SE 3XA3: Software Requirements
Specification
Title of Project

Team #, Team Name
Riley McGee, mcgeer
Student 2 name and macid
Student 3 name and macid

November 11, 2016

Contents

1 Introduction 1
2 Anticipated and Unlikely Changes 2
2.1 Anticipated Changes 2
2.2 Unlikely Changes, 3

3 Module Hierarchy 3
4 Connection Between Requirements and Design 4
5 Module Decomposition 6
5.1 Hardware Hiding Modules (M1) 6
5.2 Behaviour-Hiding Module (M2) 6
5.2.1 Image Processing Module (M4) 7

5.2.2 Image Loading Module (M5) 7

5.2.3 GIF Model Module (M8) 7

5.2.4 View-Model Module (M9) 7

5.3 Software Decision Module (M3) 8
5.3.1 GIF Transformation Module (M7) 8

5.3.2 Image Conversion Module (M6) 8

6 Traceability Matrix 9
7 Use Hierarchy Between Modules 10

List of Tables

=W N =

Revision History 1
Module Hierarchy, 4
Trace Between Requirements and Modules 9
Trace Between Anticipated Changes and Modules 9

List of Figures

1

Use hierarchy among modules 10

1 Introduction

Decomposing a system into modules is a commonly accepted approach to de-
veloping software. A module is a work assignment for a programmer or pro-
gramming team (Parnas et al., 1984). We advocate a decomposition based on
the principle of information hiding (Parnas, 1972). This principle supports
design for change, because the “secrets” that each module hides represent
likely future changes. Design for change is valuable in SC, where modifica-
tions are frequent, especially during initial development as the solution space
is explored.

Our design follows the rules layed out by Parnas et al. (1984), as follows:

e System details that are likely to change independently should be the
secrets of separate modules.

e Fach data structure is used in only one module.

e Any other program that requires information stored in a module’s data
structures must obtain it by calling access programs belonging to that
module.

After completing the first stage of the design, the Software Requirements
Specification (SRS), the Module Guide (MG) is developed (Parnas et al.,
1984). The MG specifies the modular structure of the system and is intended
to allow both designers and maintainers to easily identify the parts of the
software. The potential readers of this document are as follows:

e New project members: This document can be a guide for a new project
member to easily understand the overall structure and quickly find the
relevant modules they are searching for.

Table 1: Revision History

Date Version Notes

November 9th 1.0 Added Module Hierarchy
2016

November 9th 1.1 Added Module Decomposition
2016

e Maintainers: The hierarchical structure of the module guide improves
the maintainers’ understanding when they need to make changes to the
system. It is important for a maintainer to update the relevant sections
of the document after changes have been made.

e Designers: Once the module guide has been written, it can be used to
check for consistency, feasibility and flexibility. Designers can verify the
system in various ways, such as consistency among modules, feasibility
of the decomposition, and flexibility of the design.

The rest of the document is organized as follows. Section 2 lists the
anticipated and unlikely changes of the software requirements. Section 3
summarizes the module decomposition that was constructed according to
the likely changes. Section 4 specifies the connections between the software
requirements and the modules. Section 5 gives a detailed description of
the modules. Section 6 includes two traceability matrices. One checks the
completeness of the design against the requirements provided in the SRS.
The other shows the relation between anticipated changes and the modules.
Section 7 describes the use relation between modules.

2 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness
of the change, the possible changes are classified into two categories. Antic-
ipated changes are listed in Section 2.1, and unlikely changes are listed in
Section 2.2.

2.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden
inside the modules. Ideally, changing one of the anticipated changes will
only require changing the one module that hides the associated decision.
The approach adapted here is called design for change.

AC1: The specific hardware on which the software is running.

AC2: The format of the initial input data.

2.2 Unlikely Changes

The module design should be as general as possible. However, a general sys-
tem is more complex. Sometimes this complexity is not necessary. Fixing
some design decisions at the system architecture stage can simplify the soft-
ware design. If these decision should later need to be changed, then many
parts of the design will potentially need to be modified. Hence, it is not
intended that these decisions will be changed.

UC1: Input/Output devices (Input: File and/or Keyboard, Output: File,
Memory, and/or Screen).

UC2: There will always be a source of input data external to the software.

3 Module Hierarchy

This section provides an overview of the module design. Modules are sum-
marized in a hierarchy decomposed by secrets in Table 2. The modules listed
below, which are leaves in the hierarchy tree, are the modules that will ac-
tually be implemented.

M1: Hardware-Hiding Module
M2: Behaviour-Hiding Module
M3: Software Decision Module
M4: Image Processing Module
M5: Image Loading Module

M6: Image Conversion Module
MT7: GIF Transformation Module
MS8: GIF Model Module

M9: View-Model Module

The Hardware-Hiding Module is Handled in full by the C Sharp Sytem
Libraries, and requires no further implementation.

3

Level 1 Level 2

Hardware-Hiding

Module

View-Model Module
Behaviour-Hiding GIF Model Module
Module Image Loading Module

Image Processing Module

Software Decision

Module GIF Transformation Module

Image Conversion Module

Table 2: Module Hierarchy

4 Connection Between Requirements and De-
sign

The design of the system is intended to satisfy the requirements developed
in the SRS. In this stage, the system is decomposed into modules. The
connection between requirements and modules is listed in Table 3. Below is
a simple description of the design decisions and how they impact the major
functional and non functional requirements.

1. User can provide input and get ouput from the system (i.e open and
save a GIF).

This requirement is satisfied through the use of buttons/file dialogs
and is handled primary through C#’s built in libraries as well as the
Image Loading Module and Image Conversion Module.

2. Once a GIF is loaded by the user, it must playback in the window and
playback must be able to be stopped and started by the user.

This requirement is primarily handled by the GIF Model Module. To

ensure this requirement is met, the design is being implemented so that
the GIF Model will handle the frames and functions of playing back
the GIF.

. The user must be able to modify the GIF including clipping, frame
injection, and possibly add text or other make modifications.

This requirement is met through the GIF Transformation Module. This
module contains all the possibilities of modifications that can be ap-
plied to the GIF. These functions are seperated from the GIF Model
Module to provide us with the ability to make changes to the model
without affecting the behavior of the system and having to modify all of
the transformation functions. These functions will also be implemented
through the use of buttons and click gestures.

. In general, the system must operate at a high performance rate. This
includes a high frame rate during playback and fast/responsive UT ele-
ments and load times.

Some design decisons that were made to ensure this were how the
modules were decomoposed and the choice of image framework to work
with. The system is decomposed in such a way to ensure the code is
efficient and any algorithms used operate at an optimal rate. The Ul
elements and file manipulation methods were specifically chosen to be
the fastest possible to ensure a positive experience for the user.

. The program should have a clean Ul design and easily usable by people
older than 10 years old.

Design decisions were made during the implementation of the system
to ensure this requirement. These included the size of the buttons, the
font size/colors, and the general layout. The original application (GIF
Viewer) had a fairly usable interface already, so we simply expanded off
of this but attempted to make it even simpler and cleaner by eliminat-
ing unneccesary and confusing submenus. Instead, every button serves
a single purpose.

5 Module Decomposition

Modules are decomposed according to the principle of “information hiding”
proposed by Parnas et al. (1984). The Secrets field in a module decomposition
is a brief statement of the design decision hidden by the module. The Services
field specifies what the module will do without documenting how to do it.
For each module, a suggestion for the implementing software is given under
the Implemented By title. If the entry is OS, this means that the module
is provided by the operating system or by standard programming language
libraries. Also indicate if the module will be implemented specifically for the
software.

Only the leaf modules in the hierarchy have to be implemented. If a dash
(-) is shown, this means that the module is not a leaf and will not have to be
implemented. Whether or not this module is implemented depends on the
programming language selected.

5.1 Hardware Hiding Modules (M1)

Secrets: The data structure and algorithm used to implement the virtual
hardware.

Services: Serves as a virtual hardware used by the rest of the system. This
module provides the interface between the hardware and the software.
So, the system can use it to display outputs or to accept inputs.

Implemented By: OS

5.2 Behaviour-Hiding Module (M2)

Secrets: The contents of the required behaviours.

Services: Includes programs that provide externally visible behaviour of the
system as specified in the software requirements specification (SRS)
documents. This module serves as a communication layer between
the hardware-hiding module and the software decision module. The
programs in this module will need to change if there are changes in the

SRS.

Implemented By: —

5.2.1 Image Processing Module (M4)

Secrets: The format and structure of GIF, TIFF, JPEG, PNG, and BMP
image types.

Services: Converts the input images into a system usable form.

Implemented By: —

5.2.2 Image Loading Module (M5)

Secrets: Utilizes the Image Processing Module to read in image data and
return a useable form.

Services: Converts system paths to images to a useable form in the software.

Implemented By: Gifitti

5.2.3 GIF Model Module (M8)

Secrets: GIF images are represented in a Frame-By-Frame manner to es-
tablish easy handling of GIFS. the Images themselves are not strictly
of the GIF format they are used to model the GIF image.

Services:

e Hold initial GIF image for data security.
o Make GIF MetaData availiable and editable.

e Represent how the user will view the GIF in the system.

Implemented By: Gifitti

5.2.4 View-Model Module (M9)

Secrets: Links Views to the ViewModels using C Sharp partial class decla-
rations to separate view-model, and view aspects of the system.

Services: Controls View elements, as well as system interactions by the
user.

Services:

e Controls View elements, as well as system interactions by the user.

o LEssential link for View elements and Models

Implemented By: Gifitti

5.3 Software Decision Module (M3)

Secrets: The design decision based on mathematical theorems, physical

facts, or programming considerations. The secrets of this module are
not described in the SRS.

Services: Includes data structure and algorithms used in the system that
do not provide direct interaction with the user.

Implemented By: —

5.3.1 GIF Transformation Module (M?7)

Secrets: Frame-By-Frame Manipulation of Gif Modelsto obtain desired re-
sults.

Services: Converts GIF’s into a new GIF based on desired transforma-
tions. Transformations include: Reset, Resize, Add Frame(s), Remove
Frame(s), Rotate, Modify Speed ...

Implemented By: Gifitti

5.3.2 Image Conversion Module (M6)

Secrets: Converts GIF Models into specific Image types.

Services: Allows a GIF in the system to be exported as a desired image
type. Image types include GIF, TIFF, JPEG, PNG, and BMP.

Implemented By: Gifitti

6 Traceability Matrix

This section shows two traceability matrices: between the modules and the
requirements and between the modules and the anticipated changes.

Req. Modules

R1 M1, M??7, M??, M??

R2 M??, M??

R3 M?7?

R4 M??, M??

R5 M??, M??, M??, M??, M??, M??
R6 M??, M??, M??7, M??7, M??, M??
R7 M?? M??, M??7, M??, M??

RS M??, M??, M??7, M??, M??

R9 M?7?

R10 M??, M??7, M??

R11 M?? M??, M??7, M??

Table 3: Trace Between Requirements and Modules

AC Modules
AC1 M1
AC2 M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??
AC?? M??

Table 4: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Parnas
(1978) said of two programs A and B that A uses B if correct execution of
B may be necessary for A to complete the task described in its specification.
That is, A uses B if there exist situations in which the correct functioning
of A depends upon the availability of a correct implementation of B. Figure
1 illustrates the use relation between the modules. It can be seen that the
graph is a directed acyclic graph (DAG). Each level of the hierarchy offers
a testable and usable subset of the system, and modules in the higher level
of the hierarchy are essentially simpler because they use modules from the
lower levels.

XA MX: B

A 4

Implies that A USES B

Gifitti Application

— —

M1: Hardware- M2: Behavior
Hiding Module Hiding Module
A4
M9: View-Model
Module
ry

M3: Software
Decision Module

M7 GIF ‘ y M6&: Image
Transformation > MB}%EJ[LUUH N Conversion
Module ’ Module
rocits | | Lokinghitiue
Module gy

Figure 1: Use hierarchy among modules

10

References

David L. Parnas. On the criteria to be used in decomposing systems into
modules. Comm. ACM, 15(2):1053-1058, December 1972.

David L. Parnas. Designing software for ease of extension and contraction.
In ICSE ’78: Proceedings of the 3rd international conference on Software
engineering, pages 264—277, Piscataway, NJ, USA, 1978. IEEE Press. ISBN

none.

D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of
complex systems. In International Conference on Software Engineering,
pages 408-419, 1984.

11

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M1)
	Behaviour-Hiding Module (M2)
	Image Processing Module (M4)
	Image Loading Module (M5)
	GIF Model Module (M8)
	View-Model Module (M9)

	Software Decision Module (M3)
	GIF Transformation Module (M7)
	Image Conversion Module (M6)

	Traceability Matrix
	Use Hierarchy Between Modules

