
SE 3XA3: Test Plan
Mini-Arcade

Team #104
Andrew Hum, 400138826
Arshan Khan, 400145605

Jame Tran, 400144141
William Lei, 400125240

February 29, 2020

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 2

2 Plan 2
2.1 Software Description . 2
2.2 Test Team . 2
2.3 Automated Testing Approach 2
2.4 Testing Tools . 2
2.5 Testing Schedule . 2

3 System Test Description 3
3.1 Tests for Functional Requirements 3

3.1.1 General Navigation . 3
3.1.2 Mini-Game - Maze . 7
3.1.3 Mini-Game - Flappy 9
3.1.4 Mini-Game - Pong . 11

3.2 Tests for Nonfunctional Requirements 14
3.2.1 Look and Feel . 14
3.2.2 Usability and Humanity 15

3.3 Performance . 16
3.4 Operation and Environmental Requirements 17

4 Tests for Proof of Concept 17
4.1 Area of Testing1 . 17
4.2 Area of Testing2 . 18

5 Unit Testing Plan 18
5.1 Unit testing of internal functions 18
5.2 Unit testing of output files . 19

6 Appendix 20
6.1 Symbolic Parameters . 20
6.2 Usability Survey Questions . 20

i

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 1

List of Figures

Table 1: Revision History

Date Version Notes

2/24/2020 1.0 Andrew and Arshan divided the project
into workable parts for group members
and began the rough draft of sections 1,
2, 5

2/26/2020 1.1 Andrew completed sections 1 and 5
2/27/2020 1.2 Andrew revised sections 1 and 5 for gram-

matical errors
2/27/2020 1.3 William completed section 3.1
2/27/2020 1.4 Jame completed section 3.2 and section 4
2/28/2020 2.0 All completed the final draft

ii

1 General Information

1.1 Purpose

The purpose of testing our project is to verify that it meets the requirements
outlined in the ’Software Requirements Specification’ and ensure that it is
implemented correctly.

1.2 Scope

The test plan develops a baseline for testing the functionality and correctness
of Mini-Arcade. Its core objective is to verify that the games run correctly
and efficiently all with a single click utilizing the launcher. The test plan
documents will highlight what is to be tested of our project, testing methods
and what resources we will use to test our software.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

FDM Functional, Dynamic and Manual Testing
FPS Frames per Second

Table 3: Table of Definitions

Term Definition

Functional Test-
ing

Testing derived from the functional requirements of the
software.

Dynamic Test-
ing

Testing through executing test cases during runtime.

Manual Testing Testing conducted by providing manual inputs and peo-
ple checking for outputs.

1

1.4 Overview of Document

This document will outline a detailed testing plan with the tools that will
be utilized and the approximated schedule of testing. It will also give in-
depth test cases and the method of testing for the functional requirements,
non-functional requirements, the proof of concept tests and the unit-testing
plan.

2 Plan

2.1 Software Description

The software is a launcher for a selection of games for the user to play. These
games are updated from their original versions to be more challenging and
visually pleasing.

2.2 Test Team

The test team is composed of all team members: Andrew Hum, Arshan
Khan, Jame Tran, and William Lei.

2.3 Automated Testing Approach

The tests will be automated by Pytest because it is a very popular test
automation platform and provides detailed assertion error messages.

2.4 Testing Tools

The main tool in our testing will be Pytest as it can cover a wide range of
tests. Most of the testing will be done through the IDE but some testing will
be done by asking users to install and use the system.

2.5 Testing Schedule

See Gantt Chart at the following url:
../../ProjectSchedule/3XA3-ProjSched.pdf

2

../../ProjectSchedule/3XA3-ProjSched.pdf

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 General Navigation

1. FR-N-1
Type: FDM
Initial State: Main Screen
Input: User clicks on Leaderboard
Output: Leaderboard opens and is displayed on the screen.

3

How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-N-2
Type: FDM
Initial State: Main Screen
Input: User clicks on Maze
Output: The mini-game Maze opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3. FR-N-3
Type: FDM
Initial State: Main Screen
Input: User clicks on Flappy
Output: The mini-game Flappy opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-N-4
Type: FDM
Initial State: Main Screen
Input: User clicks on Pong
Output: The mini-game Pong opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-N-5
Type: FDM
Initial State: Main Screen
Input: User clicks on close button

4

Output: The software will be terminated.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-N-6
Type: FDM
Initial State: Leaderboard Screen
Input: User clicks on Maze
Output: The leaderboard screen will display the leaderboard for Maze.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

7. FR-N-7
Type: FDM
Initial State: Leaderboard Screen
Input: User clicks on Flappy
Output: The leaderboard screen will display the leaderboard for Flappy.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

8. FR-N-8
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

9. FR-N-9
Type: FDM

5

Initial State: Flappy - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

10. FR-N-10
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Help
Output: The screen will display the instructions for how to play the
mini-game.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

11. FR-N-11
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Leaderboard
Output: The leaderboard of the mini-game opens and is displayed on
the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

12. FR-N-12
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on Leaderboard
Output: The leaderboard of the mini-game opens and is displayed on
the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the

6

output of the software on the screen.

13. FR-N-13
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

14. FR-N-14
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

15. FR-N-15
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Back
Output: The Main Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.2 Mini-Game - Maze

1. FR-MGM-1
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on a difficulty level

7

Output: A maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGM-2
Type: FDM
Initial State: Maze - Game Screen
Input: User clicks on home
Output: Menu screen of Maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3. FR-MGM-3
Type: FDM
Initial State: Maze - Menu Screen
Input: User clicks on a specific difficulty level, then clicks home, and
repeats this for 5 times in total
Output: A maze will displayed on the screen every time the user clicks
a difficulty level, and there should be no patterns for when a specific
maze will be displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-MGM-4
Type: FDM
Initial State: Maze - Game Screen
Input: User clicks a movement key
Output: The object will move according to the key-movement mapping
and the movement will be displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

8

5. FR-MGM-5
Type: FDM
Initial State: Maze - Game Screen
Input: Object reaches end of maze through a movement
Output: A score (base on time elapsed) along with high score will be
displayed on the end game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGM-6
Type: FDM
Initial State: Maze - End Game Screen
Input: User clicks on Next
Output: A maze will displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

7. FR-MGM-7
Type: FDM
Initial State: Maze - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.3 Mini-Game - Flappy

1. FR-MGF-1
Type: FDM
Initial State: Flappy - Menu Screen
Input: User clicks on start
Output: The game will be initialized/started and the game screen will
be opened and displayed

9

How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGF-2
Type: FDM
Initial State: Flappy - Game Screen
Input: User controlling the character to make sure it will not collide
with any object
Output: Their will be randomly generated objects approaching toward
the character, and their speed and amount generated will be increased
as time elapses.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3. FR-MGF-3
Type: FDM
Initial State: Flappy - Game Screen
Input: User clicks space key for 5 times separated by a short period of
time
Output: The character will move up a constant amount every time the
space key is being clicked.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

4. FR-MGF-4
Type: FDM
Initial State: Flappy - Game Screen
Input: User controls the character to collide with an object
Output: A score (base on time elapsed) along with high score will be
displayed on the end game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the

10

output of the software on the screen.

5. FR-MGF-5
Type: FDM
Initial State: Flappy - End Game Screen
Input: User clicks on Restart
Output: The game will be initialized/started and the game screen will
be opened and displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGF-6
Type: FDM
Initial State: Flappy - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3.1.4 Mini-Game - Pong

1. FR-MGP-1
Type: FDM
Initial State: Pong - Menu Screen
Input: User clicks on Single Player
Output: The game screen will be opened and displayed and will request
the user to input a max score.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

2. FR-MGP-2
Type: FDM

11

Initial State: Pong - Menu Screen
Input: User clicks on Multiplayer
Output: The game screen will be opened and displayed and will request
the user to input a max score.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

3. FR-MGF-3
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer, re-
questing max score input)
Input: User inputs a integer between 1 to 10.
Output: The game will be initialized or started. How test will be per-
formed: The application will be opened and the user will manually
provides inputs to the software and observes for the output of the soft-
ware on the screen.

4. FR-MGP-4
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer)
Input: User clicks a movement key
Output: The corresponding paddle will move according to the key-
movement mapping and the movement will be displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

5. FR-MGP-5
Type: FDM
Initial State: Pong - Game Screen (Both single and multiplayer)
Input: User control the paddle to hit the ball until the ball reaches the
boundary on either side (and did not hit a paddle)
Output: The score of the opposite will be increased by 1 and the change
will be displayed on the game screen.
How test will be performed: The application will be opened and the

12

user will manually provides inputs to the software and observes for the
output of the software on the screen.

6. FR-MGF-6
Type: FDM
Initial State: Flappy - Game Screen (Both single and multiplayer)
Input: User control the paddle to hit the ball until either side reaches
the max score
Output: The score between the two player will be displayed on the end
game screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

7. FR-MGP-7
Type: FDM
Initial State: Pong - End Game Screen
Input: User clicks on Restart
Output: The game will be initialized/started and the game screen will
be opened and displayed.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

8. FR-MGP-8
Type: FDM
Initial State: Pong - End Game Screen
Input: User clicks on Return
Output: The Menu Screen opens and is displayed on the screen.
How test will be performed: The application will be opened and the
user will manually provides inputs to the software and observes for the
output of the software on the screen.

13

3.2 Tests for Nonfunctional Requirements

3.2.1 Look and Feel

1. NFR-1

Type: FDM

Initial State: Program is launched on default settings, with default
performance settings on the computer, at the start screen of one of
three games (Flappy, Maze, or Pong).

Input/Condition: Users will be asked to play the game for 5 minutes.

Output/Result: Average FPS displayed by pygame get fps() is higher
than 30.

How test will be performed: A test group of people who have graduated
high school or have an equivalent GED will be asked to play the games
(Maze, Pong, and Flappy Bird) for a total of 5 minutes. The average
FPS will be recorded by using the built in method get fps() in pygame.
The majority of the test group must have an average FPS of 30 or
above for the test to be considered successful.

2. NFR-2

Type: FDM

Initial State: Program is launched on default settings, with default
performance settings on the computer, at the start screen of one of
three games (Flappy, Maze, or Pong).

Input: Users will be asked to play the game for 5 minutes.

Output: Users in test group will be asked to evaluate the existing
implementation of the games’ visual appeal.

How test will be performed: A test group of people who have graduated
high school or have an equivalent GED will be asked to play the games
(Maze, Pong, and Flappy Bird) for a total of 5 minutes. They will then
complete a survey that has a list of criteria related to each games’ visual
design, with each criteria attached to a Likert scale. The users will be
asked to rate the program based on the criteria provided using the scales
provided. The average rating for each criterion will be calculated. The

14

average must be above 3 on each criterion for the test to be considered
successful.

3.2.2 Usability and Humanity

1. NFR-3

Type: FDM

Initial State: Program is launched on default settings, with default
performance settings on the computer, at the start screen of one of
three games (Flappy, Maze, or Pong).

Input: Users will be asked to play the game for 5 minutes

Output: Users in test group will be asked to evaluate the existing
implementation and intrusiveness of the games’ UI.

How test will be performed: A test group of people who have graduated
high school or have an equivalent GED will be asked to play the games
(Maze, Pong, and Flappy Bird) for a total of 5 minutes. They will then
complete a survey that has a list of criteria related to each games’ UI
design, with each criteria attached to a Likert scale. The users will be
asked to rate the program based on the criteria provided using the scales
provided. The average rating for each criterion will be calculated. The
average must be above 3 on each criterion for the test to be considered
successful.

2. NFR-4

Type: FFDM

Initial State: Program is launched on default settings, with default
performance settings on the computer, at the start screen of one of
three games (Flappy, Maze, or Pong).

Input: Users will be asked to play the game for 5 minutes.

Output: Users in test group will be asked to evaluate the controls and
game-play of the existing implementation of the games.

How test will be performed: A test group of people who have graduated
high school or have an equivalent GED will be asked to play the games

15

(Maze, Pong, and Flappy Bird) for a total of 5 minutes. Afterwards,
each user will complete a small quiz on the respective game they played,
with questions about core game-play mechanics. The quizzes will be
marked, and an average score of 80% on the quizzes is required for a
success.

3.3 Performance

1. NFR-5

Type: FDM

Initial State: Program is launched on default settings, with default
performance settings on the computer.

Input: The user will be asked to launch one of three games (Flappy,
Maze, or Pong).

Output: The requested action is performed in less than 30 seconds.

How test will be performed: Either a group of users will be asked to
perform the task or the task will be iterated multiple times. The aver-
age time elapsed between launching the game and the game being fully
functional will be recorded . The requested action must be performed
under 30 seconds for 80% of the times the test is performed.

2. NFR-6

Type: FDM

Initial State: Program is launched on default settings, with default
performance settings on the computer, currently playing one of three
games (Flappy, Maze, or Pong).

Input: The user will be asked to make an input into the game.

Output: The game will be updated within a quarter second of user
input.

How test will be performed: Either a group of users will be asked
to perform the task or the task will be iterated multiple times. The
average time elapsed between making an input and the game updating

16

will be recorded . The requested action must be performed within a
quarter second for 80% of the times the test is performed.

3.4 Operation and Environmental Requirements

1. NFR-7

Type: FDM

Initial State: A computer powered on, without Mini-Arcade currently
installed.

Input: The user will be asked to install the program.

Output: The majority of users are able to install the program without
outside assistance.

How test will be performed: Either a group of users will be asked to
perform the task or the task will be iterated multiple times. Program
installation success and the amount of time it took will be recorded.
Test is considered successful if 80% of users are able to install the
program without assistance. This test will be repeated on a wide variety
of computers with varying hardware and operating systems

4 Tests for Proof of Concept

4.1 Area of Testing1

Since many of the above tests for non-functional requirements also
cover issues in the Proof of Concept, these tests will focus on testing
external modules

1. PC-1

Type: FDM

Initial State: A computer with Python 3 installed, the source code for
the projects and pyinstaller module installed.

Input: The user will create an executable of the source files using pyin-
staller.

17

Output: A working executable file will be created.

How test will be performed: A sample python file will be used for
testing. The user will create an executable using pyinstaller, and run
the executable. Success will be counted if the executable program is
able to display game functionality. This test will be repeated across a
wide range of computers.

2. test-id2

Type: FDM

Initial State: A computer with VSCode and Python 3 installed.

Input: The user will attempt to install the Pygame module

Output: The Pygame module will be available for use in VSCode

How test will be performed: The user will use Pip to install the Pygame
module in a virtual environment. The user will then attempt to import
the Pygame module, and run a sample program that uses its function-
ality. If the program is able to run and display full functionality, the
test is a success. This test will be repeated across a wide range of
computers.

4.2 Area of Testing2

...

5 Unit Testing Plan

The Pytest library will be used for the unit testing of our project.

5.1 Unit testing of internal functions

To efficiently use unit-testing for our project, we will use hard-coded, ex-
pected, and unexpected, inputs for individual functions and methods. These
functions and methods will then provide output, and we will verify that the
resulting output is correct or that the program handles the unexpected input
correctly. For example, telling the game that the game was won, and the
expected output should be the end-game screen. As games are more difficult

18

to completely test with unit tests, we will only test the functions that can be
tested by providing an expected and unexpected output with input values
relating to a current state or completed event. To cover a wide range of
scenarios, the input variables will test both expected output, and reaction to
incorrect/unexpected input values. There will be no need for stubs or drivers
to test our project. To ensure high-quality coverage, we will be using testing
coverage metrics. Our goal is to cover a minimum of 60% of the project with
unit tests alone, derived by the total lines of code in the project divided by
the number of lines covered by the test cases.

5.2 Unit testing of output files

In-depth testing of the output files using unit testing will be not applicable
for our project, and any unit tests to test output files would prove to be not
useful and ineffective in both coverage and effective use of time.

19

6 Appendix

This is where you can place additional information.

6.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

6.2 Usability Survey Questions

This is a section that would be appropriate for some teams. A possible set
of questions to ask beta testers would include:

• What game did you play first?

• What did you think of that game?

• How long did you play?

• Would you play again?

• Did you play any other games?

• Was it easy to get started?

• How would you improve the experience?

20

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	General Navigation
	Mini-Game - Maze
	Mini-Game - Flappy
	Mini-Game - Pong

	Tests for Nonfunctional Requirements
	Look and Feel
	Usability and Humanity

	Performance
	Operation and Environmental Requirements

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

