
SE 3XA3: Test Plan
Title of Project

Team 30, VUA
Andy Hameed and hameea1

Usman Irfan and irfanm7
Vaibhav Chadah and chadhav

October 25, 2018

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 1

2 Plan 1
2.1 Software Description . 1
2.2 Test Team . 1
2.3 Automated Testing Approach 1
2.4 Testing Tools . 1
2.5 Testing Schedule . 1

3 System Test Description 2
3.1 Tests for Functional Requirements 2

3.1.1 Area of Testing1 . 2
3.1.2 Area of Testing2 . 2

3.2 Tests for Nonfunctional Requirements 2
3.2.1 Look and Feel . 2
3.2.2 Usability . 3
3.2.3 Performance . 3
3.2.4 Operational and Environmental 4
3.2.5 Maintainability and Support Requirements 5
3.2.6 Security and Cultural 5

3.3 Traceability Between Test Cases and Requirements 6

4 Tests for Proof of Concept 6
4.1 Snake Dynamics . 6
4.2 Integration and System Testing 7

5 Comparison to Existing Implementation 8

6 Unit Testing Plan 8
6.1 Unit testing of internal functions 8
6.2 Unit testing of output files . 8

i

7 Appendix 9
7.1 Symbolic Parameters . 9
7.2 Usability Survey Questions? 9

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 1

List of Figures

Table 1: Revision History

Date Version Notes

10/25/2018 1.0 Andy added section 4.0
Date 2 1.1 Notes

ii

1 General Information

1.1 Purpose

1.2 Scope

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

Abbreviation1 Definition1
Abbreviation2 Definition2

Table 3: Table of Definitions

Term Definition

Term1 Definition1
Term2 Definition2

1.4 Overview of Document

2 Plan

2.1 Software Description

2.2 Test Team

2.3 Automated Testing Approach

2.4 Testing Tools

2.5 Testing Schedule

See Gantt Chart at the following url ...

1

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3.1.2 Area of Testing2

...

3.2 Tests for Nonfunctional Requirements

3.2.1 Look and Feel

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The game should be installed on the device.

2

Input/Condition: The game is opened and ran on the device.

Output/Result: The User Interface should open with different buttons,
alongside with a playground with a snake in it.

How the test will be performed: The program will manually run on the
device and checked by the human eye to see if it meets the criteria.

3.2.2 Usability

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The program will be running for a human nearing 10
years of age or above

Input/Condition: The program will be set on its default settings

Output/Result: The person testing should be able to understand the
game and play it. He/she should be able to customize themes and
speed of the game.

How the test will be performed: A younger human of nearing age 10
will be asked to operate this game and recorded if he/she is able to
operate it successfully or not.

3.2.3 Performance

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The program will be running with the main user interface
open.

Input/Condition: The button is pressed.

Output/Result: The response time for button should be less than half
a second.

How the test will be performed: It will be performed using human
actions. The response would be times to be as precise as possible.
Also, it will be taken into consideration that the user doesn’t have to
wait for a long observable time.

3

2. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The snake Game will be running on the device.

Input/Condition: Various speed inputs for the snake.

Output/Result: Different snake speeds according to what the user has
decided

How the test will be performed: The game will be played with inputting
different speeds. Then, the speed difference will be observed as the
game progressed through and taken care that the game goes at the
constant speed at each level.

3. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The snake Game will be running on the device.

Input/Condition: The snake will be moving around and keys will be
pressed to change directions.

Output/Result: Snake should change directions promptly.

How the test will be performed: While the game is going on, the buttons
will be pressed to change the direction of the snake.

3.2.4 Operational and Environmental

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The program will be moved on a USB.

Input/Condition: The USB will be inserted into any other working
computer/ Desktop.

Output/Result: The game should be able to run on it as long as the
device is powered and in working state.

4

How test will be performed: Many different laptops, alongside with
desktops, will be used to test. The game will be played on different de-
vices with different specifications to make sure that the game is playable
regardless of the specs of the device.

3.2.5 Maintainability and Support Requirements

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The program will be moved to a Windows, Mac OS and
Linux operating devices.

Input/Condition: The program will be executed.

Output/Result: The game should run.

How test will be performed: The game will be taken and transferred to
the systems operating on different OS’s. For this, the target is Windows
device, Mac OS device and a Linux Device.

3.2.6 Security and Cultural

1. test-id1

Type: (Structural, Functional, unit), Dynamic, Manual

Initial State: The program will be running.

Input/Condition: All the interfaces running.

Output/Result: No offensive or illegal content on the entire application.

How test will be performed: The application will be executed and each
page and option will be approached to make sure there is no offensive
or illegal content. Also, there is a Static module to this requirement
where all the files (including code) will be looked to make sure about
no offensive or illegal content.

5

3.3 Traceability Between Test Cases and Requirements

4 Tests for Proof of Concept

4.1 Snake Dynamics

Snake Movement and Speed

1. T1D1

Type: Dynamic

Initial State: The snake body - graphically represented by a red square
- is initially motionless. It exists somewhere within the frame of the
window.

Input: Keyboard Event - user clicks on one of the directions on the
keyboard arrow pad.

Output: Snake moves according to the direction chosen. This can
logically represented by the expression keyboardEvent.direction ==
snakeMovementDirection. Note that the variables used are arbitrary
and are dependant on Python syntax.

How test will be performed:

• A method will be created under the POC test class where the
keyboard event is manually set to the code representing each of
the directions on the arrow keypad - up, down, left and right.
The direction inserted will be asserted equal to the direction of
the moving snake, set by some variable.

• After starting the game, the user will click on each one of the
four directions and verify whether or not the snake is moving in
the corresponding direction, using the graphical interface created
with Pygame.

2. T1D2

Type: Dynamic, Functional testing

6

Initial State: The snake body - graphically represented by a red square
- is initially motionless. It exists somewhere within the frame of the
window.

Input: Keyboard Event - user clicks on one of the directions on the
keyboard arrow pad.

Output: Snake moves accurately according to the speed set in the snake
module. Statically, this can represented for the vertical movement of
the snake by this expression:

(snakeF inalPosition− snakeInitPosition) == (speed× timeElapsed) ∗ vel

where vel is the distance defined for 1 single step and speed is the delay
between each step in milliseconds

How test will be performed: A method will be created under the POC
test class where the keyboard event is manually set to the code rep-
resenting each of the directions on the arrow keypad - up, down, left
and right. The logical expression above is implemented into an assert
statement verifying that the distance moved corresponds to the speed
and velocity that were used as well as the time that has elapsed - this
can be obtained from the time object in Pygame.

4.2 Integration and System Testing

1. T1D3

Type: Integration, System testing

Initial State: The game menu is loaded onto the window with options
for starting the game and quitting the game.

Input: The following sequence of inputs

(a) User clicks start game

(b) Keyboard Event - user clicks on one of the directions on the key-
board arrow pad.

(c) user exits the window by clicking the exit tab on the top right
corner of the screen

7

Output: Snake game runs as intended. The ”start game” option leads
the user to the game screen where the snake body sits motionless. The
user moves the snake body using the keyboard arrow pad, moving in
directions that correspond apprioriately to the arrows clicked and in
the correct sequence. The game window is closed once the user clicks
the exit button on the top right corner.

How test will be performed: Several peers will be asked to test the
game from start to finish for this integration and system test.

5 Comparison to Existing Implementation

6 Unit Testing Plan

6.1 Unit testing of internal functions

6.2 Unit testing of output files

8

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

7.2 Usability Survey Questions?

This is a section that would be appropriate for some teams.

9

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Look and Feel
	Usability
	Performance
	Operational and Environmental
	Maintainability and Support Requirements
	Security and Cultural

	Traceability Between Test Cases and Requirements

	Tests for Proof of Concept
	Snake Dynamics
	Integration and System Testing

	Comparison to Existing Implementation
	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

