
SE 3XA3: Test Plan
Mini-Arcade

Team #104
Andrew Hum, 400138826
Arshan Khan, 400145605

Jame Tran, 400144141
William Lei, 400125240

February 27, 2020

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 1

2 Plan 1
2.1 Software Description . 1
2.2 Test Team . 1
2.3 Automated Testing Approach 3
2.4 Testing Tools . 3
2.5 Testing Schedule . 3

3 System Test Description 3
3.1 Tests for Functional Requirements 3

3.1.1 General Navigation . 3
3.1.2 Mini-Game - Maze . 7
3.1.3 Mini-Game - Flappy 9
3.1.4 Mini-Game - Pong . 11

3.2 Tests for Nonfunctional Requirements 13
3.2.1 Area of Testing1 . 13
3.2.2 Area of Testing2 . 14

3.3 Traceability Between Test Cases and Requirements 14

4 Tests for Proof of Concept 14
4.1 Area of Testing1 . 14
4.2 Area of Testing2 . 15

5 Unit Testing Plan 15
5.1 Unit testing of internal functions 15
5.2 Unit testing of output files . 15

6 Appendix 16
6.1 Symbolic Parameters . 16
6.2 Usability Survey Questions? 16

i

List of Tables

1 Revision History . 2
2 Table of Abbreviations . 2
3 Table of Definitions . 2

List of Figures

ii

1 General Information

1.1 Purpose

The purpose of testing our project is to verify that it meets the requirements
outlined in the ’Software Requirements Specification’ and ensure that it is
implemented correctly.

1.2 Scope

The test plan develops a baseline for testing the functionality and correctness
of Mini-Arcade. Its core objective is to verify that the games run correctly
and efficiently all with a single click utilizing the launcher. The test plan
documents will highlight what is to be tested of our project, testing methods
and what resources we will use to test our software.

1.3 Acronyms, Abbreviations, and Symbols

1.4 Overview of Document

This document will outline a detailed testing plan with the tools that will
be utilized and the approximated schedule of testing. It will also give in-
depth test cases and the method of testing for the functional requirements,
non-functional requirements, the proof of concept tests and the unit-testing
plan.

2 Plan

2.1 Software Description

The software is a launcher for a selection of games for the user to play. These
games are updated from their original versions to be more visually pleasing
and challenging.

2.2 Test Team

The test team is composed of all team members: Andrew Hum, Arshan
Khan, Jame Tran, and William Lei.

1

Table 1: Revision History

Date Version Notes

2/24/2020 1.0 Andrew and Arshan divided the project
into workable parts for group members
and began the rough draft of sections 1,
2, 5

2/26/2020 1.1 Andrew completed sections 1 and 5
2/27/2020 1.2 Andrew revised sections 1 and 5 for gram-

matical errors
2/27/2020 1.3 William completed section 3.1

Table 2: Table of Abbreviations

Abbreviation Definition

FDM Functional, Dynamic and Manual Testing

Table 3: Table of Definitions

Term Definition

Functional Test-
ing

Testing derived from the functional requirements of the
software.

Dynamic Test-
ing

Testing through executing test cases during runtime.

Manual Testing Testing conducted by providing manual inputs and peo-
ple checking for outputs.

2

2.3 Automated Testing Approach

The tests will be automated by pytest because it is very popular and allows
”assert rewriting”.

2.4 Testing Tools

2.5 Testing Schedule

See Gantt Chart at the following url:
../../ProjectSchedule/3XA3-ProjSched.gan.

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 General Navigation

1. FR-N-1
Type: FDM
Initial State: Main Screen
Input: User clicks on Leaderboard
Output: Leaderboard opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-N-2
Type: FDM
Initial State: Main Screen
Input: User clicks on Maze
Output: The mini-game Maze opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3

3. FR-N-3
Type: FDM
Initial State: Main Screen
Input: User clicks on Flappy
Output: The mini-game Flappy opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-N-4
Type: FDM
Initial State: Main Screen
Input: User clicks on Pong
Output: The mini-game Pong opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-N-5
Type: FDM
Initial State: Main Screen
Input: User clicks on close button
Output: The software will be terminated.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-N-6
Type: FDM
Initial State: Leaderboard Screen
Input: User clicks on Maze
Output: The leaderboard screen will display the leaderboard for Maze.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4

7. FR-N-7
Type: FDM
Initial State: Leaderboard Screen
Input: User clicks on Flappy
Output: The leaderboard screen will display the leaderboard for Flappy.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

8. FR-N-8
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

9. FR-N-9
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

10. FR-N-10
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the

5

user will manually provides inputs to the software and observes for the
output of the software on the screen.

11. FR-N-11
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Leaderboard
Output: The leaderboard of the mini-game opens and is displayed on
the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

12. FR-N-12
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on Leaderboard
Output: The leaderboard of the mini-game opens and is displayed on
the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

13. FR-N-13
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

14. FR-N-14
Type: FDM
Initial State: Flappy - Menu Screen

6

Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

15. FR-N-15
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.2 Mini-Game - Maze

1. FR-MGM-1
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on a difficulty level
Output: A maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGM-2
Type: FDM
Initial State: Maze - Game Screen
Input: User clicks on home
Output: Menu screen of Maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

7

3. FR-MGM-3
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on a specific difficulty level, then clicks home, and
repeats this for 5 times in total
Output: A maze will displayed on the screen every time the user clicks
a difficulty level, and there should be no patterns for when a specific
maze will be displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-MGM-4
Type: FDM
Initial State: Maze - Game Screen
Input: User clicks a movement key
Output: The object will move according to the key-movement mapping
and the movement will be displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-MGM-5
Type: FDM
Initial State: Maze - Game Screen
Input: Object reaches end of maze through a movement
Output: A score (base on time elapsed) along with high score will be
displayed on the end game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGM-6
Type: FDM
Initial State: Maze - End Game Screen
Input: User clicks on Next

8

Output: A maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

7. FR-MGM-7
Type: FDM
Initial State: Maze - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.3 Mini-Game - Flappy

1. FR-MGF-1
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on start
Output: The game will be initialized/started and the game screen will
be opened and displayed
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGF-2
Type: FDM
Initial State: Flappy - Game Screen
Input: User controlling the character to make sure it will not collide
with any object
Output: Their will be randomly generated objects approaching toward
the character, and their speed and amount generated will be increased
as time elapses.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the

9

output of the software on the screen.

3. FR-MGF-3
Type: FDM
Initial State: Flappy - Game Screen
Input: User clicks space key for 5 times separated by a short period of
time
Output: The character will move up a constant amount every time the
space key is being clicked.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-MGF-4
Type: FDM
Initial State: Flappy - Game Screen
Input: User controls the character to collide with an object
Output: A score (base on time elapsed) along with high score will be
displayed on the end game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-MGF-5
Type: FDM
Initial State: Flappy - End Game Screen
Input: User clicks on Restart
Output: The game will be initialized/started and the game screen will
be opened and displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGF-6
Type: FDM

10

Initial State: Flappy - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.4 Mini-Game - Pong

1. FR-MGP-1
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Single Player
Output: The game screen will be opened and displayed and will request
the user to input a max score.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGP-2
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Multiplayer
Output: The game screen will be opened and displayed and will request
the user to input a max score.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3. FR-MGF-3
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer, re-
questing max score input)
Input: User inputs a integer between 1 to 10.
Output: The game will be initialized or started. How test will be per-
formed: The application will be opened and the user will manually

11

provides inputs to the software and observes for the output of the soft-
ware on the screen.

4. FR-MGP-4
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer)
Input: User clicks a movement key
Output: The corresponding paddle will move according to the key-
movement mapping and the movement will be displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-MGP-5
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer)
Input: User control the paddle to hit the ball until the ball reaches the
boundary on either side (and did not hit a paddle)
Output: The score of the opposite will be increased by 1 and the change
will be displayed on the game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGF-6
Type: FDM
Initial State: Flappy - Game Screen (Both single and multiplayer)
Input: User control the paddle to hit the ball until either side reaches
the max score
Output: The score between the two player will be displayed on the end
game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

12

7. FR-MGP-7
Type: FDM
Initial State: Pong - End Game Screen
Input: User clicks on Restart
Output: The game will be initialized/started and the game screen will
be opened and displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

8. FR-MGP-8
Type: FDM
Initial State: Pong - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.2 Tests for Nonfunctional Requirements

3.2.1 Area of Testing1

Title for Test

1. test-id1

Type:

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

13

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3.2.2 Area of Testing2

...

3.3 Traceability Between Test Cases and Requirements

4 Tests for Proof of Concept

4.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

14

4.2 Area of Testing2

...

5 Unit Testing Plan

The pytest library will be used for the unit testing of our project.

5.1 Unit testing of internal functions

To efficiently use unit-testing for our project, we will use hard-coded, ex-
pected, and unexpected, inputs for individual functions and methods. These
functions and methods will then provide output, and we will verify that the
resulting output is correct or that the program handles the unexpected input
correctly. For example, telling the game that the game was won, and the
expected output should be the end-game screen. As games are more difficult
to completely test with unit tests, we will only test the functions that can be
tested by providing an expected and unexpected output with input values
relating to a current state or completed event. To cover a wide range of
scenarios, the input variables will test both expected output, and reaction to
incorrect/unexpected input values. There will be no need for stubs or drivers
to test our project. To ensure high-quality coverage, we will be using testing
coverage metrics. Our goal is to cover a minimum of 60% of the project with
unit tests alone, derived by the total lines of code in the project divided by
the number of lines covered by the test cases.

5.2 Unit testing of output files

In-depth testing of the output files using unit testing will be not applicable
for our project, and any unit tests to test output files would prove to be not
useful and ineffective in both coverage and effective use of time.

15

6 Appendix

This is where you can place additional information.

6.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

6.2 Usability Survey Questions?

This is a section that would be appropriate for some teams. A possible set
of questions to ask beta testers would include:

• What game did you play first?

• What did you think of that game?

• How long did you play?

• Would you play again?

• Did you play any other games?

• Was it easy to get started?

16

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	General Navigation
	Mini-Game - Maze
	Mini-Game - Flappy
	Mini-Game - Pong

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Traceability Between Test Cases and Requirements

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

