Table 1: Revision History

Date Developer(s) Change

Sept. 26 Pavle Arezina ~ Added Team Meeting, Communication, Member
Roles

Sept. 26 Nicolai Kozel Added project schedule section

Sept. 26 Riley McGee Added Proof of Concept Demonstration
Plan,Technology, & Git Workflow sections

Sept.29 Pavle Arezina Updated Introduction and Formatting

Sept.29 Nicolai Kozel Final Proofreading

SE 3XA3: Development Plan
Gifitti

Team 2, Gifitti
Pavle Arezina arezinp
Nicolai Kozel kozeln
Riley McGee mcgeer

The Development Plan for Gifitti is to clearly state how the project will
be created. The team meeting and communication plan will allow us to work
cohesively as a group with clearly defined team member roles. To ensure that
the team can work on the project without conflicts, the git workflow plan is
defined and the risks pertaining to Gifitti are stated to develop plans to avoid
them. The presentation of the code and documentation has been constrained
to guidelines to ensure a uniform project is produced on the schedule defined
by the group members.

1 Team Meeting Plan

Team meetings will occur on Mondays and Tuesdays. The meetings on Monday
will happen twice a day when possible during the lab periods. Tuesday meetings
will happen once a day on the first floor of Thode Library. While all three of
the group members will contribute during the team meetings, Nick will act as
the Team Leader and Riley will scribe the meetings. The agenda will follow the
Harvard guidelines. (See Gifitti/ReferenceMaterial/Harvard Guidlines.pdf)

2 Team Communication Plan

Facebook messaging will be utilized to ask simple questions about the project
to other group members. To track errors in the documentation or code, GitLab
issue tracking will be used to help communicate these errors. A Combination of
texting and calling will be used to contact a group member when they cannot be
reached through Facebook messaging. Skype is the primary method to conduct
calls for team meetings when physically meeting is infeasible. To contact a T.A.
or Professor due to questions or issues with the project, mcmaster e-mail will
be used.

3 Team Member Roles

Nick will be in charge and will be the Team Leader. His job is to assign tasks
and provide a clear goal on what needs to be completed. He is knowledgeable
on Gantt charts, git, image manipulation and C#. Riley will be responsible
for scribing the team meetings and is experienced with git and C#. Pavles
responsibility will involve the documentation because he is an expert in git and
LaTex.

4 Git Workflow Plan

The development of Gifitti is to follow the Feature Branch git workflow.

4.1 When and how to Create a Feature Branch

e The repository will have no direct code changes made on a local version of
master. However all documentation changes and additions may directly be
added to master directly. All development of code is to occur on a feature
branch from master, each branch is unique to the feature it addresses.
Once a feature is completed and has been reviewed and tested it is to be
merged into master. This merge should link the resolution of the issue on
GitLab that it solves.

e Feature branch names should follow the following naming practices:

— Be brief in name of the branch, descriptive in the merge into master
after complete

— Keywords such as fix (for fixing bugs), ui (forview additions), fea-
ture (for general additions) followed by a brief of what thebranch
addresses. i.e. ui/file-menu, fix/console-fault, feature/save-as-sprite
etc.

— As seen in the examples above follow a <Category>/<Brief> with
words separated with -

e Commit and push local feature branches as a backup

e Pull requests arenot needed for this project. We will all act as admins to
the repository and will review feature branches up to date with master as
a team before the featurebranch creator merges it into master. This step
is only needed for major changes.

4.2 Brief List of Commands for the Workflow

Make a new feature

git checkout -b <Category>/<Brief> master

Backup Local Feature Branch

git push -u origin <Category>/<Brief>

Publish Feature into Master

git checkout master git pull git pull <Category>/<Brief> git push

Committing

All commits are done to the feature branch for code, and master for documen-
tation

4.3 Tags
e All deliverables should be tagged appropriately to mark that it is complete.

e All code releases should be tagged with a version, x.y.z where x is a major
update, y is a minor update, andz is a bug fix.

4.4 Milestones
e Mark deliverables and their due dates.
e All milestones are found in the project schedule

e Deliverablesare considered major updates to the project.

5 Proof of Concept Demonstration Plan

Risk 1
Reading in GIFs. GIF files must be read into Gifitti andparsed.

Plan for demonstrate risk 1’s feasibility

By the project demo an open source library that provides this functionality will
be chosen and implemented into a base design.

Risk 2

Sprite Spreadsheet outputs for the currently used gif. This issue is a risk due
to it being image manipulation. *A sprite spreadsheet is an image file where
animation is broken into frames while stored in one location.

Plan for demonstrate risk 2’s feasibility

Image manipulation will be done with an external api. By the project demo
this will be chosen. It can be proven that it will be achievable via functionality
of the selected api.

Risk 3

The project is only usable on Windows platform, until . NET is made executable
on Linux and OSX platforms.

Plan for demonstrate risk 3’s feasibility

All demonstrations, and development must be done on a windows platform.

Risk 4

Testing is time consuming for all major components as the application is based
on user input and experience.

Plan for demonstrate risk 4’s feasibility

Some test cases that can be used to validate the system will be presented during
the project demo to show that we can automate most of the testing that does
not rely on user interaction. This saves time for the user tests.

6 Technology

Note: Currently, a Windows platform must be used to run and develop this
project. In the near future .Net will be ported to OSX and Linux.
6.1 Programming Language(s)

The majority of all development is in C# however WPF will also be used for
UL

6.2 IDE
Visual Studio 2015 Community

6.3 Testing Framework

Visual C# Test Suite, specifically unit test. This platform comes integrated
with Visual Studio 2015 Community.

6.4 Document Generation

e Doxygen for code documentation.
e Visual Studio for any post code software model generation

e Gantt Project for the project schedule

7 Coding Style

Coding standard utilized for the project is the .NET Framework Development
Guide.

8 Project Schedule

The Gantt Chart outlining the project schedule can befound here.

9 Project Review

https://msdn.microsoft.com/en-us/library/hh156542(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/hh156542(v=vs.110).aspx
https://gitlab.cas.mcmaster.ca/kozeln/Gifitti/tree/master/ProjectSchedule

	Team Meeting Plan
	Team Communication Plan
	Team Member Roles
	Git Workflow Plan
	When and how to Create a Feature Branch
	Brief List of Commands for the Workflow
	Tags
	Milestones

	Proof of Concept Demonstration Plan
	Technology
	Programming Language(s)
	IDE
	Testing Framework
	Document Generation

	Coding Style
	Project Schedule
	Project Review

