
SE 3XA3: Test Report
Title of Project

Team #, Team Name
Student 1 name and macid
Student 2 name and macid
Student 3 name and macid

December 8, 2016

Contents

1 Functional Requirements Evaluation 1
1.1 Opening a GIF . 1
1.2 Save a GIF . 1
1.3 Start, Stop, Modify Length . 1
1.4 Save In Different File Format 2
1.5 Help Context . 2
1.6 Resize . 2

2 Nonfunctional Requirements Evaluation 2
2.1 Performance . 2

3 Unit Testing 2

4 Changes Due to Testing 3

5 Automated Testing 3

6 Trace to Requirements 4

7 Trace to Modules 4

8 Code Coverage Metrics 4

List of Tables

1 Revision History . ii
2 Trace Between Requirements and Modules 5

List of Figures

i

Table 1: Revision History

Date Version Notes

Date 1 1.0 Notes
Date 2 1.1 Notes

ii

This document ...

1 Functional Requirements Evaluation

1.1 Opening a GIF

There were four tests conducted to ensure that opening the GIF could be
performed by Gifitti without any problems. The first test was the ability
of the program to load a GIF. The program is loaded intially and a GIF is
selected that will be loaded into memory, being displayed to the user. The
results of this test matched the expected output. The next few tests pertain
to scenarios where it would cause errors in the program. They all start with
the program running but with different errornous inputs such as no file path,
null filepath, and inncorrect file type. All these inputs do not cause any
change in the running program which is the expected output. All the tests in
opening a GIF file has been successful in determining a proper functioning.

1.2 Save a GIF

There are three tests conducted that verify that the GIF modify in the pro-
gram is saved properly on the file system of the user’s computer. They all
start with an intial state of a GIF already loaded into the program and are
saved either in known, chosen or non-existing locations. When the user se-
lects a valid location, the program will save the GIF as it appears in the
program but gives an error if you try to save it in a non-existant location.
This is the expected output of the test performed.

1.3 Start, Stop, Modify Length

The test pertaining to the stop and start of the animation has the initial
conditions of a GIF already loaded in and will take input of a GIF either
in an animation or stopped on a frame, with the start and stop button
being pressed to pause or resume the animation. The program performs
these functions as expected. The testing for the modification of the GIF was
successful as the program takes a GIF and cuts it down to the specified frame
length. For example, a GIF of 20 frames was successfully shortned to frames
five to ten.

1

1.4 Save In Different File Format

Four tests were conducted in the exact same fashion where a GIF, already
loaded into the program, had its frames exported into an image format.
These four tests were extremely successful in exporting the images in their
specific file format (JPEG, PNG, TIFF, BMP) that did not overwrite each
other. The output matched the expected output.

1.5 Help Context

One test was performed to determine if the help section could be easily
acccesible and understandable. With the program loaded, the help tab was
tested if it opened and the definitions given were viewable. This test proved
to be successful in matching what the expected output was supposed to be.

1.6 Resize

A GIF was loaded into the program and a specific size was specified by the
user. The GIF would be resized to that specified size which matched the
expected output of that function. There was also a test that went through
the exact same process where it utilized edge case to determine if it crashed
the program. As expected, it did not crash it.

2 Nonfunctional Requirements Evaluation

2.1 Performance

3 Unit Testing

Unit testing has been done on system methods that return a value, or mod-
ify known objects in an expected way. A metric for passing is to be used on
all methods with an error tolerance, such as manipulation of a GIF (where
slight variations can exist in the output). A method with no expected error
tolerance has been implemented as discreetly pass XOR fail. All unit test
inputs fall in a known domain where the expected output can be assumed.
The unit tests were utilized to ensure that certain edge cases were considered
and that they did not crash the program.

2

To test the validity of outputted GIF images, the testing system holds
image resources of input frames, input GIFs, as well as the expected GIF out-
putted. A known GIF was manipulated and then compared to the expected
GIF in a frame-by-frame matter. To exclude meta-data issues associated
with GIF images, each frame was cast to a known image format such as a
bitmap, then compared pixel-by-pixel. Frames have had a 100 percent pixel
match for the expected GIF to pass.

Any written unit test utilizes the C Sharp attributes for Unit Testing
provided by the framework. This ensures the system does not build the
testing package into the consumer version of the software.

4 Changes Due to Testing

Through various test plans being enacted onto this program and other brute
force testing by persons who had no understanding of code we were able
to identify certain areas that were lacking. The general trend is that if a
command is successfully inputed, that the expected output, that is the GIF,
has been produced accurately for the majority of the time. The main issue
the project had to be adjusted to is the different methods and input could be
incorrectly given. For example, putting negative values for the frames wanted
out of GIF. Through these testing methadologies, no big corrections were
required but extensive testing revealed edge cases that were not previously
considered that needed to be corrected. For example, one of the testers
caught a work around the file selection to be able to select JPEG images as
our input. Of course, futher testing can always be done to catch a possible
edge case that has not been considered before.

5 Automated Testing

This test plan has utilized automated testing for the verification of the ma-
nipulation functionality that changes the GIF. That is to say that the ex-
ported GIF image will match what is created by the user of our product.
The only tool to be utilized to test this product will be the Microsoft Unit
Test Framework that is native with Visual Studio. Through this unit testing
framework, we will have it set up that it automatically does comparisons

3

of the GIF output to the expected output where it can in a quick manner
compare the pixel values to ensure complete accuracy. Throughout utilizing
this framework, we have always gotten successful results which allowed us to
identify other areas wher the majority of the problems occured.

6 Trace to Requirements

7 Trace to Modules

Refer to Test Plan to see corresponding Tests and Module Guide to see
corresponding Modules.

8 Code Coverage Metrics

4

Test Modules

ID1 MIL
ID2 MIL
ID3 MIL
ID4 MIL
ID5 MIL
ID6 MIL
ID7 MIL
ID8 MIL
ID9 MIL
ID10 MIL
ID11 MIL
ID12 M6
ID13 MIL
ID14 MIL
ID15 MIL
ID16 MIL
ID17 MIL
ID18 MIL
ID19 MIL
ID20 MIL
ID21 MIL
ID22 MIL
ID23 MIL
ID24 MIL

Table 2: Trace Between Requirements and Modules

5

	Functional Requirements Evaluation
	Opening a GIF
	Save a GIF
	Start, Stop, Modify Length
	Save In Different File Format
	Help Context
	Resize

	Nonfunctional Requirements Evaluation
	Performance

	Unit Testing
	Changes Due to Testing
	Automated Testing
	Trace to Requirements
	Trace to Modules
	Code Coverage Metrics

