity, the curvature 
of the earth, pressure at sea level, magnetic 
variation, the local terrain, the rotation of the 
earth, coriolis force, and atmospheric density. 

C:3.2.2 AIRCRAFT MOTION MODULE 

The Aircraft Motion Module hides models of 
the aircraft's motion. They are used to calculate 
aircraft position, velocity and attitude from 
observable inputs. 

C:3.2.3 SPATIAL RELATIONS MODULE 

The Spatial Relations Module contains models 
of three-dimensiOnal space. These models are 
used to perform coordinate transformations as 
well as angle and distance calculations. 
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C:3.2.4 HUMAN FACTORS MODULE 

The Human Factors Module is based on models 
of pilot reaction time and perception of 
simulated continuous motion. The models 
determine the update frequency appropriate for 
symbols on a display. 

C:3.2.5 WEAPON BEHAVIOR MODULE 

The Weapon Behavior Module contains models 
used to predict weapon behavior after release. 

IV. CONCLUSIONS 

Any conclusions that we draw at this point 
must be considered tentative as they have not 
been confirmed by the production of a running 
program. Nonetheless, we have been using the 
module guide for several years and it has proven 
remarkably stable. It plays a significant role 
in our development process; programmers and 
designers turn to it when they are unsure about 
where a certain program should reside. Numerous 
discussions have been resolved by this means and 
relatively few and superficial changes have 
resulted from the discussions. 

Our experience suggests that the use of 
information hiding in complex systems is 
practical but only if the design begins with the 
writing of a module guide that is used to guide 
the design of the individual module interfaces. 
When we tried to work without the guide numerous 
problems slipped between the cracks and 
responsibilities ended up either in two modules 
or in none. With the module guide further 
progress on the design has revealed relatively 
few oversights. New programmers joining the 
project are able to get a quick grasp of the 
structure of our project without using much time 
talking to those who have been on the project 
longer. We feel that this will help to 
ameliorate Brooks' adage, "Adding more men then 
lengthens, not shortens, the schedule" [MMM]. 

We realize that the module guide that we are 
using as an illustration stops at an arbitrary 
point. Most of the modules mentioned in this 
guide are divided into submodules that are not 
shown in this guide. We found it more convenient 
to have separate module guides for the smaller 
modules than to keep extending this one. This 
module guide is the one document that all 
implementors most read; the others are for 
specialists. This one is less than 30 pages in 
length and we can afford to let everyone read it. 

In writing this and other module guides, we 
have seen how important it is to focus on 
describing secrets rather than interfaces or 
roles of the modules. Where we have forgotten 
that, (usually when we are rushing to meet a 
deadline), we have ended up with modules without 
clear responsibilities and eventually had to 
revise our design. 

The Module Guide, like our requirements 
document, provides a clear illustration of the 
advantages of an approach that we call "Design 
through Documentation" [DOC]. Writing the 
document is our way of making progress in 
design. The document then serves to guide us and 
others in future designs. 

In another paper, [REU], we have argued that 
this approach increases the likelihood that the 
software we produce will be reuseable and 
reused. That paper uses the same example to 
argue rather different points. 
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