SE 3XA3: Test Plan
Gifitti

Team #2,Gifitti
Nicolai Kozel kozeln
Riley McGee mcgeer
Pavle Arezina arezinp

October 31, 2016

Contents

1

General Information
1.1 Purpose e

1.2 Scope

1.3 Acronyms, Abbreviations, and Symbols
1.4 Overview of Document

Plan

2.1 Software Description
22 Test Team oo
2.3 Automated Testing Approach
2.4 Testing Tools
2.5 Testing Schedule L.

System Test Description
3.1 Tests for Functional Requirements

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

Open GIF
Save GIF o
Save GIF as Sprite Spreadsheet
GIF Start, Stop, Modify Length
Save all frames in a GIF to another known format . . .
Help Context
GIF reset
Frame Addition
Frame Drawing

3.2 Tests for Nonfunctional Requirements

3.2.1
3.2.2

Look and Feel Requirements
Performance Requirements

Tests for Proof of Concept
4.1 Opening a GIF file for playback
4.2 Saving a GIF file’s frames

Comparison to Existing Implementation
5.1 Graphics/UL o
5.2 Performance

6 Unit Testing Plan
6.1 Unit testing of internal functions 20
6.2 Unit testing of output files 21
7 Appendix
7.1 Symbolic Parameterso oL 22
7.2 Usability Survey Questions 22

List of Tables

1 Revision History
2 Table of Abbreviations
3 Table of Definitions

List of Figures

Table 1: Revision History

Date Version Notes

October 22 1.0 Adding sections 1,2, and 7

October 24 1.1 Adding functional req tests

October 25 1.2 Adding non functional req tests.

October 30 1.3 Adding Unit tests, and automated func-

tional tests

i

This document describes the test plan for the Gifitti application developed
for 3XA3 at McMaster University.

1 General Information

1.1 Purpose

The purpose of the testing plan is to establish a set of tests that will test
the product in its entirety to ensure that it fulfills the intended purpose.
This would be accomplished through verifying if Gifitti satisfies the different
functional and non-functional requirements that were assigned to it. Having
test plans for any product is essential to be able to understand how well the
product is satisfying the clients needs and if there is room for improvement.

1.2 Scope

This testing plan is utilizing different testing methods, automated and user
created, and various techniques, black box and white box testing, to establish
if the project has any need for improvement. Two different products will be
analyzed through these tests, the Proof of Concept and the first iteration of
the final product. Proof of Concept will be tested to ensure that a basic rep-
resentation of the product was demonstrated while the requirements should
be tested when the first iteration of the final product is completed.

1.3 Acronyms, Abbreviations, and Symbols

Table 2: Table of Abbreviations
Abbreviation Definition

GIF Graphics Interchange Format
BMP Bitmap

JPEG Joint Photographic Experts Group
PNG Portable network Graphics

TIFF Tag Image File Format

Table 3: Table of Definitions

Term

Definition

GIF

Sprite Sheet
Dialog Class
File Path

Bitmap

Frame
Pixel

TIFF

JPEG

PNG

A lossless format for image files that supports both an-
imated and static images.

A series of images (usually animation frames) combined
into a larger image (or images).

Specifies the base class used for displaying dialog boxes
on the screen.

A path, the general form of the name of a file or direc-
tory, specifies a unique location in a file system.

a representation in which each item corresponds to one
or more bits of information, especially the information
used to control the display of a computer screen.

One of the many still images which compose the com-
plete moving picture.

A minute area of illumination on a display screen, one
of many from which an image is composed.

A common format for exchanging raster graphics
(bitmap) images between application programs, includ-
ing those used for scanner images.

A commonly used method of lossy compression for dig-
ital images, particularly for those images produced by
digital photography.

A raster graphics file format that supports lossless data
compression.

1.4 Overview of Document

The testing plan is broken up into distinct parts. Under the heading Plan,
the basic information will be given on the product and the tests. System
Test Description will contain the specific tests for the functional require-
ments stated for the product. These tests will broke down into what type of
tests they are and the results they achieve depending on their specific input.
Testing for non-functional requirements will follow the same format where
input will be given and the output will be measured for all of the provided
non-functional requirements. Under tests for proof of concept, the same for-
mat will be utilized as the functional testing but it will not be testing the
requirements for the project but for the goals of the proof of concept. Fur-
thermore there will be tests to compare Gifitti to the original product it was
based on and unit testing plans to ensure correct output is achieved through
proper internal functions.

2 Plan

2.1 Software Description

Gifitti is a software product that allows the common user to be able to
manipulate for their entertainment or commercial needs. With an intuitive
design, it allows a person who has never done any kind of graphical editing
to be able to manipulate a GIF to achieve the person’s particular design.
This product can also serve a commercial purpose in allowing the creation
of sprite spreadsheets and a quick production of GIFs.

2.2 Test Team

The team to implement the test plan for the project will be Pavle Arezina,
Riley McGee, Nicolai Kozel.

2.3 Automated Testing Approach

This test plan will utilize automated testing for verification that the GIF
manipulation functionality changes the GIF properly. Such that the exported
GIF image will match what is created by the user of our product.

2.4 Testing Tools

The only tool to be utilized to test this product will be the Microsoft Unit
Test Framework that is native with Visual Studio.

2.5 Testing Schedule
See Gantt Chart here.

3 System Test Description

Testing allows the developers to detect errors that the test cases cover. With
the functional and non-functional requirements the developer knows the ex-
pected results and can evaluate the results of tests accordingly. Pass or fail
values are assigned to executed tests discreetly unless the test is to have an
error tolerance for passing.

3.1 Tests for Functional Requirements

Functional requirements prescribe what services the software should provide.
They capture the intended software effects on the environment and appli-
cability conditions. These tests ensure that the functional requirements of
Gifitti are fulfilled or the tests will help to discover any functional require-
ments not satisfied by Gifitti.

3.1.1 Open GIF

The User is able to open a GIF from a specified location

1. Select Properly Formatted GIF- id1

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File path for GIF. Output: System loads gif into
memory, displays it to the user in the gif view.

How test will be performed:

(a) Launch the program
(b) Select Open

https://gitlab.cas.mcmaster.ca/kozeln/Gifitti/tree/master/ProjectSchedule

(¢) From the Open dialog specify a path to a known gif image

(d) After the image is loaded verify that it is being displayed, and
resides in system memory

. No File Selected in File Dialog-id2

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: None. Output: No image loaded.

How test will be performed:

(
(

a) Launch the program
b) Select Open
)
)

(c

(d) Verify program remains open, and no image is loaded

Select open option with no file path specified

. Close File Dialog-id3

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: None. Output: No image loaded.

How test will be performed:

(a) Launch the program

(b) Select Open

(c) Close the file dialog
)

(d) Verify program remains open, and no image is loaded

. Open Random Non-GIF File-id4

Type: Manual Functional. Initial State: Program loaded; no GIF
Loaded. Input: File that is not a GIF. Output: No image loaded.

How test will be performed:

(a) Launch the program

(b) Select Open

(c) Try and select a file that is not a GIF or specify a file path to a
known file

(d) Verify program remains open, and no image is loaded

3.1.2 Save GIF
The user is able to save a GIF to a specified location

1. Save a GIF to a Known Location-id1

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:

(a) Launch the program
(b) Open a GIF
(c) Select "Save As...”
()

)

(e) Verfify the loaded and saved GIF's are identical

Specify a known system file path and a saved image name

2. Save GIF to a Non-existant Location- id2

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.

Output: GIF file not saved to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF
(c) Select "Save As...”

(d) Specify a system file path known not to exist and a saved image
name

(e) Verify the user is informed that the file path does not work and
the system remains running

3. Save GIF to Opened Location- id3

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.
Input: File path, GIF file.
Output: GIF file saved to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Modify the GIF

(d) Select save image option
)

(e) Verify new GIF is saved over the originally opened GIF

3.1.3 Save GIF as Sprite Spreadsheet

The user is able to save a GIF as a sprite spreadsheet in a specified
location

1. Save Sprite Spreadsheet to a Known Location-id1

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.

Input: File path, GIF file.
Output: GIF file saved as a Sprite Spreadsheet to specified location.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c) Choose to export the image as a sprite spreadsheet
)

(d) Verify that the GIF is a single image representation of the GIF
frames

3.1.4 GIF Start, Stop, Modify Length

The user is able to start (play), start and stop GIF's, testing of GIF
shortening and playback speed occurs here as well

1. Play Stop GIF-id1

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: GIF

Output: None.

How test will be performed:

(a
(b

(c

) Launch the program
)
)
(d) Verify the GIF is iterating over frames as expected
)
)
)
)

Open a GIF
Select Play Option

e) Select Play option again, verify no change occurs

(
(f) Select Stop

(g) Verifiy GIF stops playing
(h

Select Stop again, verify no change occurs

2. GIF shorten-id2

Type: Manual Functional.
Initial State: Program loaded; GIF Loaded.

8

Input: GIF
Output: Shortend GIF.

How test will be performed:

(a) Launch the program
(b) Open a GIF
(c) Shorten gif frames in use
(d) Play the GIF to verify it is correct
e) Export the GIF
)

Verify that the exported GIF represents the one playing, and is
shorter than the original

(
(

. Automated GIF Shortening-id3

Type: Automated Functional.

Initial State: Image reading module driver
Input: GIF; Expected output GIF;
Output: Expected output GIF

How test will be performed:

(a) Test will load GIF from a know location
(b) Test will subset the GIF to a known frame set

(¢) The GIF will then be compared to an expected GIF in a frame-
by-frame manner

(d) Each frame is to be cast to a bitmap then compared in a pixel-
by-pixel manner

(e) Pass if 100 percent of all pixels match
. GIF speed-id4
Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.
Input: GIF

Output: GIF inputted with different frame rate.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(¢) Increase frame hold time

(d) Play the GIF to verify it is slower than original

e) Export the GIF
)

Verify that the exported GIF represents the one playing, and is
slower, with respect to frame rate, than the original

(
(f

3.1.5 Save All Frames in a GIF to Another Known Format

The user is able to save a GIF frame by frame to PNG, JPEG,
BMP and TIFF formats

1. Save PNG Frames to Known Location-id1

Type: Manual Functional.

Initial State: Program loaded; GIF Loaded.

Input: Folder path, GIF file.

Output: PNG Frames in specified folder named corresponding to frame.

How test will be performed:

(a) Launch the program

(b) Open a GIF

(c¢) Choose to export the image as a PNG set

(d) Select the folder where the PNGs will be dumped
(e) Verify the folder fills with GIF frames as PNGs
(f) Ensure a 3rd party program can load the PNGs. Software such as
Photoshop or MS paint is satisfactory

10

2. Save JPEG frames to known location-id2
This test is identical to id1 with PNG replaced with JPEG

3. Save BMP frames to known location-id3
This test is identical to id1 with PNG replaced with BMP

4. Save TIFF frames to known location-id4
This test is identical to id1 with PNG replaced with TIFF
3.1.6 Help Context

Verifies and validates the Help context

1. Help Context-id1

Type: Manual Functional.
Initial State: Program loaded
Input: None

Output: None

How test will be performed:

(a) Launch the program
(b) Select Help Context

(¢) Reccurse through all Help Context options, verifiy spelling for
professionality

(d) Close help context, verify program remains in same state as launch
put it in

3.1.7 GIF Reset
Verifies and validates GIF can be reset to loaded state

1. Modify Attributes-id1

Type: Manual Functional.
Initial State: Program loaded; GIF loaded

11

Input: GIF
Output: Inputted GIF

How test will be performed:
(a) Launch the program
(b) Load a GIF
(c) Modify GIF attributes such as frame length, coloration etc
(d) Select reset

)

(e) Verify GIF in is the same as current GIF that is shown to the user

2. Modify Via Adding a Frame-id2

Type: Manual Functional.

Initial State: Program loaded; GIF loaded
Input: GIF, inputted frame

Output: Inputted GIF

How test will be performed:
(a) Launch the program

(b) Load a GIF

(c) Modify GIF by adding a frame

(d)

(e) Verify GIF loaded has added frame removed

Select reset

3. Modify Via Frame Subset Selected-id3

Type: Manual Functional.

Initial State: Program loaded; GIF loaded
Input: GIF

Output: Inputted GIF

How test will be performed:

12

(a) Launch the program
(b) Load a GIF

(c) Modify GIF by subsetting what frames are used
()
(e) Verify GIF loaded returns to full GIF state

Select reset

4. Automated Modify Via Adding a Frame-id4
Type: Automated Functional.
Initial State: Image reading module driver
Input: GIF; BMP image;
Output: Inputted GIF

How test will be performed:

(a) Test will load GIF from a know location
(b) Test will load the frame being added from a known location
(¢) The frame will be added to a specific spot of the GIF
(d) The GIF will then be reset
)

(e) The stored GIF is to be frame by frame compared to the original
GIF

(f) Each frame is to be cast to a bitmap then compared in a pixel-
by-pixel manner

(g) Pass if 100 percent of all pixels match

3.1.8 Frame Addition

Verifies frame addition

1. Add GIFs-id1l

Type: Manual Functional.
Initial State: Program loaded
Input: GIF x 2

13

Output: Concatinated GIFs

How test will be performed:

(a) Launch the program

(b) Load a Gif

(c) Select a frame and import a gif

(d) Gif should subset from frame to end of the imported gif
)

(e) Verify the concatination holds on export

2. Add PNGs-id2

Type: Manual Functional.

Initial State: Program loaded

Input: GIF; PNG image

Output: GIF with PNG input added as a frame

How test will be performed:

(a) Launch the program

(b) Load a Gif

(c) Select a frame and import a PNG

(d) Verify PNG is added after current frame in GIF
(e) Verify the the new GIF is exported the same way

3. JPEG frames to GIF-id3
This test is identical to id2 with PNG replaced with JPEG

4. TIFF frames to GIF-id4
This test is identical to id2 with PNG replaced with TIFF

5. BMP frames to GIF-id5
This test is identical to id2 with PNG replaced with BMP

14

6. Automated Testing of BMP Frames to GIF-id6 Type: Automated
Functional.
Initial State: Image reading module driver
Input: GIF; BMP image; Expected output GIF
Output: GIF with BMP input added as a frame

How test will be performed:

Test will load GIF from a know location

(a)
(b)
(c)
(d) The new GIF is to be compared to expected through breaking
cach down into frames

Test will load the frame being added from a known location

The frame will be added to a specific spot of the GIF

(e) Cast each frame and pixel-by-pixel compare the output to the
expected

(f) Pass if 100 percent of all pixels match

3.1.9 Frame Drawing

Verifies and validates ability to draw on frames

1. Single Frame Drawing-id1

Type: Manual Functional.

Initial State: Program loaded; GIF loaded

Input: GIF

Output: Inputted Gif with image overlay on a frame

How test will be performed:

(a
(b
(c
(d

Launch the program
Load a GIF

Make an obvious edit to a frame via drawing

~— ~— ~—

Export the GIF and verify obvious change remains

15

2. Multi Frame Drawing-id1

Type: Manual Functional.

Initial State: Program loaded; GIF loaded

Input: GIF

Output: Inputted Gif with image overlay many frames

How test will be performed:

(a) Launch the program
(b) Load a GIF
(c) Make an obvious edit to a frame via drawing
(d) Make the edit extend over a set of frames
)

(e) Export the GIF and verify obvious change remains on all selected
frames

3.2 Tests for Nonfunctional Requirements

Non-functional requirements constrain how the functional requirements and
services should be provided. They are related to the quality of the product,
such as the safety of utilizing the software or how accurate it is. These tests
ensure that the non-functional requirements of Gifitti are fufilled.

3.2.1 Look and Feel Requirements
Audio Test
1. audio-01

Type: Manual Structural

Initial State: Program loaded;

Input: A file type not supported by Gifitti.
Output: Error sound played through speakers.

How test will be performed: When loading a file into the program,
select a file type other than a .gif.

16

2. audio-02

Type: Manual Structural

Initial State: Program loaded; GIF loaded;

Input: GIF

Output: Affirmative ding sound played through speakers.

How test will be performed: Output a subset of frames from the GIF.

3.2.2 Performance Requirements
Speed

1. speed-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF with number of frames on the magnitude of 100’s of frames.
Output: Subsection of frames chosen to be exported.

How test will be performed: Create a timer inside the program to
output the time it takes to output the files, to a debug.txt file. The
time should be less than MAX_EXPORT_TIME.

2. speed-02

Type: Manual Structural
Initial State: Program loaded;
Input: GIF.

Output: NA

How test will be performed: Load a GIF into the program. The time to
load the GIF and start playback should be less than MAX_UI_LOAD.

17

Precision

1. precision-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.

Input: GIF

Output: Subsection of frames chosen to be exported.

How test will be performed: Export the first 5 frames of the GIF.
Navigate to the save location and verify that the number of frames
saved is equal to 5.

Safety Critical

1. safety-01

Type: Manual Structural

Initial State: Program loaded; GIF loaded.
Input: GIF

Output: NA

How test will be performed: Export a subsection of frames from the
GIF to a folder. Try to export to the same folder again. The program
should ask if you are okay with overwriting the existing files.

2. safety-02

Type: Manual Structural

Initial State: Program loaded; GIF loaded.
Input: GIF

Output: NA

How test will be performed: Create a small partition of the HDD and fill
it so there is no available space. Try to export frames to this location.
The program should not continue the operation and inform the user
that disk space needs to be cleared before continuing.

18

4 Tests for Proof of Concept

The proof of concept is a demonstration of the feasibility of the software
project. Ensuring that the Proof on Concept is producing the intended re-
sults can only be achieved through tests specifically designed to root out any
of the errors present in the build of the proof of concept. By successfully
testing the proof of concept and achieving the intended goals, it is shown
that the software-to-be is a possible entity.

4.1 Opening a GIF file for playback
Open GIF

1. OpenGif-01

Type: Manual Functional

Initial State: Program must be in normal state (form window is open
and playback window is blank).

Input: GIF File
Output: GIF is shown in playback window of the form.

How test will be performed: Click open button, select a file of type .gif,
and verify that the GIF loads and begins to playback within the form
window.

4.2 Saving a GIF file’s frames
Save GIF

1. SaveGif-01

Type: Manual Functional

Initial State: Program must be in playback state (form window is open
and playback window is playing GIF).

Input: GIF File

Output: GIF’s frames are saved as .bmp in folder specified.

19

5.1

5.2

6

How test will be performed: Click save frames button, select a folder,
and verify that the GIF’s frames are saved to the specified folder as
.Jbmp.

Comparison to Existing Implementation

Graphics/UI

. GIF playback resolution is the same or better than Gif Viewer.

Program has the same button scheme as Gif Viewer (Open button to
open file, Extract Frames button to save frames).

Program has a help menu available that is similiar to Gif Viewer, but
is available at all times.

Program’s color scheme and design resembles Gif Viewer.

Performance

. GIF playback is at the same smoothness/framerate or better than Gif

Viewer.

. Opening and saving a file takes the same amount of time or less than

Gif Viewer.

Unit Testing Plan

The unit testing plan is the devised set of tests that the code and the sys-
tem modules must undergo regardless of the system integration level. Unit
testing allows the project to have white box testing on the individual system

components where each unit test can be executed via testing frameworks in
C Sharp.

The testing framework being utilized is the native Visual Studio unit testing
framework: Microsoft.VisualStudio.TestTools.UnitTesting.

20

6.1 Unit testing of internal functions

Unit testing will be done on system methods that return a value, or modify
known objects in an expected way. A metric for passing is to be used on
all methods with an error tolerance, such as manipulation of a GIF (where
slight variations can exist in files that present the same). A method with no
expected error tolerance should be implemented as discreetly pass XOR fail.
All unit test inputs must fall in a known domain where the expected output
can be assumed. No stubs will be required for unit testing of functions.
Image reading is needed as a driver for any method using GIFs or other
image types. Any written unit test must utilize the C Sharp attributes for
Unit Testing provided by the framework. This ensures the system does not
build the testing package into the consumer version of the software. We plan
to have unit testing cover approximately 50 percent of our major methods
due to project time constraints.

6.2 Unit testing of output files

To test the validity of outputted GIF images, the testing system will hold
image resources of input frames, input GIFs, as well as the expected GIF
outputted. A known GIF should be manipulated and then compared to
the expected GIF in a frame-by-frame matter. To exclude meta-data issues
associated with GIF images, each frame should be cast to a known image
format such as a bitmap, then compared pixel-by-pixel. Frames should have
a 100 percent pixel match for the expected GIF to pass. A method for casting
Frames to bitmaps and then comparing the pixels, should be added to the
testing package prior to testing GIF manipulation. This function can then
be verified by simply sending the same image(s) as parameters.

References

21

7 Appendix

This section contains symbolic parameters for this document and the usabil-
ity survey that will be delivered to a focus group upon initial completion of
the application.

7.1 Symbolic Parameters
The definition of the test cases will call for SYMBOLIC_CONSTANTS. Their

values are defined in this section for easy maintenance.

1. MAX _UI_LOAD: 3 Seconds
2. MAX_EXPORT_TIME: 10 Seconds

7.2 Usability Survey Questions

The survey will be deliverered in the same format as the Questionaire for User
Interface Satisfaction. This questionnaire is composed of various questions
pertaining to several sub categories on a 0-9 scale. This includes the screen,
terminology and system information, learning, and system capabilities. It
also allows the user to list the most positive and negative aspects of the
program. The questionnaire can be found at garyperlman.com

22

http://garyperlman.com/quest/quest.cgi?form=QUIS

	General Information
	Purpose
	Scope
	Acronyms, Abbreviations, and Symbols
	Overview of Document

	Plan
	Software Description
	Test Team
	Automated Testing Approach
	Testing Tools
	Testing Schedule

	System Test Description
	Tests for Functional Requirements
	Open GIF
	Save GIF
	Save GIF as Sprite Spreadsheet
	GIF Start, Stop, Modify Length
	Save all frames in a GIF to another known format
	Help Context
	GIF reset
	Frame Addition
	Frame Drawing

	Tests for Nonfunctional Requirements
	Look and Feel Requirements
	Performance Requirements

	Tests for Proof of Concept
	Opening a GIF file for playback
	Saving a GIF file's frames

	Comparison to Existing Implementation
	Graphics/UI
	Performance

	Unit Testing Plan
	Unit testing of internal functions
	Unit testing of output files

	Appendix
	Symbolic Parameters
	Usability Survey Questions

