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Abstract

This paper presents a methodology for developing the
requirements for general purpose scientific computing soft-
ware. The first step in the methodology is to determine the
general purpose scientific software of interest. The sec-
ond step consists of a commonality analysis on this iden-
tified family of general purpose tools to document the ter-
minology, commonalities and variabilities. The common-
ality analysis is then refined in the third step into a family
of specific requirements documents. Besides fixing the vari-
abilities and their binding times, each specific requirements
document also shows the relative importance of the different
nonfunctional requirements, for instance using the Analytic
Hierarchy Process (AHP). The new methodology addresses
the challenge of writing validatable requirements by includ-
ing solution validation strategies as part of the requirements
documention. To illustrate the methodology an example is
shown of a solver for a linear system of equations.

1. Introduction

Scientific computing is defined as the use of computer

tools to analyze or simulate mathematical models of real

world systems of engineering or scientific importance so

that we can better understand and predict the system’s be-

haviour. Requirements elicitation, analysis and documenta-

tion are important, but often neglected, stages in develop-

ing scientific computing software. Requirements documen-

tation is important because scientific computing problems

are complex, with many sources of potential ambiguities

in terminology, and notation. Moreover, decisions on how

to handle unusual situations, such as division by zero and

indeterminancy, should be determined early in the process

rather than left as decisions for the implementor. Another

reason that requirements documentation is important is that

the only way to judge the correctness and reliability of sci-

entific software is by comparison to a specification of the

requirements. In scientific computing, practitioners often

argue over the relative merits of different designs based on

their own opinion of what the governing Nonfunctional Re-

quirements (NFRs) should be. Therefore, an advantage of

documenting requirements is that they can specify the rel-

ative importance of the various NFRs, and thus diffuse po-

tential criticism because NFR trade-offs are explicitly docu-

mented. Another significant benefit of appropriate and rig-

orous requirements documentation is that the range of the

scientific computing program’s applicability can be clearly

specified by documenting assumptions and data constraints.

Even though requirements documentation can improve the

quality of scientific software with respect to such qualities

as correctness, reliability, verifiability, productivity, usabil-

ity, understandability, maintainability, reusability and porta-

bility, requirements in scientific computing are usually doc-

umented in an ad hoc manner, rather than following a sys-

tematic engineering approach.

A systematic approach to requirements documentation

has been effectively used in other application areas, such as

with business applications [12] and for real-time systems,

such as the shutdown systems of the Darlington nuclear

generating station [9] and flight guidance and weapons sys-

tems [5]. However, the characteristics of scientific software

mean that methods that have been successful elsewhere will

have to be modified and adapted [16]. A new requirements

template has been proposed for scientific computing prob-

lems [16, 17], but this template is suited to documenting the

requirements for specific physical models, not for general

purpose software. The distinction between specific and gen-

eral purpose scientific computing is that in the first case the

emphasis is on a specific problem, such as solving for the

forces in a structure, or the temperature in a heated plate. In

the second case the emphasis is on building general purpose

tools that can be used for many different specific problems.

Some general purpose tools include mesh generators, finite

element analysis programs, linear solvers, root finding soft-

ware, interval arithmetic subroutines, etc. This paper mod-

ifies the previous template [16] as part of the proposal for

a new methodology for documenting the requirements for

general purpose scientific computing software.
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The first section below describes the main challenges

for pre-design documentation of general purpose scientific

computing software. The next section outlines the proposed

methodology that addresses these challenges by refining a

commonality analysis of the related general purpose tools

into a family of requirements documents. After this, a spe-

cific example is presented for documenting a solver for a

linear system of equations.

2. Challenges

Ideally software requirements should be unambiguous,

validatable and abstract. Although the mathematical nature

of scientific computing facilitates writing unambiguous re-

quirements, challenges certainly exist for attaining the other

two qualities. A methodology for developing requirements

for general purpose scientific software must address the

problem of writing validatable and abstract requirements.

In addition, a useful methodology should also overcome

the challenges of specifying realistic NFRs and of captur-

ing and reusing existing knowledge. Details on all of these

challenges are discussed below. The challenges listed here

provide the motivation and rationale for the newly devel-

oped methodology.

2.1. Validatable

Any requirements specification for scientific computing

will need to address the challenge of writing validatable

requirements. The source of the challenge is that scien-

tific software differs from most other software because the

quantities of interest are continuous, as opposed to discrete.

Many of the functional requirements will specify the out-

put behaviour for given inputs, where both the inputs and

outputs are continuously valued variables such as time, ve-

locity, displacement, temperature, pressure, concentrations,

etc. Validating the requirements is difficult because there

are an infinite number of potential input values and what

is even more challenging, the correct value for the output

variable is unknown a priori. In fact, the purpose of many

scientific computing tools is to solve problems that are dif-

ficult or impossible to solve without the software, so in

many cases the true solution is unknown. The challenge

is highlighted by the fact that even when a functional re-

quirement is unambiguously stated, the requirement may

not necessarily be validatable. For instance, the follow-

ing requirement is in general extremely difficult to vali-

date: “Given dy/dt = f(t, y) and y(t0) = y0, find y(tn),
where y(t) is a function (y : R → R), f(t, y) is a func-

tion (f : R × R → R), t is an independent variable (often

time), t0 is an initial value for t and tn is the final value

for t.” This requirement would typically be accompanied

by an NFR that would specify the allowed accuracy, for in-

stance by stating the following: “The relative error in y(tn)
should be less than ε, where the relative error is defined as

|ytrue−y|/ytrue with the subscript true referring to the true

solution.” Unfortunately for an arbitrary f(t, y) the true so-

lution will in general be unknown, which is why validating

the requirement is so challenging.

2.2. Abstract

In addition to the challenge of writing validatable re-

quirements, general purpose scientific computing also poses

a challenge for writing abstract requirements. Although

writing an abstract requirement is not actually difficult,

writing an abstract requirement that provides enough infor-

mation, and that is realistic, is challenging because of the

emphasis in scientific computing on the NFRs of accuracy

and speed. For instance, the requirement, “solve the system

of linear equations represented by the equation Ax = b ”

is abstract, but without details on the possible assumptions

about the structure of the equations, the problem is too gen-

eral to solve efficiently. In many cases it may be possible

to add assumptions about the structure of the equation to

this requirement, but in these cases a realistic requirements

specification will often need to accommodate later imple-

mentation decisions. For instance, in the system of equa-

tions example, it may be possible, as it is in the case of

structural mechanics problems, to assume that the matrix

(A) representing the system of equations will be positive

definite (xT Ax > 0 for any vector x). However, if the re-

quirements do not consider implementation details and are

simply written to include an input constraint that A be pos-

itive definite, the implementation will suffer because test-

ing for positive definiteness can require a similar amount of

computation effort as solving the system of equations.

Ideally requirements should say “what” is required and

not “how” to do it, but in the case of scientific comput-

ing many programs are written with the requirement of im-

plementing a specific algorithm. The challenge then is to

switch the emphasis away from the algorithm and instead

focus on the specification of the problem to be solved, the

NFRs, the tradeoffs between NFRs, the possible assump-

tions and the input constraints. Once the requirements have

been properly specified to this level of detail, the selection

of an appropriate algorithm can move to the design stage

where it belongs.

2.3. Nonfunctional Requirements

In scientific computing it is the NFRs, like accuracy, ef-

ficiency, portability, usability, etc., that often distinguish

designs. Unfortunately, as mentioned previously, require-

ments for scientific software are difficult to validate. For
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example, proving accuracy requirements, which requires a

priori error analysis, is a difficult mathematical exercise that

results in an error bound that is “weaker than it might have

been because of the necessity of restricting the mass of de-

tail to a reasonable level” [21]. Validation through testing

is also challenging because success in one test case does

not imply success for a “nearby” test case, since that nearby

test case may include a singularity that was not present in

the initial problem. In addition to the validatability chal-

lenge, the context sensitive tradeoffs between the NFRs can

also be difficult to specify. Simply specifying a priority for

each NFR is not adequate, as many in the scientific com-

puting community would give most of the NFRs the same

high priority ranking. Another challenge for the NFRs is to

specify them in a realistic way so that they are not simply

stated as absolute quantitative requirements. For instance,

the following requirement has arbitrary absolute bounds on

two NFRs: “The solution should have less than 10% error

and be calculated in less than 20 seconds.” Besides the chal-

lenge of validating this requirement, there is also the prob-

lem that in most uses of scientific computing tools, the user

would likely tolerate a “failed” program that provides 11%

error and a computation time of less than 25 seconds. The

challenge then is to specify the NFRs as relative require-

ments between competing algorithms and different software

packages.

2.4. Capture and Reuse Existing Knowledge

Any methodology for developing requirements for gen-

eral purpose scientific software cannot ignore the enormous

wealth of knowledge, software, best practices and expertise

that currently exist in the field. The challenge is to capture

the current state of the art and not write the requirements

documentation to imply that mostly new code will be devel-

oped, as in many cases a feasible solution will involve inte-

grating existing software libraries. Moreover, the documen-

tation approach should facilitate the reuse of software and

of the requirements documentation. Currently reuse does

not happen as frequently as it could in scientific computing,

in part because practitioners do not know exactly what the

existing software is designed to do, what its limitations are

and how well it performs with respect to the NFRs of ac-

curacy and performance. Furthermore, if the requirements

documentation facilitates reuse of the documentation, then

the effort invested in its development will certainly pay off

over time. Ideally, a library of requirements documentation

for scientific software will exist in the future so that people

designing a large project will be able to choose the appropri-

ate models from the library and incorporate them into their

project.

3. Overview of Proposed Methodology

The first step in the methodology is to determine the gen-

eral purpose scientific software of interest. The second step

consists of a Commonality Analysis (CA) on this identi-

fied family of general purpose tools. The CA can be seen

as a method for summarizing the requirements for all po-

tential tools that are considered to be within the scope of

the project. The CA includes documentation of terminol-

ogy, commonalities (including goals and theoretical mod-

els) and variabilities (including assumptions, input variabil-

ities and output variabilities). The CA is then refined in the

third step into a family of specific Software Requirements

Specification (SRS) documents, with different documents

for different contexts. Besides fixing the variabilities and

their binding times, each specific SRS also shows the rela-

tive importance of the different NFRs of importance in sci-

entific computing (correctness, reusability etc.). The tech-

nique suggested for documenting the relative priority of the

requirements is the Analytic Hierarchy Process (AHP). An-

other important component of the SRS is the software vali-

dation strategies, which include listing potential test cases,

comparison to existing tools and suggested inspection pro-

tocols. The final step in the proposed methodology consists

of using the SRS to assist in selecting between different de-

sign alternatives.

3.1. Commonality Analysis

In some situations it is advantageous to develop a col-

lection of related software products as a program family.

The idea is that if the software products are similar enough,

then it should be possible to predict what the products have

in common, what differs between them and then reuse the

common aspects and thus support rapid development of the

family members. The idea of program families was intro-

duced by Dijkstra [4] and later investigated by Parnas [7, 8].

More recently, Weiss [1, 19, 20] has considered the con-

cept of a program family in the context of what he terms

Family oriented Abstraction, Specification and Translation

(FAST) [3, 18]. Other approaches to developing program

families, also known as software product lines, can be found

in references [2, 10]

In the approach advocated by Weiss, the first step is a

CA, which consists of systematically identifying and doc-

umenting the commonalities that all program family mem-

bers share, the variabilities between family members and

the terminology used in describing the family. A CA pro-

vides a systematic way of gaining confidence that a family

is worth building and of deciding what the family mem-

bers will be. In the case of general purpose scientific com-

puting, a CA has intuitive appeal given the proliferation of

scientific computing tools available. Each family of soft-
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ware tools shares commonalities because all family mem-

bers have the same mathematical underpinnings. As an ex-

ample, the general purpose tool of a mesh generator has

been shown to be a suitable candidate for development as a

program family [14, 15] because mesh generators meet the

three hypotheses for a program family proposed by [19]:

the redevelopment hypothesis (most software development

involved in producing the family is redevelopment), the or-

acle hypothesis (the types of changes that are likely to oc-

cur during the software’s lifetime are predictable) and the

organizational hypothesis (designers and developers can or-

ganize the software, as well as the development effort, in a

way that predicted changes can be made independently).

A CA is proposed as an initial step in developing require-

ments for general purpose scientific software because it pro-

vides the following benefits [19, 20]: a starting point for

the design of a domain specific languages (DSL); a basis

for a common design for all family members; a historical

reference; a basis for reengineering a domain; and, a ba-

sic training reference for new software developers. In addi-

tion, a CA helps address two of the challenges identified in

Section 2: i) managing the abstraction level of the require-

ments, and ii) assisting with knowledge capture.

With respect to writing abstract requirements (Sec-

tion 2.2) the CA helps by first focusing one’s thoughts

on the theoretical mathematical model. This mathemati-

cal model is the ideal case, which cannot usually be fully

realized on a computer, but conceptually it is easy to un-

derstand and it can be stated abstractly. The CA allows

the analyst to bring this theoretical model closer to reality

by specifying simplifying assumptions, which form an im-

portant class of variabilities between program family mem-

bers. As an example, the following theoretical model can

be proposed for a root finding program: “given a function

f(x) and an interval {x|xlower ≤ xupper}, return the points

where f(x) = 0.” Some potential assumptions may be that

f(x) is continuous on the interval, or that f(x) has at least

one sign change on the interval, etc.

With respect to capturing existing knowledge (Sec-

tion 2.4), a CA is an ideal document. Its creation facili-

tates a systematic consideration of the general purpose pro-

gram family, which increases the analysts confidence that

their understanding of the problem is complete. Once the

CA document is complete, communication between experts

is improved and hopefully the document can assist in con-

sensus building and in having stakeholders reach a mutual

understanding. Furthermore, if a standard template is fol-

lowed, then comparison of different tools will be possible.

Over time it is possible to imagine building a library of CAs

for scientific software, which will allow reuse of the knowl-

edge in the future. The CA also assists in capturing the cur-

rent state of the art because it provides a convenient frame-

work for summarizing the existing literature and software

on a given general purpose scientific computing problem.

This summary of the existing work is useful because it high-

lights what family members have yet to be built; that is, the

CA shows where the holes are in the currently available set

of general purpose scientific computing tools.

A potential template for use when documenting a CA for

general purpose scientific software is presented in Figure 1.

The template includes a section listing potential system con-

texts, user characteristics and system constraints. The CA

covers all the potential members of a program family, so it

is not possible to know exactly what information to place

in these sections; however, there will often be information

that can be recorded on typical uses of the program family

members. Although the information in this section cannot

be presented as variabilities because it does not represent re-

quirements, the hints provided in the CA can later be refined

in the corresponding sections of the SRS.

1. Reference Material: a) Table of Contents b) Table

of Symbols c) Abbreviations and Acronyms

2. Introduction: a) Purpose of the Document b) Orga-

nization of the Document

3. General System Description: a) Potential System

Contexts b) Potential User Characteristics c) Po-

tential System Constraints

4. Commonalities a) Background Overview b) Termi-

nology Definition c) Goal Statements d) Theoreti-

cal Models

5. Variabilities a) Input Assumptions b) Calculation

c) Output

6. Traceability Matrix

7. References

Figure 1. Proposed Commonality Analysis
Template

A “Terminology” section is common place in require-

ments documentation. In the case of the CA its inclusion is

motivated by a need to clarify the concepts presented later

in the SRS and to serve as a reference aid. The contents of

this section consist of a list of mathematical concepts and

their exact meaning. This section should provide enough in-

formation to allow understanding of the later sections “Goal

Statement,” “Theoretical Model,” and “Input Assumptions.”

The terminology section is necessary in scientific comput-

ing for an unambiguous requirements specification because

terminology often has subtly different meanings, even in

very similar contexts. As an example, the same symbol σ is

used to represent stress, conductivity, the Stefan-Boltzmann
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constant for radiative heat transfer, the standard deviation,

etc. Potential confusion exists even if σ is known to rep-

resent stress because there is still ambiguity about whether

the stress is defined with respect to the original geometry,

or with respect to the deformed geometry.

The motivation of the goal statement section of the CA

is to capture the goals in the requirements process. A goal,

in this context, is a functional objective the system under

consideration should achieve. The goal statements do not

include nonfunctional objectives because the NFRs are not

commonalities between family members. Goals provide

criteria for sufficient completeness of a requirements spec-

ification and for requirements pertinence. Goals will be re-

fined in the Section “Theoretical Models.” The goal state-

ments are intended to be written at a level that is easy to

understand. The goal statements should briefly summarize

the commonalities shared by all program family members.

The “Theoretical Models” section specifies the theory

that all members of the general purpose scientific comput-

ing family share. The model is presented as it would be

presented in a mathematics textbook. That is, the model

is specified as the ideal mathematical case, without ref-

erence to the limitations that an actual computer imple-

mentation will have to overcome. This is done so that

there is a relatively uncomplicated reference model that all

stakeholders can agree on and understand. Examples of

theoretical models include solving the eigenvalue problem

(Ax = λx), or integrating a function f(x) over the limits a

to b (
∫ b

a
f(x)dx).

The section on input assumptions emphasizes the impor-

tance of assumptions to scientific computing for making the

theoretical model something that can be solved. In many

cases if no constraints are placed on the theoretical model,

then it cannot be solved numerically for all possible inputs.

For instance, the eigenvalue problem cannot be solved if any

of the entries in A exceeds the maximum machine repre-

sentable number and an integration problem can have large

errors if there is a singularity nearby.

The variabilities between NFRs are not explicitly in-

cluded in the CA template because it is implicitly assumed

that for all scientific software variability exists in the prior-

ity of NFRs and in the degree to which the NFRs are sat-

isfied. Rather than document the NFRs in the CA this is

left to the SRS, where the tradeoffs can be made explicit

for a given program family member. Moreover, the SRS is

a suitable place for describing how the NFRs will be vali-

dated through the software validation strategy.

For each of the variabilities in the CA there is a parame-

ter of variation and a binding time. The parameter of vari-

ation specifies the type of the possible values for the vari-

ability. The binding time is the time in the software lifecycle

when the variability is fixed. The binding time could be dur-

ing specification of the requirements (specification time), or

during building of the system (compile time), or during ex-

ecution of the system (run time). It is possible to have a

mixture of binding times. For instance, a parameter of vari-

ation could have a binding time of “specification or build”

to represent that the parameter could be set at specification

time, or it could be postponed until the given family mem-

ber is built. The choice of postponing the decision until

the build could be associated with the presence of a domain

specific language (DSL).

The traceability matrix takes the role of showing the re-

lationship between the terminology, goals, theories and as-

sumptions. This matrix is important so that change can be

tracked through the CA document. A traceability matrix

with the same purpose was introduced in [16, 17]. The

matrix provides the serves the same purpose as the related

commonality field that is suggested for each variability in

the Weiss approach [18].

3.2. Requirements Analysis

Figure 2 shows the proposed requirements template for

the SRS. This template is a modified version of that pre-

sented in [16, 17], which in turn was mainly based on the

IEEE Standard 830 [6], except for the subsection “Non-

functional Requirements” and the section “Other System

Issues,” which were inspired by the Volere Requirements

Specification Template [12]. The section “General Sys-

tem Description” comes from both of the previously men-

tioned sources. The template also introduces a systematic

approach to manage changes in a scientific computing SRS

through a newly defined traceability matrix, which is docu-

mented in SRS Section 8.

The sections with the same names between the CA and

the SRS represent sections that are refined by the SRS fam-

ily members. For instance, the “General System Descrip-

tion” is shared between the two documents. In each of

the family members of the SRS a specific entry is deter-

mined for each of the potential system descriptions given in

the CA. For instance, in the CA the general description is

for potential system contexts, user characteristics and con-

straints, while in the SRS the word “potential” has been re-

moved because the scope and focus are now on an actual

software system. The commonality section of the CA is

shared by all SRS documents, while the variability section

provides requirements that vary between family members.

For each variability in the SRS a particular parameter of

variation must be set, along with its binding time.

The NFRs section specifies system requirements that

consider the quality and behaviour of the system as a whole.

This section is separate from the functional requirements to

facilitate the potential independent change of these two por-

tions of the SRS. Several of the sections here are borrowed

from the Volere template [12], such as sections for look and
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1. Reference Material: a) Table of Contents b) Table

of Symbols c) Abbreviations and Acronyms

2. Introduction: a) Purpose of the Document b) Scope

of the Software Product c) Organization of the

Document

3. General System Description: a) System Context

b) User Characteristics c) System Constraints

4. Specific System Description: i) Background

Overview, ii) Terminology Definition, iii) Physical

System Description, iv) Goal Statements v) The-

oretical Models, vi) Assumptions, vii) Data Con-

straints, viii) System Behaviour

5. Non-functional Requirements: i) Accuracy of In-

put Data, ii) Sensitivity of the Model, iii) Tol-

erance of Solution, iv) Look and Feel Require-

ments, v) Usability Requirements, vi) Performance

Requirements, vii) Maintainability Requirements,

viii) Portability Requirements, ix) Security Re-

quirements

6. Solution Validation Strategies,

7. Other System Issues: a) Open Issues b) Off-the-

Shelf Solutions c) New Problems d) Waiting Room

8. Traceability Matrix

9. List of Possible Changes in the Requirements

10. Values of Auxiliary Constants

11. References

Figure 2. Proposed Requirements Template

feel, usability, performance, maintainability, portability and

security requirements. The new template has to address the

challenge of providing validatable and useful requirements.

As mentioned in Section 2.3 when NFRs are phrased as ab-

solute quantitative measures, so as to make the requirements

validatable, the problem is introduced that the requirements

may be unrealistic. In many cases the absolute performance

of the requirement is not important, it the relative compar-

ison to other software products that is important. Validat-

able requirements can be stated as relative measures of how

the general purpose tool compares to other program family

members, with respect to the performance of a functionality

that they share. For instance, a new software tool for solv-

ing linear system of equations can be compared to the accu-

racy of Matlab. This can be done by identifying benchmark

test problems that will be run on the competing software.

Running test problems allows for a posteriori description of

the software behaviour rather than a priori specification of

nonvalidatable NFRs, as discussed in Section 2.3.

The other challenge for NFRs is to capture their rela-

tive importance, given that tradeoffs typically exist such that

improving one NFR means that another will suffer. For in-

stance, it is difficult to have software that is fast, accurate,

portable and maintainable, all at the same time. Depend-

ing on the software context, one or more of these NFRs

may have a higher priority than the others. When reasoning

about all of the NFRs at once, it can be difficult to identify

the priorities. The field of decision analysis provides advice

on how best to quantify the relative importance of the vari-

ous NFRs because decision makers face the same challenge

when defining rational criteria to judge competing goals

and options. To assist with decision making the concept

of utility has been introduced to allow ranking of compet-

ing alternatives so that the one with the highest utility can

be selected. However, the concept of utility can sometimes

be challenging to adopt because many competing attributes

can contribute to the utility, but the relative importance of

the different attributes may be difficult to determine as they

do not always have a common basis. For instance, if one is

choosing between different transportation alternatives there

will be contributions to the utility from both cost and envi-

ronmental impact. Although the utility of the cost can be

easily measured in monetary units, the choice is unclear as

to what constitutes appropriate and compatible utility units

for measuring environmental impact.

One approach that has been successfully applied to ad-

dressing the challenge of comparing attributes, especially

attributes that are measured in different units, is the Analytic

Hierarchy Process (AHP) [13], since it does not require ex-

plicit quantification of utility. Instead of utility, AHP uses

ratio scales to assess the relative priorities between various

goals and criteria. AHP reduces the challenge of determin-

ing priorities to a series of pair-wise comparisons between

attributes. These pair-wise comparisons are much easier to

reason about than trying to tackle the entire problem all at

once. Some example values that can be used for the ranking

scale are as follows: 1 for equal importance, 3 for moder-

ately strong importance, 5 for very strong importance and 9

for extreme importance. Given the success AHP has had in

decision analysis, this is the approach adopted in this paper

to rank the relative priority of the NFRs. An example is pro-

vided in Section 4.2 to show how a matrix, along with the

associated calculations, can be used to determine the prior-

ities.

As observed in Section 2, it is difficult to validate scien-

tific computing software. The purpose of the SRS section

on solution validation strategies is to capture the experts in-

sight on how to validate the software. Three potential eval-

uation strategies are:

• Solve the problem by different techniques; for in-
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stance, an ordinary differential equation can be solved

using several different algorithms, such as the Runge

Kutta and the predictor-corrector method, and the re-

sults compared.

• Test cases can be built where the answer is known. Al-

though in general the answer to a scientific comput-

ing problem may be unknown, problems can be con-

structed where the solution is assumed and then the

problem that leads to this solution is formulated. One

example of this approach is the Method of Manufac-

tured Solutions (MMS) [11].

• Partially validate the problem by validating simpler

subsets of it for which the solution is known.

4. Example of a Linear Solver

To help illustrate the methodology described above, this

section presents excerpts from a CA and SRS for a linear

solver. Besides presenting the commonalities and variabili-

ties, the example also includes a sample validation strategy

and an example application of AHP.

4.1. Commonality Analysis

The summary of the CA document includes informa-

tion on the terminology, the goal statement, the theoretical

model, and the variabilities, such as the input assumptions.

Commonalities

The commonalities section for a linear solver includes the

terminology summarized in Table 1. Even at this stage in

the documentation decisions are being made, as the termi-

nology clearly rules out the case of a non-square matrix, or

of a matrix with complex, as opposed to real, entries.

For the linear solver example, there is only one goal

(G1), as follows: “G1: Given a system of n linear equa-

tions represented by matrix A and column vector b, return

x such that Ax = b, if possible.”

The theory section (T1) of the CA summarizes the ideal

mathematical model for solving a system of linear equa-

tions. The theory states that for a given square matrix A
and column vector b, the possible solutions for x are as fol-

lows:

1. A unique solution x = A−1b, if A is nonsingular

2. An infinite number of solutions if A is singular and

b ∈ span(A)

3. No solution if A is singular and b /∈ span(A)

n : N number of linear equations and the

number of unknowns

A : R
n×n n × n real matrix

x : R
n×1 n × 1 real column vector

b : R
n×1 n × 1 real column vector

I : R
n×n an n× n matrix where all entries are 0,

except for the diagonal entries, which

are 1
A−1 : R

n×n the inverse matrix, with the property

that A−1A = I
||v|| the norm (estimate of magnitude) of

vector v
residual ||b − Ax||
singular matrix A is singular if A−1 does not ex-

ist

Table 1. Terminology for a Linear Solver

Variabilities

The variabilities and associated parameters of variation for

a linear solver are best summarized in tables, such as Ta-

ble 2, which shows the variabilities associated with the input

assumptions. The parameters of variation column lists the

valid type for the variability. Binding times are not shown in

the table because for the variabilities in this example all of

the binding times (specification, build or run time) are valid

options. If a smaller program family is desired, then it is

possible to restrict the scope to provide fewer binding time

options. For instance, all of the variabilities could require

specification time binding.

The presentation of the variabilities in Table 2 highlights

important features of the input assumptions for the program

family. For instance, the table separates the symmetry vari-

ability from the matrix structure variability to stress the im-

portance of symmetry and to make it clear that symmetry is

independent of the other structures. For instance, a matrix

can be both banded and symmetric. The table also explic-

itly shows that the decision on the allowed size of the sys-

tem of equations has to be documented. This is important

because the design of software where the maximum size of

the system is 10 equations is much different from the design

for software where the maximum size is 100,000 equations.

Table 2 assists in providing information that can potentially

aid in producing accurate and efficient algorithms. For in-

stance, if the entries in A and b are known to exist in a small

subset of R then it may be possible to prove some accu-

racy properties that are usually too difficult to prove. When

it comes to the variability of the set of possible values for

the entries in A and b the most common choice will be F,

where F is the set of floating point numbers. The floating

point numbers will often meet the IEEE standard for single

or double precision numbers. Other choices for the subset
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Variability Parameter of Variation
Allowed

structure of

A

Set of { full, sparse, banded, tridiagonal,

block triangular, block structured, diag-

onal, upper triangular, lower triangular,

Hessenberg }
Allowed

definiteness

for A

Set of { not definite, positive definite,

positive semi-definite, negative definite,

negative semi-definite }
Allowed

class of A
Set of { diagonally dominant, Toeplitz,

Vandermonde }
Symmetry

assumed?

boolean

Possible

values for n
set of N

Possible en-

tries in A
set of R

Possible en-

tries in b
set of R

Source

of input

Set of { from a file, through the user in-

terface, passed in memory }
Encoding

of input

Set of {binary, text }

Format

of input A
Set of {arbitrary, by row, by column, by

diagonal }
Format

of input b
Set of {arbitrary, ordered }

Table 2. Variabilities for Input Assumptions

of R include fixed point numbers and multiprecision num-

bers.

Besides the input variabilities, there are also tables for

the calculation and output variabilities, corresponding to the

other variability subsections of the CA template (Figure 1).

The calculation variabilities in Table 3 highlight the fact that

in some cases the analyst will be confident that the input

data will be correct and that errors will not occur during the

calculations. In these cases the parameters of variation for

checking the input and for exception generating can both

be set to false. With respect to the output variabilities in

Table 4 the destination of the output depends on the context.

For instance, in a program like Matlab the destination for

Variability Parameter of Variation
Check

input?

boolean (false if the input is assumed to

satisfy the input assumptions)

Exceptions

generated?

boolean (false if the goal is non-stop

arithmetic)

Norm used

for residual

Set of {1-norm, 2-norm, ∞-norm }

Table 3. Variabilities for Calculation

Variability Parameter of Variation
Destination

for output x
Set of { to a file, to the screen, to mem-

ory }
Encoding

of output x
Set of {binary, text }

Format of

output x
Set of {arbitrary, ordered }

Output

residual

boolean (true if the program returns the

residual)

Possible en-

tries in x
set of R

Table 4. Variabilities for Output

the output is memory, but the system also allows output to

the screen and to a file. In an embedded system, on the

other hand, this variability would likely be restricted to only

placing the output in memory.

4.2. Requirements Analysis

The SRS needs to specify the expected characteristics of

the A matrix and the b vector. For instance, it is difficult to

write code to solve any system of equations Ax = b, but this

job becomes easier if A is known to have special character-

istics, such as being symmetric positive definite. Therefore,

the SRS should clearly show the assumptions restricting the

input data. This is done by selecting the appropriate param-

eters of variation from the CA document.

The use of AHP to prioritize the NFRs can be illustrated

through some examples. In the first example the require-

ments are for an embedded real-time system for digital sig-

nal processing. This system is assumed to have a small size

for n, say less than 10, and the matrix is assumed to be

Toeplitz. For a real time system speed is more important

than accuracy and both speed and accuracy are more impor-

tant than portability, since the assumption is that the hard-

ware will not be changed. Table 5 provides example values

for the pair-wise comparison between the NFRs of accu-

racy, speed and portability. The numbers show the relative

importance of speed over accuracy and portability. The pri-

ority is calculated by adding up the values in each row and

dividing this value by the sum of all the priorities in the

matrix. For instance, the priority for speed is calculated as

(1+3+5)/(1+3+5+1/3+1+3+1/5+1/3+1) = 0.64.

In a second example the relative importance of the NFRs

is changed because the context is now assumed to be a linear

solver for educational software to teach structural mechan-

ics. In this type of problem the matrices will symmetric,

positive definite and of medium size, say 10 ≤ n ≤ 1000.

In this case portability will be important because there is an

assumed desire to run the software on Windows, Mac, Unix

and Linux computers. Given this context the pair-wise com-
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Speed Accuracy Portability Priority
Speed 1 3 5 0.64

Accuracy 1/3 1 3 0.26

Portability 1/5 1/3 1 0.11

Table 5. Matrix of Pair-wise Comparisons Be-
tween NFRs

parisons between NFRs could again be performed, but the

results would now have the greatest priority value assigned

to portability.

With respect to solution validation strategies, one poten-

tial approach for a linear solver is to build test cases by us-

ing known solutions. For general A and b the value of x
is unknown a priori. However, if A is assumed and x is

assumed then b can be calculated using matrix multiplica-

tion. This calculated value of b can then be used with A in

the linear solver and a new value of x∗ can be calculated.

The solved value of x∗ can be compared to the previously

assumed value of x to measure the error. Another solution

validation strategy is to take the test suite of known solution

problems and run them on Matlab and compare the speed

and accuracy of these solutions to those found by other pro-

gram family members. The test cases allow for a descrip-

tion of how the program performs with respect to the NFRs.

For instance, test cases can be used to experiment to deter-

mine how the accuracy changes with changes in the condi-

tion number of the matrix.

5. Connection with Design

The typical next step in the software development pro-

cess is to move to the design stage. The CA and the SRS can

greatly facilitate the transition to design. In many cases in

scientific computing several software packages will already

exist within a given program family. Ideally the develop-

ment process should facilitate reuse and the capture of exist-

ing knowledge and software implementations, as discussed

in Section 2.4. If the existing packages are summarized by

listing the values for their parameters of variation, then it

should be possible to at least partly match the requirements

with an existing implementation. In some cases the param-

eters of variation for the variabilities will directly match, or

they may match except for the binding times. In the case

where the desired binding time is specification time, but the

implementation has a run time binding, then it may be pos-

sible to write a simple driver to obtain the desired specifica-

tion time bound family member.

If several existing implementations are identified as al-

ternatives because they all match the functional require-

ments documented in the CA and SRS, then the NFRs can

be used to pick between the alternatives. In this case one

can use methodologies from decision analysis to pick the

best design. AHP can again be used to compare the exist-

ing design solutions against one another, so as to provide a

score for each product. For each NFR a pair-wise compari-

son can be made between each of the competing alternatives

so that a matrix can be constructed, in a manner similar to

the approach shown previously in Table 5. The contribu-

tion of each NFR to the score for each design alternative is

found by multiplying the contribution of each alternative to

the given NFR with the corresponding priority of that NFR,

where the priority was previously documented in the SRS.

The score for each NFR is summed for each design alter-

native and the alternative with the highest overall score is

considered to be the best design choice.

6. Concluding Remarks

This paper presents a new methodology for documenting

the requirements for general purpose scientific computing

software. The new methodology addresses the challenge

of writing validatable requirements by including solution

validation strategies in the SRS. These solution validation

strategies can include listing system tests. Another chal-

lenge for scientific computing is writing abstract require-

ments that realistically consider the later implementation re-

alities. This challenge is addressed in the new methodology

by systematically refining the requirements from goal state-

ment, to theoretical model to assumptions about the input

data. NFRs can also be problematic for scientific comput-

ing because absolute quantitative requirements can be un-

realistic and because it is difficult to understand the com-

plex tradeoffs allowed between the NFRs. One idea pre-

sented in this paper for addressing these difficulties consists

of phrasing the requirements as a relative comparison be-

tween program family members. A second idea suggests

systematically assessing the priority of the various NFRs by

using pair-wise comparisons and the AHP. The final chal-

lenge addressed in this paper is how to capture and use the

existing wealth of scientific computing knowledge and soft-

ware. The CA and SRS themselves provide an approach

for summarizing and documenting knowledge for future

reuse. Moreover, the CA allows one to summarize the cur-

rently available software to see what problems have been

addressed by the existing general purpose tools and what

problems still need to be solved.

In the future it is hoped that the methodology proposed

in this paper will be used to improve the quality of scientific

software. To succeed in this direction it will be necessary to

apply to the methodology to general purpose scientific com-

puting problems that have greater complexity than that of

the linear solver example. Some candidate systems include

mesh generators, ordinary differential equation solvers and

finite element analysis programs. Additional work to vali-
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date the proposed approach will be necessary, including em-

pirical studies to quantify the advantages and disadvantages

of the new methodology.
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