
Proceedings of SREP’05, Paris, France, August 30, 2005 1

A New Requirements Template for Scientific Computing
Spencer Smitha and Lei Laia
a Computing and Software Department, McMaster University

Abstract
This paper presents a new template for writing requirements specifications for scientific com-
puting software, using the following characteristics to guide the design: i) only one user
viewpoint needs to be considered for specifying the physical model; ii) assumptions can be
used to distinguish between models and a strong coupling exist between the assumptions and
the functional requirements; iii) a high potential exists for reuse of the functional require-
ments; iv) the hierarchical nature of goals, theoretical models and instanced models facilitates
change management; and, v) documenting and validating continuous mathematics needs to be
supported. One significant change from the existing templates is for the functional require-
ments, which are split into two main sections: “Problem Description” and “Solution Charac-
teristics Specification.” The template introduces a new traceability matrix to facilitate future
modifications and it explicitly addresses nonfunctional requirements for the accuracy of the
input data, the sensitivity of the model, the tolerance of the solution and the solution validation
strategies.

Keywords: Domain-Specific Requirements Engineering, Combination of Templates, Scientific Com-
puting

1 Introduction
Requirements analysis and documentation techniques can be used to improve the
quality of scientific computing software, where scientific computing is defined as the
use of computer tools to analyze or simulate mathematical models of real world sys-
tems of engineering or scientific importance so that we can better understand and
predict the system’s behaviour. Unfortunately requirements documentation in scien-
tific computing is often nonexistent or incomplete because of a lack of an accepted
systematic approach. To encourage a systematic approach one generally accepted
technique from requirements engineering is to adopt and follow a requirements tem-
plate. However, a survey of existing templates shows that the particular needs of
scientific computing systems are not met by the current options. This paper addresses
this shortcoming by presenting a new template that has been tailored to meet the spe-
cial characteristics inherent in scientific computing software.

The first section below provides background information on scientific comput-
ing, the advantages of requirements documentation in this context, and a review of
existing requirements templates. The next section explains that the existing templates
do not address the specific characteristics of scientific software that distinguish it
from other classes of applications. Section 4 presents the template itself by first
showing the proposed table of contents and then explaining the intent of each of the
sections. The new template combines features of existing templates as well as adding
some new features. Sections 5 and 6 discuss future work and concluding remarks,
respectively.

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 20052

2 Background
The following five-step procedure is typically used to solve analysis problems in sci-
entific computing: i) define the problem; ii) create a mathematical model by applying
proper assumptions; iii) identify a computational method; iv) refine and implement a
solution; and, v) validate the solution. If a requirements stage is made part of the
development process for scientific software, then the first two steps above will corre-
spond to the stage of requirements gathering, analysis and documentation. In the first
step the problem should be clearly, completely and unambiguously defined. The
second step involves using simplifying assumptions to develop a model of the real
world. In scientific computing the model often consists of governing ordinary or
partial differential equations together with boundary conditions and/or initial condi-
tions and a set of closure equations.

Although the size and complexity of scientific computing problems are con-
stantly growing, the approach to problem definition, model development and docu-
mentation is often done in an ad hoc manner. Moreover, the nonfunctional require-
ments that would provide information on such important decisions as required accu-
racy, precision, efficiency, etc., are typically neglected. Unfortunately requirements
for scientific computing problems are rarely systematically gathered, analyzed and
documented, even though the existence of a complete and consistent requirements
document can lead to better decisions for improving such software qualities as reli-
ability, usability, verifiability, maintainability, reusability and portability. One exam-
ple of how requirements improve quality is that the reliability of software can only be
accurately judged when the validation step (v in the above list) has an unambiguous
statement of the behaviours and qualities that the software is required to satisfy.

Besides enabling software validation, a requirements document provides many
other advantages during the lifecycle of a software project (IEEE, 1998; Sommerville
and Sawyer, 1997). For instance, a software requirements specification (SRS) re-
flects the mutual understanding of the problem to be solved between the requirements
analyst and the client and it provides a starting point for the software design phase.
Other advantages that requirements documentation brings that are of particular value
to scientific computing software include the following, as discussed in Smith et al.
(2005): i) reducing ambiguity; ii) clearly identifying and documenting the range of
model applicability; iii) clearly identifying and documenting the assumptions that
simplify the real world for modelling purposes; iv) increasing confidence that all spe-
cial cases have been considered; and, v) encouraging the analyst to scrutinize their
problem in advance of designing the computational software.

Given the advantages that requirements documentation can provide, it is surpris-
ing that a literature review on the application of software engineering methodologies
to scientific computing problems shows little on this topic. The research usually fo-
cuses on the design and implementation of the software and does not address how to
improve the quality from the requirements level. One exception to neglecting the
requirements phase is a requirements analysis of data parallel applications (Gerlach,
2002). Another exception documents the requirements of models of physical phe-
nomena (Kreyman and Parnas, 2002) using tabular expressions. However, this ap-
proach to documenting physical phenomena does not entirely match the needs of
scientific computing because Kreyman and Parnas (2002) use ideas that were first
developed for real-time embedded systems, which have different characteristics than

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 3

scientific computation systems. Moreover, Kreyman and Parnas (2002) allow the
numerical methods, which are essentially implementation decisions, to be encom-
passed into the requirements documentation, which contradicts with the principle that
requirements should address “What” is required, but not “How” to achieve it.

The scientific computing literature apparently does not provide many details on a
methodology for requirements documentation, so the next step is to determine what
ideas can be borrowed from the field of requirements engineering. One idea from
requirements engineering that satisfies the current goal of encouraging a systematic
procedure for requirements documentation is the common practise using of a re-
quirements template, where the template provides a frame of reference, identifies
needed information, and suggests an order of presentation for the requirements. An
advantage of using requirements templates, as discussed in Sommerville and Sawyer
(1997), is increasing the productivity and adequacy of an SRS, because a well-
organized format for the document acts as a checklist for writers of the SRS, which
reduces the chances of omitting information. The template also has an important
advantage for scientific computing in that it facilitates the communications among
various SRS users, which in the scientific context will be researchers, software devel-
opers, physical modellers, computational scientist, etc.

A template seems ideal for documenting scientific computing problems, but it is
difficult to directly adopt an existing template. Although there are several require-
ments templates that are designed for general purposes and contain good advice on
how to write requirements and how to avoid problems (Heninger, 1980; NASA, 1989;
Robertson and Robertson, 1999; IEEE, 2000), these templates are not usually used
without modifications that depend on the application. Most templates to date focus
on business applications and real-time systems. Although the existing templates pro-
vide an excellent starting point, they do not address all of the issues of importance for
scientific computation problems, as discussed in the next section.

3 Why a New Template?
Differences between the characteristics of scientific computing software and other
types of systems suggest that a new template needs to be developed that is specific to
scientific software. These characteristics are enumerated below. Although some of
these characteristics can also occur in other classes of software, they are considered to
be important enough in scientific computing to guide the design of the new require-
ments template.

3.1 One User Viewpoint for the Physical Model
The specification of the mathematical model in scientific computing software allows
for an important simplification over some other classes of software because it does
not have the variety of viewpoints for the functional requirements that are evident in
many other software systems. Unlike banking software, or a library database, which
have many different stakeholders and other software/hardware systems, there is only
one user viewpoint for the physical model in scientific software. (Although the func-
tional requirements for the physical model have one viewpoint, the nonfunctional
requirements will certainly change depending on the user viewpoint.) Only one
viewpoint is necessary for the physical model because there is only one correct state-
ment of the problem physics. The one user viewpoint allows application of the prin-

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 20054

ciple of separation of concerns so as to focus on making the documentation of the
mathematical model self-contained. As mentioned in Section 3.3 below, the compu-
tation may be embedded in a larger system context, but in the context of the five steps
outlined at the beginning of Section 2, the physical model need only be considered
from one viewpoint. Although there is considerable complexity inside scientific
software, from the external viewpoint the model is relatively simple. Although dif-
fering in the details, the solution of a scientific computing problem can be effectively
abstracted following the simple sequential scenario: input information, perform cal-
culations, output the results. With only one viewpoint to consider, the functional
requirements do not have to specify many partial viewpoints, or the complex relation-
ships associated with concurrency.

3.2 Assumptions Distinguish Models
To build any model of the real-world it is necessary to introduce simplifying assump-
tions, such as assuming small distances, angles, or forces may be neglected in favour
of larger distances, angles or forces. In scientific computation it is often the differing
assumptions that distinguish one piece of work from another. For instance, Smith and
Stolle (2003) summarize research on polymer film casting by distinguishing papers
based on their simplifying assumptions, such as whether the problem is modelled as
1D, 2D or 3D, or whether the problem is isothermal or nonisothermal, or whether the
polymer is assumed viscous or viscoelastic. Often the quality of the model depends
on how reasonable the simplifying assumptions are. Assumptions also play a crucial
role in scientific computing because a strong coupling exists between the assumptions
and the physical model. Given the importance of assumptions, the SRS template
should clearly show how they will be documented and justified. Other researchers
cannot judge a model, reproduce its results, or improve on it, without knowing the
assumptions that were made and the reasoning behind those assumptions.

3.3 High Potential for Reuse
A template for scientific software should support the reuse of functional require-
ments, where the functional requirements correspond to the problem description and
the mathematical model. The functional requirements for scientific software have a
high potential for reuse because the laws on which they are based are almost univer-
sally accepted and slow to change. An example of a requirement that is unlikely to
change is that a body at rest shall satisfy force equilibrium. The stable functional
requirements should be separated from the nonfunctional requirements, which will
change depending on the context in which the software is to be used. For instance,
educational software and a safety critical real-time system may both have identical
functional requirements based on the same mathematical model, but the educational
software will emphasize nonfunctional requirements for ease of use and portability,
while the scientific software that is employed as part of a safety critical control sys-
tem will likely emphasize accuracy and speed of calculation over all other considera-
tions. The documentation on the mathematical model of the scientific computation
should be self-contained so that it can be embedded in a larger system, no matter the
context of the other system. If a library of SRS’s for scientific software can be built,
then people designing a large project will be able to choose the appropriate models
from the library and incorporate them into their project.

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 5

3.4 Hierarchical Nature Facilitates Change
In software engineering, one of the most important design principles is to design for
change. The preceding section described how the document should be designed to
allow for changes in the nonfunctional requirements; the functional requirements
themselves should also be designed for likely changes. In the case of the functional
requirements the most likely changes are adding or subtracting goals, modifying the
theoretical model, or modifying the instanced model. In this decomposition goals are
defined as the objectives that the software should achieve; theoretical models are the
mathematical equations used to solve the problem described in the problem domain;
and, instanced models, which refine the theoretical models, express the problem in
sufficient detail so that it can be solved. The sequence from goals to theoretical and
instanced models corresponds to a decreasing level of abstraction. As an example,
the abstract goal might be to solve for unknown forces and the associated theoretical
model that is selected may be to use the principle of equilibrium. The theoretical
model will be refined further to an instanced model when decisions are made about a
specific coordinate system, sign convention, etc. Ideally the requirements template
should support reuse of the abstract goals with different theoretical models. For in-
stance, the theoretical model of having the forces of an unmoving body sum to zero
could be changed to instead use the principle of virtual work. Similarly a specific
theoretical model that was refined into an instanced model using a Cartesian coordi-
nate system could be refined into a different instanced model using a polar coordinate
system. In both cases the “higher-level” requirements could be reused. It should also
be possible to reuse “lower-level” requirements in a different context, such as using
the same theoretical model to satisfy different goal statements. For instance, the same
theoretical model of equilibrium could be employed to solve problems where the goal
is to find internal forces in a beam or internal stresses inside a glacier.

3.5 Continuous Mathematics Poses a Challenge
Scientific software differs from most other software by nature of the fact that the
quantities of interest are continuous, as opposed to discrete. The variables that are to
be solved for are usually continuous in nature, such as velocity, displacement, tem-
perature, pressure, concentrations, etc. Unfortunately, the formal techniques devel-
oped for specifying requirements generally focus on discrete mathematics, which
mean the techniques will have to be modified for scientific software requirements
specification. Moreover, the SRS template should assist with the challenge of vali-
dating the numerical results because most scientific computing problems cannot be
solved exactly. When it comes to validation the question of how much error can be
tolerated must be addressed. Moreover, since the true solution is often unknown, the
specification must address the requirements that must be satisfied to consider a result
correct.

4 The New Template
The proposed template is organized in a hierarchical format with nine main sections,
as presented in the table of contents shown in Figure 1. The majority of the initial
sections are inspired by the IEEE Standard 830 (IEEE, 1998), while the subsection
“Nonfunctional Requirements” in the section “Specific System Description” and the
section “Other System Issues” mainly come from the Volere Requirements Specifi-

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 20056

cation Template (Robertson And Robertson, 1999). The section “General System
Description” comes from both of the previously mentioned sources. The subsections
“Problem Descriptions” and “Solution Characteristics Specification” in the section
“Specific System Description” are unique propositions of the current work. The tem-
plate also introduces a systematic approach to manage changes in a scientific com-
puting SRS through a newly defined traceability matrix, which is documented in SRS
Section 6. A description of the important sections of the new SRS template are pro-
vided in the subsections that follow. Further details on the template presented in this
section can be found in Lai (2004).

Figure 1: Proposed Requirements Template

1. Reference Material: a) Table of Contents b) Table of Symbols c) Abbreviations
and Acronyms d) Index of Requirements

2. Introduction: a) Purpose of the Document b) Scope of the Software Product c)
Organization of the Document

3. General System Description: a) System Context b) User Characteristics c)
System Constraints

4. Specific System Description:

(a) Problem Description: i) Background Overview, ii) Terminology Definition,
iii) Physical System Description, iv) Goal Statements

(b) Solution Characteristics Specification: i) Assumptions, ii) Theoretical Models,
iii) Data Definitions, iv) Instanced Models, v) Data Constraints, vi) System Be-
haviour

(c) Nonfunctional Requirements: i) Accuracy of Input Data, ii) Sensitivity of the
Model, iii) Tolerance of Solution, iv) Solution Validation Strategies, v) Look and
Feel Requirements, vi) Usability Requirements, vii) Performance Requirements,
viii) Maintainability Requirements, ix) Portability Requirements, x) Security Re-
quirements

5. Other System Issues: a) Open Issues b) Off-the-Shelf Solutions c) New Prob-
lems, d) Waiting Room

6. Traceability Matrix

7. List of Possible Changes in the Requirements

8. Values of Auxiliary Constants

9. References

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 7

4.1 Reference Material (SRS Section 1)
The requirements document should be organized as a reference as well as being a
specification of the system. The information in the SRS is recorded in this section in a
form that allows easy reference throughout the project. The information includes a
table of symbols to provide a quick reference for the symbols specifically defined in
the SRS. A table of symbols is invaluable in scientific computing due to the variety
of symbols used and the fact that in a different scientific context the same symbol
may have a different meaning. As an example, the same symbol σ is used to repre-
sent conductivity, stress, the Stefan-Boltzmann constant for radiative heat transfer, the
standard deviation, etc.

4.2 General System Description (SRS Section 3)
The purpose of this section of the template is to provide general information about the
system so the specific requirements in the next section will be easier to understand.
Following the design principle that the mathematical model should be easy to reuse,
as discussed in Section 3.3, the general system description section is designed to be
changeable independent of changes to the functional requirements documented in the
specific system description. The general system description accounts for the specifi-
cation details that change from one system context to another.

The general system description should include an overview of the system context
that defines the boundaries between the product to be built and the people, organiza-
tions, other products and pieces of technology that have a direct interface with the
product, such as system interfaces (which describe adjacent system), user interfaces,
and software interfaces. The system context subsection also places the product into
perspective with other related products. If the product is independent and totally self-
contained, this should be stated here. If the SRS defines a product that is a compo-
nent of a larger system, as frequently occurs, then this subsection should relate the
requirements of that larger system to the functionality of the software and should
identify interfaces between that system and the software. Stakeholder characteristics
are also summarized within the general system description so as to facilitate consid-
eration on how the system should be designed to conform to the features of the
stakeholders. In the case of scientific software the mathematical model is docu-
mented from a single viewpoint, as discussed in Section 3.1, but in the larger system
context there may be more than one stakeholder and multiple viewpoints. It is im-
portant to document the stakeholder and user characteristics, as the information in this
subsection will affect the way the product is designed; for example, it could be refer-
enced to determine the usability requirements of the product. This section should not
be used to state specific requirements but rather to provide the reasons why certain
specific requirements are later specified in SRS Section 4.

System constraints are also identified in the general system description section.
They differ from other type of requirements in the sense that they limit the develop-
ers’ options in the system design and they identify how the eventual system must fit
into the world. This is the only place in the SRS where design decisions can be speci-
fied.

4.3 Problem Description (SRS Section 4.a)
The problem description is part of the “Specific System Description” (SRS Section 4)
of the report, where the specific system description includes all of the SRS software

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 20058

requirements in sufficient detail to enable design and testing of a system that will
satisfy the requirements. The order of the contents of the first two sections of the spe-
cific system description are motivated by common scientific and engineering prac-
tises, which typically systematically proceed from the general to the more specific.
Thus, the problem to be solved is first described, and then the characteristics that a
solution to the problem must satisfy are specified. In the problem description section
information on the problem domain of the physical system is given, where the infor-
mation includes the concepts that populate the area in which the users carry out their
activities, and in which they have a problem and expect a solution.

4.3.1 Terminology Definition
This section is motivated by a need to clarify the engineering concepts in the SRS and
to serve as a reference aid. The contents consist of a list of engineering concepts and
their exact meaning in the SRS, including some related conventions that will be used
in the SRS. For example, definitions are given for the sign conventions that are used.
This section should provide enough information to allow understanding of the later
Sections “Theoretical Model” (SRS Section 4.a.ii) and “Data Definitions” (SRS Sec-
tion 4.a.iii). The “Terminology Definition” section is necessary in scientific com-
puting for an unambiguous SRS because terminology often has subtly different
meanings, even in very similar contexts. As an example, in engineering mechanics
the stress in a bar under uniaxial extension can either be expressed as the force di-
vided by the original cross-sectional area (engineering stress), or the force divided by
the current cross-sectional area (true stress). When large deformations occur, the
distinction between these two stress measures becomes very important; therefore, if
the convention for how stress is measured is not clearly stated, the results of the sci-
entific analysis will likely be incorrect.

4.3.2 Physical System Description
The purpose of this section is to clearly and unambiguously state the physical system
that is to be modelled. Effective problem solving requires a logical and organized
approach. The statements on the physical system to be studied should cover enough
information to solve the problem. The physical description involves element identifi-
cation, where elements are defined as independent and separable items of the physical
system. Some example elements include acceleration due to gravity, the mass of an
object, and the size and shape of an object. Each element should be identified and
labelled, with their interesting properties specified clearly. The physical description
can also include interactions of the elements, such as the following: i) the interactions
between the elements and their physical environment; ii) the interactions between
elements; and, iii) the initial or boundary conditions. This portion of the SRS must
clearly state what is unknown and what is known. The inclusion of a diagram or
sketch will help the writers organize their thoughts and it will help them communicate
the solution process to the reader. An example physical system for analysis of struc-
tural mechanics problems would be a beam. The properties of a beam would include
its shape and the number of materials used to build it. Interactions between the beam
and the physical environment would include external forces applied to the beam. The
beam would also have associated boundary conditions that define how it is supported.

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 9

4.3.3 Goal Statements
The motivation of this section of the SRS is to capture the goals in the requirements
process. As mentioned earlier, a goal is a functional objective the system under con-
sideration should achieve. Goals provide criteria for sufficient completeness of a
requirements specification and for requirements pertinence. For an SRS that solves
beam problems an example goal would be to solve for the deflection of the beam,
given the beam’s properties and the applied forces. Goals will be refined in Section
“Instanced Models” (SRS Section 4.b.vi). Large and complex goals should be de-
composed into smaller sub-goals.

4.4 Solution Characteristics Specification (SRS Section 4.b)
This section specifies the information in the solution domain of the system to be de-
veloped. This section is intended to express what is required in such a way that ana-
lysts and stakeholders get a clear picture, and the latter will accept it. The purpose of
this section is to reduce the problem into one expressed in mathematical terms.
Mathematical expertise is used to extract the essentials from the underlying physical
description of the problem, and to collect and substantiate all physical data pertinent
to the problem. This section is different from the requirements specification of busi-
ness applications because scientific software development focuses on efficient
mathematical models rather than on the complex interaction of objects.

4.4.1 Assumptions
Section 3.2 emphasized the importance of assumptions to scientific computing.
Therefore, an entire section of the SRS template is devoted to listing and labelling the
assumptions. The document should not take for granted that the reader knows which
assumptions have been made. In the case of unusual assumptions, it is recommended
that the documentation either include, or point to, an explanation and justification for
the assumption. For instance, for software to solve for the deflection in a beam an
assumption may be made that the weight of the beam can be neglected, with the justi-
fication that the applied forces in practise are generally larger than a beam’s self-
weight.

4.4.2 Theoretical Model
The assumptions in the SRS provide a means to bridge from the goal statements to the
theoretical models, where theoretical models are sets of abstract mathematical equa-
tions or axioms for solving the problem described in Section “Physical System De-
scription” (SRS Section 4.a.iii). Examples of theoretical models are physical laws,
constitutive equations, relevant conversion factors, etc. This section is separate from
goals and from the instanced model so that each portion of the document can be
changed independently, as discussed in Section 3.4. Each theoretical model should be
described from the following aspects: i) an introduction to the theory, which can take
the form of a summary of the appropriate equations, together with a reference, or in
the case of more complex problems, a more detailed derivation may need to be
shown; ii) the reasons for choosing the model; iii) the rules and conventions of the
model; and, iv) the limitations of the theory, which help identify the important physi-
cal data needed to solve the problem. An example of the limitation of a theory would
be a theory for projectile motion that ignores the drag on the object caused by air
friction.

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 200510

4.4.3 Data Definitions
This section collects and substantiates all physical data needed to build the instanced
model. For instance, if the models in Section “Instanced Model” (SRS Section 4.b.iv)
needs a coordinate system, then this section should define it. The dimension system,
as well as the dimension of each quantity can also be declared. In general, it is better
to list the dimensions without reference to specific units, in support of the principle
that it should be easy to reuse the mathematical model (Section 3.3). For instance, it
is better to specify that the “MLtT” (Mass Length time Temperature) system is being
used rather than to lock the specification into the units kg, m, s, etc. A more general
description allows easy conversion of units, for instance between SI (Système Inter-
national d’Unités) and imperial.

The diagram or sketch of the physical system in Section “Physical System De-
scription” (SRS Section 4.a.iii) can be labelled with the defined data for quick refer-
ence. One technique that can be beneficially employed at this stage is to use a table
summarizing data definitions along with textual descriptions. This approach has the
advantage of ensuring a uniform structure for the same type of data objects. For ex-
ample, the definitions of all applied forces could follow the same structure consisting
of “symbol,” “point of application,” “magnitude,” “direction,” and “assumed positive
direction.”

4.4.4 Instanced Model
The motivation for this section is to reduce the problem defined in “Physical System
Description” (SRS Section 4.a.iii) to one expressed in mathematical terms. This sec-
tion uses the concrete symbols defined in Section “Data Definitions” (SRS Section
4.b.iii) to replace the abstract symbols in the models identified in Section “Theoretical
Model” (SRS Section 4.b.ii). At this stage it is important to avoid assuming or ap-
plying a numerical algorithms in the SRS. The SRS should specify the requirements
without considering the implementation.

4.4.5 Data Constraints
The motivation for this section is to clarify the environment and the system limi-

tations imposed on admissible data. These constraints are specified to maintain the
validity of the models defined in Section “Instanced Model” (SRS Section 4.b.iv).
Example data constraints include the following: i) possible units of the data; ii) value
constraints imposed by the physics of the problem and from the system (for instance,
all lengths must be greater than zero); and, iii) other properties such as whether the
data is input or output, or whether its value is known or unknown. As for Section
“Data Definitions” (SRS Section 4.b.iii), a table is suggested for the purpose of listing
the data constraints in a uniform format. Listing the constraints on the data is neces-
sary to address the challenge of solution validation, which is one of the template’s
design principles that were discussed in Section 3.5. As an example, the force Fax
applied to a beam can be constrained so that it is not unrealistically different in mag-
nitude compared to the other forces acting on the beam, which are given in the set SF:

€

(min f ≤|Fax |≤max f)∧[(|Fax |≠ 0)⇒∀(FF |FF ∈ SF •FF ≠ 0∧max{|Fax |,|FF |}
min{|Fax |,|FF |}

≤10rf)]

where minf and maxf are the system constraints for the minimum and maximum mag-
nitude forces, and rf is a positive integer that is the maximum exponent of base 10 for

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 11

the ratio between the magnitudes of the largest and smallest forces. A constraint such
as this is valuable in the subsequent design stage because it identifies whether the
software will be required to handle the potentially difficulty situation of performing
calculations with values of widely different magnitudes.

4.4.6 System Behaviour
The purpose of this section is to give a detailed model of the system’s dynamic func-
tionalities based on the information in Sections “Data Constraints” (SRS Section
4.b.v) and “Instanced Model” (SRS Section 4.b.iv). The undesired situations, such as
user errors, should also be documented here. Responses to undesired situations
should be stated in the SRS instead of being left for the programmer to later invent.
This section is a technical refinement for the Section “Goal Statements” (SRS Section
4.a.iv), since the technical concerns, such as assumptions and models, are clarified by
previous sections. The system behaviour specification reflects a dynamic process of
first receiving the input data, then applying the model, and finally obtaining the re-
sults. The system behaviour should be specified in a way that all the system goals are
satisfied and the data constraints are considered. The content in this portion of the
document should be formal enough for design and testing, with a suggested technique
being the use of tabular expressions to specify partial specifications of the system
functionalities so that the specifications are verifiable on domain coverage, disjoint
domain, and definedness (Lai, 2004).

4.5 Nonfunctional Requirements (SRS Section 4.c)
This section specifies system requirements that consider the quality and behaviour of
the system as a whole. This section is separate from the functional requirements to
facilitate the potential independent change of these two portions of the SRS, as dis-
cussed in Section 3.3. Several of the sections are borrowed from the Volere template
(Robertson and Robertson, 1999), such as sections for look and feel, usability, per-
formance, maintainability, portability and security requirements and a section for
other system issues (SRS Section 5). The sections detailed below are unique to the
new template.

4.5.1 Accuracy of Input Data
This section indicates the error associated with the input data. The contents of this
section can be specified by illustrating each input data with their possible sources of
measurement error and error range. The value of specifying the accuracy of the input
is that these values can be used to judge the acceptability of the errors in the output.

4.5.2 Sensitivity of the Model
An inaccurate solution is not necessarily due to an ill-conceived algorithm, but may
be inherent in the problem being solved. Even with exact computation, the solution to
the problem may be highly sensitive to perturbations in the input data, such as when
an unstable ordinary differential equations is solved. The cause of any potential
propagated data error, which reflects the sensitivity of the problem, should be studied
since it is a factor that can lead to inaccurate numerical results. Sensitivity of the
problem is sometimes specified by calculating the condition number. In general, the
condition number varies with the input, and in practise one usually does not know the
exact condition number, or it is very expensive to compute. Thus, analysts often must

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 200512

content themselves with a rough estimate or upper bound for the maximum condition
number over some domain of inputs. When the condition number is unavailable other
techniques, such as linear perturbation analysis, may be used.

4.5.3 Tolerance of the Solution
The motivation of this section is to establish a criterion for the correct solution, using
the principle that it is better to specify what the correct answer should be, as provided
in “System Behaviour” (SRS Section 4.b.vi), and then specifying what the allowed
tolerances are, rather than to try and specify both simultaneously. Another motivation
for this section is to develop an understanding of what level of solution accuracy is
required. Solution accuracy refers to the closeness of a computed solution to the true
solution of the problem under consideration. The accuracy of numerical solutions
against the model depends on input data error, numerical error, computer round-off
error, programming error, sensitivity of the problems, and stability of numerical algo-
rithms. As a general rule, the accuracy of the final computation of the output need not
be greater than the accuracy of the input data.

One possibility is that the tolerance can be specified by tolerance functions. For
example, the tolerance for the calculation of force equilibrium in 1D might be:
|ΣFi|/√ΣFi

2 ≤ ε where Fi is the ith force component and ε is the allowed error.

4.5.4 Solution Validation Strategies
As observed in Section 3.5, it is difficult to validate scientific computing software.
The purpose of this section of the SRS is to capture the experts insight on how to
validate the system results. Four potential evaluation strategies are: i) solve the
problem by different techniques, such as electronic spreadsheet, graphical solution,
etc.; ii) substitute the calculated results back into the original governing equations to
calculate the residual error; iii) partially validate the problem by validating simpler
subsets of it for which the solution is known; and, iv) check that the governing equa-
tions are satisfied, boundary conditions are satisfied, energy is conserved, mass is
conserved, etc.

4.6 Traceability Matrix (SRS Section 6)
The traceability matrix was introduced into the SRS template because of the design
principle that the goals, theoretical models and instanced models should be simple to
manage, as discussed in Section 3.4. The traceability matrix was designed based on
the portions of the document that are most likely to change, such as the assumptions,
which as discussed in Section 3.2 are tightly coupled with the functional require-
ments. By showing the relationship between different items in the SRS, the trace-
ability matrix shows how a change in one functional requirements impacts the other
functional requirements. The traceability matrix will often be sparse, so that signifi-
cant portions of the SRS can be reused for different, but related, scientific computing
problems.

The entities that were identified as most likely to be reused include the following:
“Physical System Descriptions,” “Goal Statements,” “Data Definitions,” “Assump-
tions,” “Theoretical Models” and “Instanced Models.” These sections of the SRS
were selected for tracing because they represent the essential information about the
model. A sample traceability matrix is provided in Table 1. In this table the prefixes
G, T, A, M, and PS followed by a number correspond to the goals, theoretical model,

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 13

assumptions, instanced model, and physical system, respectively. The symbol x
stands for one of the data definitions. An example of two traceability matrices can be
found in Lai (2004) for the case of modelling a rigid beam and a deformable beam. A
comparison of the two traceability matrices shows what portions of the mathematical
model for the rigid beam can be obtained simply by removing sections from the
model of the deformable beam. If an assumption is added that the beam behaves as a
rigid body, then goals related to solving for shear, bending moment and deflection can
be removed. The removal of these goals means that the associated theoretical models
and instanced models are also removed. For the traceability matrix to work effec-
tively it is important that independent assumptions are used when deriving the
mathematical model of the physical system.

Table 1: Sample Traceability Matrix

5 Future Work
The proposed template has been used to document the engineering mechanics prob-
lem of solving for the internal forces, moments, shears and deflections of a statically
determinant beam (Lai, 2004; Smith et al., 2005). Although this case study demon-
strates the usefulness of the template, there is a need for additional case studies that
select scientific computing problems from fields other than engineering mechanics
and that select problems for which no closed-form solutions exist. Besides looking at
special purpose scientific software that is built to solve one scientific computing
problem, it would be beneficial to consider the specification of the requirements for
general purpose software that is intended to solve a family of related scientific prob-
lems. For instance, case studies should be investigated for a system to solve linear
algebra problems, or a system to generate finite element meshes. Ideally an empirical
study should be conducted to determine the relative efficacy of the new template ver-
sus ad hoc procedures. Additional future work will include an investigation as to
whether the process of gathering, analyzing and documenting requirements for scien-
tific software differs from the process for other types of applications.

6 Concluding Remarks
The design principles identified in Section 3 were used to guide the structure and
content of the proposed template. For instance, the first principle, which states that

Assumptions ModelPhy.
Sys./
Goal

Data/
Model A1 A2 … A4 … A8 A9 A10 … A14 M1 …

G1 T1 √ … … √ √ … √ …
G2 T2 √ … … √ √ … …
G3 T3 √ … … √ √ … …

M1 √ … … … √ …
PS1 x … … √ … √ …
… … … … … … … … … … … … … …

Requirements Template for Scientific Computing

Proceedings of SREP’05, Paris, France, August 30, 200514

the functional requirements can be considered from only one user viewpoint, was
used to design the template’s simple structure. As there is only one viewpoint, the
documentation can follow a simple framework that allows a refinement from general
goals to specific statements. Also, the single viewpoint principle allows the template
to separate the one viewpoint functional requirements from the, potentially many
viewpoint, nonfunctional requirements. The second design principle is that the mod-
elling assumptions play a crucial role in the documentation, which is reflected in the
fact that the template has a section devoted to assumptions and a traceability matrix
that can be used to track changes in assumptions. Due to the third principle, which
requires that the mathematical model be easy to reuse, the template separates the gen-
eral system description and nonfunctional requirements from the specification of the
mathematical model, so that changes can be made to the context of the software with-
out changing the model’s specification. The third principle is also responsible for the
template section on auxiliary constants and the suggestion that generic units (m, L, t
and T) be used in place of specific units (m, kg, s, etc.). The template separates goals,
theoretical models and instanced models because of the fourth principle, which says
that their hierarchical nature means that changes to these entities should be easy to
manage. The separation allows the individual sections to be considered in isolation,
and it allows the influence of changes to the functional requirements to be tracked, via
the traceability matrix. The final principle states that documenting and validation of
continuous mathematics should be supported by the template. This goal was realized
by explicitly introducing sections where data constraints and solution validation
strategies must be documented.

Acknowledgements
The financial support of the Natural Sciences and Engineering Research Council
(NSERC) is gratefully acknowledged. The authors would also like to thank Dr. Ridha
Khedri and Dr. Jacques Carette for their valuable advice.

References
GERLACH J (2002) Domain Engineering and Generic Programming for Parallel
Scientific Computing. PhD Thesis, Von der Fakultät IV - Elektrotechnik und Infor-
matik der Technischen Universität, Berlin.

HENINGER KL (1980) Specifying software requirement for complex system: New
techniques and their application. IEEE Transactions on Software Engineering, 6(1),
2–13.

IEEE 1998 Recommended practice for software requirements specifications, IEEE
Std. 830. IEEE.

KREYMAN K and PARNAS DL (2002) On documenting the requirements for com-
puter programs based on models of physical phenomena. SQRL Report 1, Software
Quality Research Laboratory, McMaster University.

Smith and Lai

Proceedings of SREP’05, Paris, France, August 30, 2005 15

LAI L (2004) Requirements documentation for engineering mechanics software:
Guidelines, template and a case study. MASc Thesis, McMaster University, Hamil-
ton, Ontario, Canada.

NASA (1989) Software requirements DID, SMAP-DID-P200-SW, Release 4.3. Tech-
nical Report, National Aeronautics and Space Agency.

ROBERTSON S and ROBERTSON J (1999) Volere Requirements Specification
Template. In Mastering the Requirements Process, p 353–391, ACM Press/Addison-
Wesley Publishing Co, New York, NY, USA.

SMITH WS, LAI L and KHEDRI R (2005) Requirements analysis for engineering
computation: A systematic approach for improving software reliability. Reliable
Computing, Special Issue on Reliable Engineering Computation, Accepted.

SMITH WS and STOLLE DFE (2003) Numerical simulation of film casting using an
updated Lagrangian finite element algorithm. Polymer Engineering and Science,
43(5), 1105–1122.

SOMMERVILLE I and SAWYER P (1997) Requirement Engineering: A Good
Practice Guide. John Wiley & Sons Ltd.

THAYER RH and DORFMAN (Editors) (2000) IEEE Recommended Practice for
Software Requirements Specifications, 2nd edition. IEEE Computer Society, Wash-
ington, DC, USA.

