
SE 3XA3: Test Plan
Mini-Arcade

Team #104
Andrew Hum, 400138826
Arshan Khan, 400145605

Jame Tran, 400144141
William Lei, 400125240

February 28, 2020

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 1

2 Plan 2
2.1 Software Description . 2
2.2 Test Team . 2
2.3 Automated Testing Approach 2
2.4 Testing Tools . 2
2.5 Testing Schedule . 2

3 System Test Description 2
3.1 Tests for Functional Requirements 2

3.1.1 Area of Testing1 . 2
3.1.2 Area of Testing2 . 3

3.2 Tests for Nonfunctional Requirements 3
3.2.1 Area of Testing1 . 3
3.2.2 Area of Testing2 . 4

3.3 Traceability Between Test Cases and Requirements 4

4 Tests for Proof of Concept 4
4.1 Area of Testing1 . 4
4.2 Area of Testing2 . 4

5 Unit Testing Plan 4
5.1 Unit testing of internal functions 5
5.2 Unit testing of output files . 5

6 Appendix 6
6.1 Symbolic Parameters . 6
6.2 Usability Survey Questions? 6

i

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 1

List of Figures

Table 1: Revision History

Date Version Notes

2/24/2020 1.0 Andrew and Arshan divided the project
into workable parts for group members
and began the rough draft of sections 2,
5, 6

2/26/2020 2.0 Andrew and Arshan completed section 1
and 2

Date 2 1.1 Notes

ii

1 General Information

1.1 Purpose

The purpose for testing our project is to verify that it meets the requirements
outlined in the ’Software Requirements Specification’ and ensure that it is
implemented correctly.

1.2 Scope

The test plan develops a baseline for testing the functionality and correctness
of Mini-Arcade. It’s core objective is to verify that the games run correctly
and efficiently all with a single click utilizing the launcher. The test plan
documents will highlight what is to be tested of our project, testing methods
and what resources we will use to test our software.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

Abbreviation Definition

Table 3: Table of Definitions

Term Definition

Term1 Definition1

1.4 Overview of Document

This document will outline a detailed testing plan with the tools that will
be utilized and the approximated schedule of testing. It will also give in-
depth test cases and the method of testing for the functional requirements,
non-functional requirements, the proof of concept tests and the unit-testing
plan.

1

2 Plan

2.1 Software Description

The software is a launcher for a selection of games for the user to play. These
games are updated from their original versions to be more visually pleasing
and challenging.

2.2 Test Team

The test team is composed of all team members: Andrew Hum, Arshan
Khan, Jame Tran, and William Lei.

2.3 Automated Testing Approach

The tests will be automated by pytest because it is very popular and allows
”assert rewriting”.

2.4 Testing Tools

2.5 Testing Schedule

See Gantt Chart at the following url:
../../ProjectSchedule/3XA3-ProjSched.gan.

3 System Test Description

3.1 Tests for Functional Requirements

3.1.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

2

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3.1.2 Area of Testing2

...

3.2 Tests for Nonfunctional Requirements

3.2.1 Area of Testing1

Title for Test

1. test-id1

Type:

Initial State:

Input/Condition:

Output/Result:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

3

3.2.2 Area of Testing2

...

3.3 Traceability Between Test Cases and Requirements

4 Tests for Proof of Concept

4.1 Area of Testing1

Title for Test

1. test-id1

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

2. test-id2

Type: Functional, Dynamic, Manual, Static etc.

Initial State:

Input:

Output:

How test will be performed:

4.2 Area of Testing2

...

5 Unit Testing Plan

The pytest library will also be used for the unit testing of our project.

4

5.1 Unit testing of internal functions

To unit test the project, hard-coded, expected inputs will be given to the
individual functions and methods. These functions and methods will then
provide output, and we will check that these are the expected output given
our scenarios. As games are more difficult to completely test with unit tests,
we will only test the functions that can be tested by providing an expected
and unexpected output with simple input values. To cover a wide range of
scenarios, the input variables will test both expected output, and reaction to
incorrect/unexpected input values. There will be no need for stubs or drivers
to test our project. To ensure high-quality coverage, we will be using testing
coverage metrics. Our goal is to cover a minimum of 60% of the project with
unit tests alone, derived by the total lines of code in the project divided by
the number of lines covered by the test cases.

5.2 Unit testing of output files

In-depth testing of the output files using unit testing will be not applicable
for our project, and any unit tests to test output files would prove to be not
useful.

5

6 Appendix

This is where you can place additional information.

6.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

6.2 Usability Survey Questions?

This is a section that would be appropriate for some teams. A possible set
of questions to ask beta testers would include:

• What game did you play first?

• What did you think of that game?

• How long did you play?

• Would you play again?

• Did you play any other games?

• Was it easy to get started?

6

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Area of Testing1
	Area of Testing2

	Tests for Nonfunctional Requirements
	Area of Testing1
	Area of Testing2

	Traceability Between Test Cases and Requirements

	Tests for Proof of Concept
	Area of Testing1
	Area of Testing2

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions?

