
SE 3XA3: Test Report
Snake 2.o

Team #30, VUA30
Usman Irfan - irfanm7

Andy Hameed - hameea1
Vaibhav Chadha - chadhav

December 4, 2018

Contents

1 Functional Requirements Evaluation 1

2 Nonfunctional Requirements Evaluation 1
2.1 Usability . 1
2.2 Performance . 1
2.3 etc. 1

3 Comparison to Existing Implementation 1

4 Unit Testing 1

5 Changes Due to Testing 1

6 Automated Testing 2

7 Trace to Requirements 2

8 Trace to Modules 2

9 Code Coverage Metrics 3

List of Tables

1 Revision History . i

List of Figures

1 Peer Feedback & Comments 2

Table 1: Revision History

Date Version Notes

2018-12-04 1.0 Andy worked on 5 - how Intergrated &
System testing helped the process

Date 2 1.1 Notes

i

This document ...

1 Functional Requirements Evaluation

2 Nonfunctional Requirements Evaluation

2.1 Usability

2.2 Performance

2.3 etc.

3 Comparison to Existing Implementation

This section will not be appropriate for every project.

4 Unit Testing

5 Changes Due to Testing

Through integrated and system testing, which encompassed the majority of
the testing done on the software, the user interface as well as bugs and errors
in the gameplay were modified to fix erroneous properties of the software.
By continuously executing the game, it was easy to estimate changes in
object coordinates within the interface. For example, the menu buttons were
arranged through trial and error by testing the software continuously until
the desired look was acheived. Beyond that, system and intergrated testing
confirmed that all modules were working correctly and any change in one of
the modules did not affect the function of other modules through dependency
relations.

Similarly, the gameplay was tested and verified by the developers of
the software as well as peers and classmates to ensure proper functioning.
Through feedback received in the google survey, errors and modifications
were made: For example, one user suggested an excitement element to be
added to the game and a maze feature was added to the advanced difficulty

1

Figure 1: Peer Feedback & Comments

gameplay mode to accomodate for that. As seen in Figure 1, feedback re-
ceived from peers included both functional and non-functional properties and
aided in the software revision process.

6 Automated Testing

7 Trace to Requirements

8 Trace to Modules

Integrated testing can visibly be traced back to the modules created. The
main interface uses the Interface module along with GUI module for inter-
face text and buttons. It is connected to the highscore module and theme
module through the highscore and difficulty level buttons respectively. It
also connected to the help module through the Help button. If any of these
buttons is clicked and an error is released, the error can be traced back with
ease depending on the button that was clicked prior to the malfunction.

This same pattern is applied in the theme module, between the regular,

2

dark and random modes. Each button corresponds to color and setup pa-
rameters that reflect the chosen theme. If a specific them is not working, it
can be traced back in the theme module through the commented blocks of
code corresponding to each respective theme.

In the gameplay module, testing can be traced back based on user action
and system response. Through the use of commenting it is visible to identify
particular functionality such as snake direction change, detection of barrier
collisions, snake body collisions, collision with a food block and so on. The
traceability of malfunctioning parts within the actual game can be traced
back within the gameplay module, which encompasses all functionality under
which the snake game operates.

9 Code Coverage Metrics

3

	Functional Requirements Evaluation
	Nonfunctional Requirements Evaluation
	Usability
	Performance
	etc.

	Comparison to Existing Implementation
	Unit Testing
	Changes Due to Testing
	Automated Testing
	Trace to Requirements
	Trace to Modules
	Code Coverage Metrics

