
SE 3XA3: Test Plan
Gifitti

Team #2,Gifitti
Nicolai Kozel kozeln
Riley McGee mcgeer
Pavle Arezina arezinp

December 8, 2016

Contents

1 General Information 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Acronyms, Abbreviations, and Symbols 1
1.4 Overview of Document . 3

2 Plan 3
2.1 Software Description . 3
2.2 Test Team . 3
2.3 Automated Testing Approach 3
2.4 Testing Tools . 4
2.5 Testing Schedule . 4

3 System Test Description 4
3.1 Tests for Functional Requirements 4

3.1.1 Open GIF . 4
3.1.2 Save GIF . 6
3.1.3 GIF Start, Stop, Modify Length 7
3.1.4 Save All Frames in a GIF to Another Known Format . 10
3.1.5 Help Context . 10
3.1.6 Resize . 11

3.2 Tests for Non-functional Requirements 12
3.2.1 Performance Requirements 12

4 Tests for Proof of Concept 14
4.1 Opening a GIF file for playback 15
4.2 Saving a GIF file’s frames . 15

5 Comparison to Existing Implementation 15
5.1 Graphics/UI . 15
5.2 Performance . 16

6 Unit Testing Plan 16
6.1 Unit testing of internal functions 16
6.2 Unit testing of output files . 17

7 Bibliography 17

i

8 Appendix 18
8.1 Symbolic Parameters . 18
8.2 Usability Survey Questions . 18

List of Tables

1 Revision History . ii
2 Table of Abbreviations . 1
3 Table of Definitions . 2

List of Figures

Table 1: Revision History

Date Version Notes

October 22 1.0 Adding sections 1,2, and 7
October 24 1.1 Adding functional req tests
October 25 1.2 Adding non functional req tests.
October 30 1.3 Adding Unit tests, and automated func-

tional tests
November 30 1.4 Final edits for revision 1

ii

This document describes the test plan for the Gifitti application developed
for 3XA3 at McMaster University.

1 General Information

1.1 Purpose

The purpose of this testing plan is to establish a set of tests that will test the
product in its entirety to ensure that it fulfills the intended purpose. This
will be accomplished by verifying that Gifitti satisfies the different functional
and non-functional requirements that were assigned to it. Having test plans
for any product is essential to be able to understand how well the product is
satisfying the clients needs and if there is room for improvement.

1.2 Scope

This testing plan will utilize different testing methods such as automated
and user created as well as various techniques such as black box and white
box testing, to establish if the project has any need for improvement. Two
different products will be analyzed through these tests, the Proof of Concept
and the first iteration of the final product. The Proof of Concept will be
tested to ensure that a basic representation of the product will be demon-
strated. The first iteration of the final product will be tested to verify the
requirements.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations

Abbreviation Definition

GIF Graphics Interchange Format
BMP Bitmap
JPEG Joint Photographic Experts Group
PNG Portable network Graphics
TIFF Tag Image File Format

1

Table 3: Table of Definitions

Term Definition

GIF A lossless format for image files that supports both an-
imated and static images.

Sprite Sheet A series of images (usually animation frames) combined
into a larger image (or images).

Dialog Class Specifies the base class used for displaying dialog boxes
on the screen.

File Path A path, the general form of the name of a file or direc-
tory, specifies a unique location in a file system.

Bitmap A representation in which each item corresponds to one
or more bits of information, especially the information
used to control the display of a computer screen.

Frame One of the many still images which compose a complete
moving picture.

Pixel A minute area of illumination on a display screen, one
of many from which an image is composed.

TIFF A common format for exchanging raster graphics
(bitmap) images between application programs, includ-
ing those used for scanner images.

JPEG A commonly used method of lossless compression for
digital images, particularly for those images produced
by digital photography.

PNG A raster graphics file format that supports lossless data
compression.

2

1.4 Overview of Document

This testing plan is broken up into distinct parts. Under the heading Plan,
the basic information will be given on the product and the tests. System
Test Description will contain the specific tests for the functional require-
ments stated for the product. These tests will broke down into what type of
tests they are and the results they achieve depending on their specific input.
Testing for non-functional requirements will follow the same format where
input will be given and the output will be measured for all of the provided
non-functional requirements. Under tests for proof of concept, the same for-
mat will be utilized as the functional testing but it will not be testing the
requirements for the project, but for the goals of the proof of concept. Fur-
thermore there will be tests to compare Gifitti to the original product it was
based on and unit testing plans to ensure correct output is achieved through
proper internal functions.

2 Plan

2.1 Software Description

Gifitti is a software product that allows the common user to be able to
manipulate GIFS for their entertainment or commercial needs. With an
intuitive design, it allows a person who has never done any kind of graphical
editing to be able to manipulate a GIF to achieve the person’s particular
design. This product can also serve a commercial purpose in allowing the
quick production of GIFs.

2.2 Test Team

The team to implement the test plan for the project will be Pavle Arezina,
Riley McGee, Nicolai Kozel.

2.3 Automated Testing Approach

This test plan will utilize automated testing for verification that the GIF
manipulation functionality changes the GIF properly. That is to say that the
exported GIF image will match what is created by the user of our product.

3

2.4 Testing Tools

The only tool to be utilized to test this product will be the Microsoft Unit
Test Framework that is native with Visual Studio.

2.5 Testing Schedule

The testing schedule is listed on the Gantt Chart which can be found here.

3 System Test Description

Testing allows the developers to detect errors that the test cases cover. With
the functional and non-functional requirements the developer knows the ex-
pected results and can evaluate the results of tests accordingly. Pass or fail
values are assigned to executed tests discreetly unless the test is to have an
error tolerance for passing.

3.1 Tests for Functional Requirements

Functional requirements prescribe what services the software should provide.
They capture the intended software effects on the environment and appli-
cability conditions. These tests ensure that the functional requirements of
Gifitti are fulfilled or the tests will help to discover any functional require-
ments not satisfied by Gifitti.

3.1.1 Open GIF

The User is able to open a GIF from a specified location

1. Select Properly Formatted GIF- id1

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File path for GIF. Output: System loads gif into
memory, displays it to the user in the gif view.

How test will be performed:

(a) Launch the program

(b) Select Open

4

https://gitlab.cas.mcmaster.ca/kozeln/Gifitti/tree/master/ProjectSchedule

(c) From the Open dialog specify a path to a known gif image

(d) After the image is loaded verify that it is being displayed, and
resides in system memory

2. No File Selected in File Dialog-id2

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: None. Output: No image loaded.

How test will be performed:

(a) Launch the program

(b) Select Open

(c) Select open option with no file path specified

(d) Verify program remains open, and no image is loaded

3. Close File Dialog-id3

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: None. Output: No image loaded.

How test will be performed:

(a) Launch the program

(b) Select Open

(c) Close the file dialog

(d) Verify program remains open, and no image is loaded

4. Open Random Non-GIF File-id4

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File that is not a GIF. Output: No image loaded.

How test will be performed:

(a) Launch the program

5

(b) Select Open

(c) Try and select a file that is not a GIF or specify a file path to a
known file

(d) Verify program remains open, no image is loaded, and an error
message is displayed to the user

3.1.2 Save GIF

The user is able to save a GIF to a specified location

1. Save a GIF to a Known Location-id5

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Select ”Save As...”

(d) Specify a known system file path and a saved image name

(e) Verify the loaded and saved GIFs are identical

2. Save GIF to a Non-existent Location- id6

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file not saved to specified location.

How test will be performed:

6

(a) Launch the program

(b) Open a GIF

(c) Select ”Save As...”

(d) Specify a system file path known not to exist and a saved image
name

(e) Verify the user is informed that the file path does not work and
the system remains running

3. Save GIF to Opened Location- id7

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Modify the GIF

(d) Select the save image option

(e) Verify new GIF is saved over the originally opened GIF

3.1.3 GIF Start, Stop, Modify Length

The user is able to start and stop GIFs as well as shorten the GIF
and change the playback speed.

1. Play Stop GIF-id8

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: GIF

7

Output: None.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Select Play Option

(d) Verify the GIF is iterating over frames as expected

(e) Select Play option again, verify no change occurs

(f) Select Stop

(g) Verify GIF stops playing

(h) Select Stop again, verify no change occurs

2. GIF shorten-id9

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: GIF
Output: Shortened GIF.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Shorten gif frames in use

(d) Play the GIF to verify it is correct

(e) Export the GIF

(f) Verify that the exported GIF represents the one playing, and is
shorter than the original

3. Automated GIF Shortening-id10
Type: Automated Functional.

8

Initial State: Image reading module driver
Input: GIF; Expected output GIF;
Output: Expected output GIF

How test will be performed:

(a) Test will load GIF from a known location

(b) Test will subset the GIF to a known frame set

(c) The GIF will then be compared to an expected GIF in a frame-
by-frame manner

(d) Each frame is to be cast to a bitmap then compared in a pixel-
by-pixel manner

(e) Pass if 100 percent of all pixels match

4. GIF speed-id11

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: GIF
Output: GIF inputted with different frame rate.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Increase frame hold time

(d) Play the GIF to verify it is slower than original

(e) Export the GIF

(f) Verify that the exported GIF represents the one playing, and is
slower, with respect to frame rate, than the original

9

3.1.4 Save All Frames in a GIF to Another Known Format

The user is able to save a GIF frame by frame to PNG, JPEG,
BMP and TIFF formats

1. Save PNG Frames to Known Location-id12

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: Folder path, GIF file.
Output: PNG Frames in specified folder named corresponding to frame.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Choose to export the image as a PNG set

(d) Select the folder where the PNGs will be dumped

(e) Verify the folder fills with GIF frames as PNGs

(f) Ensure a 3rd party program can load the PNGs. Software such as
Photoshop or MS paint is satisfactory

2. Save JPEG frames to known location-id13
This test is identical to id1 with PNG replaced with JPEG

3. Save BMP frames to known location-id14
This test is identical to id1 with PNG replaced with BMP

4. Save TIFF frames to known location-id15
This test is identical to id1 with PNG replaced with TIFF

3.1.5 Help Context

Verifies and validates the Help context

1. Help Context-id16

10

Type: Manual Functional.
Initial State: Program loaded
Input: None
Output: None

How test will be performed:

(a) Launch the program

(b) Select Help Context

(c) Goes through all Help Context options, verify spelling for profes-
sionality

(d) Close help context, verify program remains in same state as launch
put it in

3.1.6 Resize

Verifies a GIF can be exported and resized

1. resizing-id17

Type: Manual Functional.
Initial State: Program loaded
Input: GIF, Width, Height
Output: Resized GIF

How test will be performed:

(a) Launch the program

(b) Load a GIF

(c) Click Resize

(d) Enter a width and height value

(e) Choose save as and specify a file path.

(f) Verify the GIF was exported successfully and resized accordingly.

11

2. resizing-id18

Type: Manual Functional.
Initial State: Program loaded
Input: GIF, Width, Height
Output: Resized GIF

How test will be performed:

(a) Launch the program

(b) Load a GIF

(c) Click Resize

(d) Enter boundary cases for width and height values.

(e) Verify these boundary cases do not cause the program to crash.

3.2 Tests for Non-functional Requirements

Non-functional requirements constrain how the functional requirements and
services should be provided. They are related to the quality of the product,
such as the safety of utilizing the software or how accurate it is. These tests
ensure that the non-functional requirements of Gifitti are fulfilled.

3.2.1 Performance Requirements

Speed

1. speed-id19

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF with number of frames on the magnitude of 100’s of frames.

Output: Subsection of frames chosen to be exported.

How test will be performed: Create a timer inside the program to
output the time it takes to output the files, to a debug.txt file. The
time should be less than MAX EXPORT TIME.

12

2. speed-id20

Type: Manual Structural

Initial State: Program loaded;

Input: GIF.

Output: NA

How test will be performed: Load a GIF into the program. The time to
load the GIF and start playback should be less than MAX UI LOAD.
MAX UI LOAD is derived from the original system, GIF Viewer, so
make sure this test is performed on the same system as the benchmark
MAX UI LOAD is acquired from.

Precision

1. precision-id21

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF

Output: Subsection of frames chosen to be exported.

How test will be performed: Export the first 5 frames of the GIF.
Navigate to the save location and verify that the number of frames
saved is equal to 5.

Safety Critical

1. safety-id22

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF

Output: NA

13

How test will be performed: Export a subsection of frames from the
GIF to a folder. Try to export to the same folder again. The program
should ask if you are okay with overwriting the existing files.

2. safety-id23

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF

Output: NA

How test will be performed: Create a small partition of the HDD and fill
it so there is no available space. Try to export frames to this location.
The program should not continue the operation and inform the user
that disk space needs to be cleared before continuing.

3. robustness-id24

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF, Frame Range

Output: Selected frames if the input is a valid range.

How test will be performed: Attempt to enter invalid input to the
frame selection text boxes and record the result. Program should func-
tion normally (and as expected) for all entries. This includes negative
numbers, letters or other characters, and invalid ranges.

4 Tests for Proof of Concept

The proof of concept is a demonstration of the feasibility of the software
project. Ensuring that the Proof on Concept is producing the intended re-
sults can only be achieved through tests specifically designed to root out any
of the errors present in the build of the proof of concept. By successfully
testing the proof of concept and achieving the intended goals, it is shown
that the software-to-be is a possible entity.

14

4.1 Opening a GIF file for playback

Open GIF

1. OpenGif-01

Type: Manual Functional

Initial State: Program must be in normal state (form window is open
and playback window is blank).

Input: GIF File

Output: GIF is shown in playback window of the form.

How test will be performed: Click open button, select a file of type .gif,
and verify that the GIF loads and begins to playback within the form
window.

4.2 Saving a GIF file’s frames

Save GIF

1. SaveGif-01

Type: Manual Functional

Initial State: Program must be in playback state (form window is open
and playback window is playing GIF).

Input: GIF File

Output: GIF’s frames are saved as .bmp in folder specified.

How test will be performed: Click save frames button, select a folder,
and verify that the GIF’s frames are saved to the specified folder as
.bmp.

5 Comparison to Existing Implementation

5.1 Graphics/UI

1. GIF playback resolution is the same or better than Gif Viewer.

15

2. Program has the same button scheme as Gif Viewer (Open button to
open file, Extract Frames button to save frames).

3. Program has a help menu available that is similar to Gif Viewer, but
is available at all times.

4. Program’s color scheme and design resembles Gif Viewer.

5.2 Performance

1. GIF playback is at the same smoothness/framerate or better than Gif
Viewer.

2. Opening and saving a file takes the same amount of time or less than
Gif Viewer.

6 Unit Testing Plan

The unit testing plan is the devised set of tests that the code and the sys-
tem modules must undergo regardless of the system integration level. Unit
testing allows the project to have white box testing on the individual system
components where each unit test can be executed via testing frameworks in
C Sharp.

The testing framework being utilized is the native Visual Studio unit testing
framework: Microsoft.VisualStudio.TestTools.UnitTesting.

6.1 Unit testing of internal functions

Unit testing will be done on system methods that return a value, or modify
known objects in an expected way. A metric for passing is to be used on
all methods with an error tolerance, such as manipulation of a GIF (where
slight variations can exist in files that present the same). A method with no
expected error tolerance should be implemented as discreetly pass XOR fail.
All unit test inputs must fall in a known domain where the expected output
can be assumed. No stubs will be required for unit testing of functions.
Image reading is needed as a driver for any method using GIFs or other
image types. Any written unit test must utilize the C Sharp attributes for

16

Unit Testing provided by the framework. This ensures the system does not
build the testing package into the consumer version of the software. We plan
to have unit testing cover approximately 50 percent of our major methods
due to project time constraints.

6.2 Unit testing of output files

To test the validity of outputted GIF images, the testing system will hold
image resources of input frames, input GIFs, as well as the expected GIF
outputted. A known GIF should be manipulated and then compared to
the expected GIF in a frame-by-frame matter. To exclude meta-data issues
associated with GIF images, each frame should be cast to a known image
format such as a bitmap, then compared pixel-by-pixel. Frames should have
a 100 percent pixel match for the expected GIF to pass. A method for casting
Frames to bitmaps and then comparing the pixels, should be added to the
testing package prior to testing GIF manipulation. This function can then
be verified by simply sending the same image(s) as parameters.

7 Bibliography

Microsoft Visual Studio Unit Testing Framework, Microsoft Incorporated;
https://msdn.microsoft.com/en-us/library/dd264975.aspx

Questionnaire Template, Chin, J.P., Diehl, V.A., Norman, K.L.;
http://garyperlman.com/quest/quest.cgi?form=QUIS

17

https://msdn.microsoft.com/en-us/library/dd264975.aspx
http://garyperlman.com/quest/quest.cgi?form=QUIS

8 Appendix

This section contains symbolic parameters for this document and the usabil-
ity survey that will be delivered to a focus group upon initial completion of
the application.

8.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC CONSTANTS. Their
values are defined in this section for easy maintenance.

1. MAX UI LOAD: 3 Seconds

2. MAX EXPORT TIME: 10 Seconds

8.2 Usability Survey Questions

The survey will be delivered in the same format as the questionnaire for User
Interface Satisfaction. This questionnaire is composed of various questions
pertaining to several sub categories on a 0-9 scale. This includes the screen,
terminology and system information, learning, and system capabilities. It
also allows the user to list the most positive and negative aspects of the
program. The questionnaire can be found at garyperlman.com

18

http://garyperlman.com/quest/quest.cgi?form=QUIS

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Open GIF
	Save GIF
	GIF Start, Stop, Modify Length
	Save All Frames in a GIF to Another Known Format
	Help Context
	Resize

	Tests for Non-functional Requirements
	Performance Requirements

	Tests for Proof of Concept
	Opening a GIF file for playback
	Saving a GIF file's frames

	Comparison to Existing Implementation
	Graphics/UI
	Performance

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Bibliography
	Appendix
	Symbolic Parameters
	Usability Survey Questions

