SE 3XA3: Test Plan
Gifitti

Team #2,Gifitti
Nicolai Kozel kozeln
Riley McGee mcgeer

Student 3 name and macid

October 25, 2016



Contents

1

General Information
1.1 Purpose . . . . . . . . . e

1.2 Scope

1.3 Acronyms, Abbreviations, and Symbols . . . . . .. ... ...
1.4 Overview of Document . . . . . . ... .. ... ... .....

Plan

2.1 Software Description . . . . . . .. ... ... ...
22 Test Team . . . . . . . ... oo
2.3 Automated Testing Approach . . . .. .. .. ... ......
2.4 Testing Tools . . . . . . . . . ...
2.5 Testing Schedule . . . . . ... ... .. L.

System Test Description
3.1 Tests for Functional Requirements . . . . . . . . .. ... ...

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

Open GIF . . . . ... ... ... .. .. ... ...
Save GIF . . . . ... ... o
Save GIF as Sprite Spreadsheet . . . . . . . ... ...
GIF Start, Stop, Modify Length . . . . ... ... ...
Save all frames in a GIF to another known format . . .
Help Context . . . . . . ... ... .. ... ......
GIF reset . . . . . .. .. ... ...
Frame Addition . . . . ... ... ... .. .. ... ..
Frame Drawing . . . . . .. .. ... ... ... ...

3.2 Tests for Nonfunctional Requirements . . . . . . .. ... ...

3.2.1
3.2.2

Look and Feel Requirements . . . . . .. ... ... ..
Performance Requirements . . . . . . . ... ... ...

Tests for Proof of Concept
4.1 Opening a GIF file for playback . . . .. ... ... ... ...
4.2 Saving a GIF file’s frames . . . . .. .. ... ... ... ..

Comparison to Existing Implementation
5.1 Graphics/UL . . . . .. ... o
5.2 Performance . . . . . . ...



6 Unit Testing Plan 17

6.1 Unit testing of internal functions . . . . . . .. .. ... ... 17
6.2 Unit testing of output files . . . . . . .. ... ... ... ... 17
7 Appendix 18
7.1 Symbolic Parameters . . . . . . .. ..o oL 18
7.2 Usability Survey Questions . . . . . .. .. .. ... ... .. 18

List of Tables

1 Revision History . . . . . ... ... ... ... ....... ii
2 Table of Abbreviations . . . . . . . .. .. ... ... ... 1
3 Table of Definitions . . . . . . . . . . . . . . .. ... ... 2

List of Figures

Table 1: Revision History

Date Version Notes
October 22 1.0 Adding sections 1,2, and 7
October 24 1.1 Adding functional req tests

October 25 1.2 Adding non functional req tests.

i



This document describes the test plan for the Gifitti application developed
for 3XA3 at McMaster University.

1 General Information

1.1 Purpose

The purpose of the testing plan is to establish a set of tests that will test
the product in its entiretiy to ensure that it fufills the intendend purpose.
This would be accomplished through verifying if Gifitti satisfies the different
functional and non-functional requirements that were assigned to it. Having
test plans for any product is essential to be able to understand how well the
product is satisfying the clients needs and if there are rooms for improvement.

1.2 Scope

This testing plan is utilizing different testing methods, automated and user
created, and various techniques, black box and white box testing, to establish
if the project has any need of improvement. Two different products will be
analyized through these tests, the Proof of Concept and the first iteration of
the final product. Proof of Concept will be tested to ensure that a basic rep-
resentation of the product was demonstrated while the requirements should
be tested when the first iteration of the final product is completed.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations
Abbreviation Definition

Abbreviationl Definitionl
Abbreviation2 Definition2

1.4 Overview of Document

The testing plan is broken up into distinct parts. Under the heading Plan, the
basic information will be given on the product and the tests. System Test



Table 3: Table of Definitions

Term Definition
Terml Definitionl
Term?2 Definition2

Description will contain the specific tests for the functional requirements
stated for the product. These tests will broken down into what type of tests
they are and the results they achieve depending on their specific input. Test
for nonfunctional requirments will follow the same format where input will be
given and the output will be measured for all of the provided nonfunctional
requirements. Under tests for proof of concept, the same format will be
utilized as the functional testing but it will not be testing the requirements
for the project but for the goals of the proof of concept. Furthermore there
will be tests to compare Gifitti to the original product it was based on and
unit testing plans to ensure correct output is achieved through proper internal
functions.

2 Plan

2.1 Software Description

Gifitti is a software prodcut

2.2 Test Team

The team to implement the test plan for the project will be Pavle Arezina,
Riley McGee, Nicolai Kozel

2.3 Automated Testing Approach

This test plan will not utilize an automated testing approach towared Gifitti
since the project centers around a graphical manipulation of the GIF.

2.4 Testing Tools
Tools to be utilized will be



2.5 Testing Schedule
See Gantt Chart at the following url ...

3 System Test Description

3.1 Tests for Functional Requirements
3.1.1 Open GIF
The User is Able to Open a GIF from a specified location

1. Select proper formatted gif- id1

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File name. Output: System loads gif into memory,
displays it to the user in the gif view.

How test will be performed:

(a) Launch the program

(b) Select Open

(c¢) From the Open dialog specify a path to a known gif image
)

(d) After the image is loaded verify that it is being displayed, and
resides in system memory

2. No File Selected in File Dialog-id2

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: No file path. Output: No image loaded.

How test will be performed:
(a) Launch the program
(b

)

) Select Open

(c) Select open option with no file path specified
)

(d) Verify program remains open, and no image is loaded



3. Close File Dialog-id3

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: None. Output: No image loaded.

How test will be performed:

(a) Launch the program

(b) Select Open

(c) Close the file dialog
)

(d) Verify program remains open, and no image is loaded

4. Open random non gif file-id4

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File that is not a GIF. Output: No image loaded.

How test will be performed:

(a) Launch the program
(b) Select Open

(c) Try and select a file that is not a GIF or specify a file path to a
known file

(d) Verify program remains open, and no image is loaded

3.1.2 Save GIF

The user is able to save a GIF to a specified location

1. Save GIF to known location-id1

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:



(a) Launch the program
(b) Open a GIF

(c) Select save as

()

(e) Verfify the loaded and saved GIFs are identical

Specify a known system file path and a saved image name

. Save GIF to no existant location- id2

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.

Output: GIF file not saved to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c)
)

Select save as
(d) Specify a system file path known not to exist and a saved image
name

(e) Verify the user is informed that the file path does not work

. Save GIF to Opened Location- id3

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:

(a) Launch the program
(b) Open a GIF



(c) Modify the GIF
(d) Save image
(e) Verify new GIF is saved over the originally opened GIF

3.1.3 Save GIF as Sprite Spreadsheet

The user is able to save a GIF as a sprite spreadsheet in a specified
location

1. Save Sprite Spreadsheet to known location-id1

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.

Input: File path, GIF file.

Output: GIF file saved as a Sprite Spreadsheet to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(¢) Choose to export the image as a sprite spreadsheet
)

(d) Verify that the GIF is a single image representation of the GIF
via frames

3.1.4 GIF Start, Stop, Modify Length

The user is able to start (play), start and stop GIFs, testing of GIF
shortening and playback speed occurs here as well

1. Play Stop GIF-id1
Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: GIF



Output: None.

How test will be performed:

(a) Launch the program
(b) Open a GIF
(c) Select Play Option

(d) Verify the Gif is iterating over frames as expected

(
(
(
(

)
)
)
)
e) Select Play option again, verify no change occurs
f) Select Stop

g) Verifiy GIF stops playing

)

h) Select Stop again, verify no change occurs

2. GIF shorten-id2

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: GIF

Output: Shortend GIF.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Shorten gif frames in use

(d) Play the GIF to verify it is correct

e) Export the GIF
)

Verify that the exported GIF represents the one playing, and is
shorter than the original

(
(f

3. GIF speed-id3



Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: GIF

Output: GIF inputted with different frame rate.

How test will be performed:

(a) Launch the program
(b) Open a GIF
(c) Increase frame hold time
(d)
)
)

(e
(

Play the GIF to verify it is slower than original
Export the GIF

f) Verify that the exported GIF represents the one playing, and is

slower, with respect to frame rate, than the original

3.1.5 Save all frames in a GIF to another known format

The user is able to save a GIF frame by frame to PNG, JPEF,
BMP and TIFF formats

1. Save PNG frames to known location-id1

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.

Input: Folder path, GIF file.

Output: PNG Frames in specified folder named corresponding to frame.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Choose to export the image as a PNG set

(d) Select the folder where the PNGs will be dumped
(e) Verify the folder fills with frames as PNG

8



(f) Ensure a 3rd party program can load the PNGs. Software such as
Photoshop or MS paint is satisfactory

2. Save JPEG frames to known location-id2
This test is identical to id1 with PNG replaced with JPEG

3. Save BMP frames to known location-id3
This test is identical to id1 with PNG replaced with BMP

4. Save TIFF frames to known location-id4
This test is identical to id1 with PNG replaced with TIFF

3.1.6 Help Context
Verifies and validates HELP context

1. Help Context-id1

Type: Manual Functional.
Initial State: Program loaded
Input: None

Output: None

How test will be performed:

(a) Launch the program
(b) Select Help Context

(c¢) Reccurse through all Help Context options, verifiy spelling for
professionality

(d) Close help context, verify program remains in same state as launch
put it in

3.1.7 GIF reset

Verifies and validates GIF can be reset to loaded state



1. Modify Attributes-id1l

Type: Manual Functional.

Initial State: Program loaded; GIF loaded
Input: GIF

Output: Inputted GIF

How test will be performed:

(a) Launch the program
(b) Load a GIF
(¢) Modify GIF attributes such as frame length, coloration etc
(d)
)

(e) Verify GIF in is the same as current GIF shown

Select reset

2. Modify via adding a frame-id2

Type: Manual Functional.

Initial State: Program loaded; GIF loaded
Input: GIF, inputted frame

Output: Inputted GIF

How test will be performed:

(a) Launch the program

(b) Load a GIF

(¢) Modify GIF by adding a frame

(d) Select reset

(e) Verify GIF loaded has added frame removed

3. Modify via frame subset selected-id3

10



Type: Manual Functional.

Initial State: Program loaded; GIF loaded
Input: GIF

Output: Inputted GIF

How test will be performed:
(a) Launch the program
(b) Load a GIF

¢) Modify GIF by subsetting what frames are used
d)

)

(e) Verify GIF loaded returns to full GIF state

Select reset

(
(

3.1.8 Frame Addition

Verifies frame addition

1. Add GIFs-id1l

Type: Manual Functional.
Initial State: Program loaded
Input: GIF x 2

Output: Concatinated GIFs

How test will be performed:
(a) Launch the program
(b) Load a Gif

(c) Select a frame and import a gif
()

)

(e) Verify the concatination holds on export

Gif should subset from frame to end of the imported gif

11



2. Add PNGs-id1

Type: Manual Functional.

Initial State: Program loaded

Input: GIF; PNG image

Output: GIF with PNG input added as a frame

How test will be performed:
(a) Launch the program
(b) Load a Gif
(c) Select a frame and import a PNG
(d) Verify PNG is added after current frame in GIF
(e) Verify the the new GIF is exported the same way

. JPEG frames to GIF-id2
This test is identical to id2 with PNG replaced with JPEG

. TIFF frames to GIF-id3
This test is identical to id2 with PNG replaced with TIFF

. BMP frames to GIF-id4
This test is identical to id2 with PNG replaced with BMP

3.1.9 Frame Drawing
Verifies and validates ability to draw on frames

1. Single Frame Drawing-id1

Type: Manual Functional.

Initial State: Program loaded; GIF loaded

Input: GIF

Output: Inputted Gif with image overlay on a frame

How test will be performed:

(a) Launch the program

12



(b) Load a GIF
(c) Make an obvious edit to a frame via drawing

(d) Export the GIF and verify obvious change remains

2. Multi Frame Drawing-id1

Type: Manual Functional.

Initial State: Program loaded; GIF loaded

Input: GIF

Output: Inputted Gif with image overlay many frames

How test will be performed:

(a) Launch the program
(b) Load a GIF
(c) Make an obvious edit to a frame via drawing
(d) Make the edit extend over a set of frames
)

(e) Export the GIF and verify obvious change remains on all selected
frames

3.2 Tests for Nonfunctional Requirements
3.2.1 Look and Feel Requirements
Audio Test

1. audio-01

Type: Manual Structural

Initial State: Program loaded;

Input: A file type not supported by Gifitti.
Output: Error sound played through speakers.

How test will be performed: When loading a file into the program,
select a file type other than a .gif.

13



2. audio-02

Type: Manual Structural

Initial State: Program loaded; GIF loaded;

Input: GIF

Output: Affirmative ding sound played through speakers.

How test will be performed: Output a subset of frames from the GIF.

3.2.2 Performance Requirements
Speed

1. speed-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF with number of frames on the magnitude of 100’s of frames.
Output: Subsection of frames chosen to be exported.

How test will be performed: Create a timer inside the program to
output the time it takes to output the files to a debug.txt file. The
time should be less than MAX_EXPORT_TIME.

2. speed-02

Type: Manual Structural
Initial State: Program loaded;
Input: GIF.

Output: NA

How test will be performed: Load a GIF into the program. The time to
load the GIF and start playback should be less than MAX_UI_LOAD.

14



Precision

1. precision-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF

Output: Subsection of frames chosen to be exported.

How test will be performed: Export the first 5 frames of the GIF.
Navigate to the save location and verify that the number of frames
saved is equal to 5.

Safety Critical

1. safety-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.
Input: GIF

Output: NA

How test will be performed: Export a subsection of frames the GIF to
a foler. Try to export to the same folder again. The program should
ask if you are okay with overwriting the exisitng files.

2. safety-02

Type: Manual Structural

Initial State: Program loaded; GIF loaded.
Input: GIF

Output: NA

How test will be performed: Create a small partition of the HDD and fill
it so there is no available space. Try to export frames to this location.
The program should not continue the operation and inform the user
that disk space needs to be cleared before continuing.

15



4 Tests for Proof of Concept

4.1 Opening a GIF file for playback
Open GIF

1. OpenGif-01

Type: Manual Functional

Initial State: Program must be in normal state (form window is open
and playback window is blank).

Input: File
Output: GIF is shown in playback window of the form.

How test will be performed: Click open button, select a file of type .gif,
and verify that the GIF loads and begins to playback within the form
window.

4.2 Saving a GIF file’s frames
Save GIF

1. SaveGif-01

Type: Manual Functional

Initial State: Program must be in playback state (form window is open
and playback window is playing GIF).

Input: GIF File
Output: GIF’s frames are saved as .bmp in folder specified.

How test will be performed: Click save frames button, select a folder,
and verify that the GIF’s frames are saved to the specified folder as
.bmp.

16



5 Comparison to Existing Implementation

5.1 Graphics/UI
1. GIF playback resolution is the same or better than Gif Viewer.

2. Program has the same button scheme as Gif Viewer (Open button to
open file, Extract Frames button to save frames).

3. Program has a help menu available that is similiar to Gif Viewer, but
is available at all times.

4. Program’s color scheme and design resembles Gif Viewer.

5.2 Performance

1. GIF playback is at the same smoothness/framerate or better than Gif
Viewer.

2. Opening and saving a file takes the same amount of time or less than
Gif Viewer.

6 Unit Testing Plan

6.1 Unit testing of internal functions

6.2 Unit testing of output files

References

17



7 Appendix

This section contains symbolic parameters for this document and the usabil-
ity survey that will be delivered to a focus group upon initial completion of
the application.

7.1 Symbolic Parameters
The definition of the test cases will call for SYMBOLIC_CONSTANTS. Their

values are defined in this section for easy maintenance.

7.2 Usability Survey Questions

The survey will be deliverered in the same format as the Questionaire for User
Interface Satisfaction. This questionaire is composed of various questions
pertaining to several sub categories on a 0-9 scale. This includes the screen,
terminology and system information, learning, and system capabilites. It
also allows the user to list the most positive and negative aspects of the
program. The questionaire can be found at garyperlman.com

18


http://garyperlman.com/quest/quest.cgi?form=QUIS

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Open GIF
	Save GIF
	Save GIF as Sprite Spreadsheet
	GIF Start, Stop, Modify Length
	Save all frames in a GIF to another known format
	Help Context
	GIF reset
	Frame Addition
	Frame Drawing

	Tests for Nonfunctional Requirements
	Look and Feel Requirements
	Performance Requirements


	Tests for Proof of Concept
	Opening a GIF file for playback
	Saving a GIF file's frames

	Comparison to Existing Implementation
	Graphics/UI
	Performance

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions


