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Chapter 1

Introduction

1.1 The Software Engineering Problem

We all depend on computers in many aspects of our business and leisure activities. Today’s companies cannot
run without computer-based information systems. The telephone network could not operate without computers.
Computers are widely used in safety-critical applications including medical devices, automobiles, aircraft, and
industrial process control. In these types of applications, software failures can cause injury or loss of life.
It is difficult to picture the consequences if all the world’s computers were to fail now. While this event
is unlikely, imagining it highlights the extent to which computers have permeated our lives. Because the
influence of computer systems is so widespread, it is important that these systems be useful, affordable, and
reliable. While both hardware and software are essential, hardware development is far more advanced. Despite
important and difficult open problems, the power and reliability of hardware are impressive and improving; the
costs are low and dropping. As the weak link, software is the critical factor in achieving the required system
characteristics.

Thus, we all depend on well-engineered software. But what exactly is Software Engineering? It is significantly
different from solo programming, where the same person is both developer and maintainer, there is one version—
the current one—and the user is the programmer or someone nearby. Software Engineering is well characterized
as multi-person/multi-version programming [1].

In multi-person programming, the systems are too big to be developed by one person. Teams are required,
consisting of tens or hundreds of people. The systems are in operation for years after development and must be
maintained, typically by people who are not part of the development team. With programming teams, precise
specification of the product is critical so that the team members agree on the characteristics of the system being
built. The development task must be divided into modules so that the work can be split among the different
developers. Precise specification of the modules 1s also critical so that they interact correctly. Finally, each
module and the full system must be verified against its specification. Without verification, adequate reliability
is unattainable.

Multi-person systems invariably have multiple versions as well. Often the same system must run on different
platforms, distinguished by differences in the hardware and operating system. After installation, modifications
are inevitable to fix errors and to adapt to changes in user requirements and in the underlying platform.
Successful development of multi-version systems depends on the ability to predict the types of changes likely
to occur and to develop systems for which those changes are easy to make. Careful control of the multiple
versions 1s also essential. Multiple copies of code and documentation must be stored, retrieved, and modified,
at reasonable cost.

Because of the special difficulties involved in managing large teams and developing and maintaining a number of
system versions, multi-person/multi-version programming is fundamentally different from solo programming.

1.2 Software Engineering Principles

Basic principles play a key role in handling the difficult problems that arise in multi-person/multi-version
programming. The most important principle in software engineering—and in problem-solving generally—is
separation of concerns [2]. A problem that is too complex to be solved directly is decomposed into subproblems.
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Subproblems that are still too difficult to solve directly are further decomposed. The decomposition is most
useful if the subproblems are independent or nearly so. Thus, considerable effort in software engineering is
devoted to (1) the search for decompositions that maximize the independence of the subproblems and (2)
careful documentation of the dependencies that remain.

In addition to the general principle of separation of concerns, this text is dominated by four broad themes:

1. The central role of documentation. Our approach is based on a single set of documents supporting design,
implementation, and maintenance. Precise system and module specifications play a key role: providing
the foundation for the important practice of implementation to specification.

2. Systematic verification. We use two complementary methods of verification. Inspections are applied to all
work products using the inspection procedure now standard in industry. Testing is applied to executable
work products at both the system and module level. We emphasize automated testing and isolation of
the module under test.

3. Effective use of mathematics. We have selected a small set of mathematical concepts. Notations based on
these are used extensively in our specification documents. While we make frequent use of mathematical
concepts and notations, our approach is not highly formal. We use both formal notations and prose,
choosing whichever seems clearer and simpler. Our inspections are proof-based, in the sense that the
reader’s job 1s to present a convincing logical argument. For example, when inspecting an implementation,
the reader must show that it satisfies the specification. This proof orientation has a substantial impact
on the inspections and on the specification documents that support them.

4. Reducing the cost of maintenance. While most texts deal with maintenance as a separate phase, we
view maintenance as redevelopment. Maintenance then consists of partially repeating the development
phases, modifying the original work products to reflect the fix or enhancement. Our design method
is based on information hiding, whereby maintenance costs are reduced by planning for likely changes
to the system. Our testing is automated so that the tests can be repeated after every change to the
implementation. Finally, we emphasize maintenance in our teaching. Most assignments focus on reading
code and documentation, and on making changes to existing code and documentation. Course projects
carry a change through from specification to testing, updating and verifying all the relevant work products
along the way.

1.3 Software Lifecycle

1.3.1 Software tasks

Throughout the “life” of a software system there are many phases of development and change. Even after a
system is delivered, it continually evolves and changes. Therefore, to properly manage a software project, we
must model the lifecycle of a software system. Many lifecycle models have been proposed, based on the tasks
involved in developing and maintaining a software system. Below we briefly describe each of these tasks.

Requirements analysis. The first task in every software project is a careful analysis of the problem to be solved.
This involves determining the needs of the user and is typically accomplished through a dialogue between
the user and the developer of the system. Clearly this is an important task; no matter how well you build
a system, if it 1s not what the user needs then it is not useful. It is also a complicated task: often the user
does not know exactly what he or she wants the system to do and cannot clearly communicate what he or
she knows. In particular, when a task is first automated, it is difficult to predict how the new system will
be used. Communication problems arise when the developer and the user have widely varying backgrounds.
Computer systems are developed for an enormous variety of problem domains; software developers cannot be
experts in all these domains. To accurately analyze user needs, however, considerable expertise is required in
the particular domain for which the system is built.

Requirements analysis involves a wide variety of issues, including the purpose, benefits, and cost of the proposed
system. The specific requirements are often grouped into functional and non-functional requirements. The
functional requirements specify the system inputs and the outputs. The non-functional requirements include
all other constraints under which the system must be delivered and operate. These include constraints on cost,
delivery date, maintainability, performance, and user friendliness.

Another aspect of requirements analysis, which is just as important, is determining whether it is feasible
to build a software system to satisfy the requirements. This involves estimating the cost of developing and

4
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maintaining the system, and determining the benefits of the system. These costs and benefits must then be
compared to determine if it 1s worthwhile to implement the system.

Requirements specification. Based on the needs identified during requirements analysis, the required behavior
of the delivered system is determined and recorded. Note the distinction between the requirements analysis
and the requirements specification tasks. During requirements analysis we determine the user needs; during
requirements specification we precisely define a particular system to satisfy those needs.

In the literature, many widely varying notations have been proposed for requirements specification. These
range from informal specifications using natural language to highly formal notations. The major advantage
of informal, natural language specifications i1s that they can be read and understood without special train-
ing. Consequently, they can be used to communicate between the developer and the user. However, such
specifications are often vague and ambiguous, contain inconsistencies and omissions, and are hard to main-
tain. Structured notations, such as PSL [3], organize the specification into sections but still rely on natural
language to specify the behavior. This makes finding specific information easier and it allows for some con-
sistency and completeness checking. These notations often lack a precisely defined meaning, however, and are
therefore hard to reason about. The same holds for diagrammatic notations such as dataflow diagrams and
entity-relationship diagrams. Formal notations, such as Z [4] and VDM [5], have a precisely defined meaning.
Their major disadvantage is their complexity, which means that special training is required to understand
them. Most programmers do not have the training to use these formal notations. Moreover, users rarely have
the background to understand these formal notations, and it is therefore hard to determine if a requirements
specification correctly reflects the user’s needs.

Architectural design. The requirements analysis and specification tasks determine and record what has to be
built. The architectural design is the first task that addresses the problem of how to build the system. This is
accomplished by decomposing the system into modules and by determining how these modules will interact.

This task is motivated by the principle of separation of concerns. When faced with a complex development
task, we subdivide it into components, which we call modules. Modules that are still too complex to implement
directly are then further subdivided into other modules, and so on. In general, separation of concerns is
effective only if the components are relatively independent and if we can specify and control the unavoidable
interactions between the components. For software systems, this translates into modules with minimal and
controlled interaction.

Detailed design. For each module, the details of the interface are specified. In many cases, the interface consists
of procedures and functions used to access the module. For example, a stack module may have calls to push
and pop stack elements and calls to return the top element and the depth of the stack. When such a call-based
interface is used, the detailed design specifies the behavior of the access routines.

In addition, the detailed design specifies the internal data structures and the algorithms that will be used
to implement the module. For example, the detailed design of a stack might specify that the stack will be
implemented as an array.

The difference between architectural design and detailed design can again be explained in terms of the separation
between what we build, and how we build it. During architectural design, we determine what service each
module provides. During detailed design, we determine how this service will be provided.

Implementation. During implementation, source code is developed for each module, according to the internal
data structures and algorithms specified in the detailed design. Note that the implementation is the only
product that is required to run the system. Other tasks also produce documents and even source code, such
as test code, but these are created primarily for use by the developer.

Testing. During testing, we verify that the system performs the required service. During module testing, each
module is tested individually. During integration testing, we verify that groups of modules and subsystems in-
teract correctly. During system testing, we verify that the entire system behaves as specified in the requirements
specification. Finally, during acceptance testing, we verify that the system satisfies the user’s needs.

Maintenance. While it may seem that the developer’s job is done after a system is delivered and installed, in
fact it has just begun. Studies show that, on average, more than half of the total cost of a software project is
incurred during maintenance [6]. Here, for simplicity, we refer to maintenance as all the change activity that
occurs after delivery of the system.

Since the cost associated with maintenance is so high, it is worthwhile to examine the different types of
maintenance that take place. Corrective maintenance involves the removal of errors from the system; the
functionality of the system is changed to match the requirements specification. Adaptive maintenance involves
modifying the system in reaction to changes in the system environment, such as the hardware or the operating
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system. Here, the functionality of the system changes little or not at all. Perfective maintenance involves
changes requested by the user or the developer to improve the quality of the system. This includes changes to
both the functional and non-functional requirements of the system. Data gathered on existing systems suggest
that corrective and adaptive maintenance each account for less than 20 percent of the total maintenance cost,
while perfective maintenance accounts for over 50 percent [7]. This means that, even if we can produce a
software system free of errors, a large proportion of the overall cost will still be devoted to adaptive and
perfective maintenance. Consequently, reducing the maintenance cost should be an important consideration
during software development.

1.3.2 The waterfall model

The tasks just described appear in one form or another in most large software projects. A lifecycle model
attempts to capture how these tasks interrelate and in what order they are performed. A simple model is the
waterfall model in which each task has a well-defined starting and ending point and a task is not started until
the previous task is completed. For example, under the waterfall model, a project starts with requirements
analysis. After requirements analysis is completed, the requirements specification task is begun, with no option
of going back to requirements analysis. Figure 1.1 illustrates why this model is called the waterfall model: one
task flows into the next, without the option of going back upstream to a previous task.

req.

analysis

req.

spec.

arch.
design

Y

detailed

design

impl.

Y

testing

maint.

Figure 1.1 Waterfall model of the software lifecycle

Clearly the waterfall model is an oversimplification; it does not allow feedback from a task to previous tasks.
For example, during requirements specification, errors will be found in the requirements analysis necessitating
further requirements analysis. Even if we were able to perform all the tasks free of errors, feedback 1s still
required because the user requirements and the environment in which the system operates frequently change
both during and after development.

A second problem with the waterfall model is that a phase is not started until a previous phase is completed.
This has the disadvantage that it takes a long time before any deliverable products can be shown to the user.
If the user then finds that the system does not satisfy his or her needs, much of the effort involved in producing
the system will be wasted.
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To address the issue of feedback, we allow iterative interaction between the various tasks. Figure 1.2 illustrates
this iterative waterfall model. Note that the feedback may involve several tasks. For example, it is common
that during development the requirements of the system change. This results in a change to the requirements,
and the change then propagates forward through all the tasks in the lifecycle.

req.

analysis
A

req.

spec.

arch.
design

detailed
design

impl.

maint.

Figure 1.2 Tterative waterfall model of the software lifecycle

1.3.3 Other models

The iterative waterfall model addresses the problem of feedback. We now briefly describe two other models
that support feedback and also reduce the time between the start of a project and the delivery of a system to

the user.
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The motivation behind the evolutionary model is that it is impossible to build a large software system right
the first time. As Brooks [8, page 116] points out, with a software system, “plan to throw one away; you will,
anyhow.” This suggests that the first version of a system should be a trial system whose purpose is to help
understand the requirements of the system. Such a preliminary version is called a prototype and often does
not include the full functionality of the eventual system. After the prototype is used to better understand the
requirements, 1t is discarded and the real system is built.

Building a system version primarily for learning purposes is known as prototyping. The evolutionary model
takes this approach further and models the software lifecycle as a continual evolution from one version of the
system to the next. After the initial version of the system is built, each version evolves from the previous one
by changes resulting from a better understanding of the requirements and changes to the environment in which
the system operates.

Note that the evolutionary model does not specify how each version of the system is constructed; the waterfall
model can be used for that. That is, for each new version, we first determine the changes to the requirements
and then incorporate the changes through the various tasks in the waterfall model. In this way, maintenance
is modeled as redevelopment, since we perform the same tasks for maintenance as we performed for the
development of the system.

The spiral model of the software lifecycle can be viewed as a special case of the evolutionary model. The
spiral model is guided by the risk associated with each change to the current system. For example, a small
well-understood change represents a small risk, whereas a substantial and poorly understood change represents
a large risk.

As its name suggests, the spiral model is cyclic. During each cycle of the spiral, the following four steps are
performed:

1. The objectives for the change from the current version are determined, and alternatives for implementing
the change are identified.

2. The alternatives are evaluated, and potential risks associated with each alternative are identified.
3. The best alternative is implemented, and the results of the change are verified.

4. The results from the current cycle are reviewed, and a plan is constructed for the next cycle.

The spiral model addresses both development and maintenance of a software system. As with the evolutionary
model, maintenance is modeled as redevelopment.

1.3.4 Our model

Since, in reality, the progression from one task or one version to the next will vary from one project to the
next, we do not favor any particular model of the software lifecycle. Instead, we emphasize the deliverables of
a software project. In particular, we discuss seven work products that are created for each software system, but
we do not concern ourselves overly with the order in which these work products are produced. However, we
present the deliverables in a linear fashion, following the order of the waterfall model. This is the best order
for explaining and understanding the work products, even though during development the work products are
frequently created in a different order.

In the remainder of this text, we do not treat the requirements analysis task in detail. Although it is an
important task, it is also very complex and varies widely from one project to the next. Moreover, we believe
that it is difficult to appreciate the key requirements analysis issues until you have seen and used at least one
requirements specification.

We present no work products associated only with maintenance, because we view maintenance as redevelop-
ment, as in the evolutionary and spiral models. In our approach, maintenance involves updating the seven
work products. In addition, maintenance is a major motivator for much of what we do during development:

e The work products serve as vital documentation during maintenance. It is therefore essential that the
work products are updated during maintenance; otherwise they quickly become outdated and unreliable.

e During requirements specification, we attempt to anticipate likely changes to the system. These likely
changes are then used during the architectural design to ensure that it will be easy to incorporate them
later on.
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e During testing, we emphasize cheap repeatability of test cases through automation so that it is easy to
run all our test cases after every change to the system.

e Throughout the text, we emphasize maintenance in the exercises, which for a large part involves changing
parts of our model system. This is partly the motivation for using a model system, without which it is
impossible to obtain an appreciation of the considerable effort involved with maintenance.

1.4 The Big Picture

Software engineering is a broad field. On the one hand, it must address technical issues such as methods
and tools to develop software systems. On the other hand, it is concerned with managerial issues relating to
delivering software systems on time and within budget, including human and organizational factors. Obviously,
it is impossible to cover all these topics in depth in a single text. However, it is important to realize where the
material that we cover in this text fits in the “big picture.”

1.4.1 Software project management

Many considerations are necessary for managing a software project. Estimating and scheduling are critical for
achieving the basic control necessary to ensure that a software system is delivered on time and within budget.
Configuration management is essential for controlling the many work products and versions of a system that
exist in a typical software project.

During project estimation, we attempt to determine the resources required for completing a project and hence
the cost associated with the project. This involves estimating both the human resources and the system
resources, such as equipment and software tools. Since human resources typically dominate the cost of a
software project, they are the most important consideration during estimation. While it is possible to make
accurate estimates for projects that are similar to previous projects, it is very hard to do so for a very different
system or even for a similar system in a new application domain. Estimation models such as COCOMO [6] may
assist with software project estimation, but even these models must be calibrated to the individual organization
and type of project at hand.

After an estimate has been made, the manager must determine a schedule for completing the project. This
involves determining a start and end date, and resource allocation for each task. Although the software
lifecycle model provides an initial decomposition of the tasks to be performed, a finer decomposition is required
to develop an accurate schedule. Notations such as PERT charts can be used to record the various task
interdependencies. Usually, many tasks cannot be started until other tasks are completed. For example, a
module cannot be implemented until its interface is determined. Bar graphs or Gantt charts are useful for
recording the schedule. Once the project gets under way, progress must be monitored and compared with the
schedule. If the project falls behind schedule, remedial action may be required. This may involve allocating
additional resources to the project, increasing the productivity of existing staff in some way, or rescheduling
the project.

Configuration management addresses the multi-version aspect of a software engineering project. In a typical
project, the system i1s maintained in many different files and directories, and complex relationships exist between
the files. The problem is further complicated by frequent changes. The consequences of poor configuration
management include: finding the same error twice because it was not fixed in all versions, inconsistency
between documentation and code, and loss of documentation or code. Such problems are unavoidable unless
considerable attention is paid to configuration management.

In a software system, a configuration includes all the work products associated with the system. This includes
not, only the system that is delivered to the user, but also the documentation and support code maintained
by the developer. A configuration may also include different versions of executable files for different hardware
and operating systems.

To appreciate the problems associated with configuration management, it is important to realize the enormous
number of objects that are part of a typical software project. Even a small system may contain over a hundred
files. For realistically sized systems, this number will increase to thousands or tens of thousands. Problems
associated with configuration management are therefore similar to the ones faced by a modern library in storing
and tracking books. Such libraries often contain more than a million volumes. Without careful inventory, many
of the books will inevitably end up lost. Even the storage of books requires strict organization and careful
attention; if a book is placed on the wrong shelf, it may be lost for all intents and purposes.
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The three major tasks in configuration management are (1) the storage of objects, (2) the building of systems,
and (3) the verification of the configuration. The objects in a configuration must be stored in such a way
that they can easily be accessed and changed. A number of issues arise. Several people may attempt to
access or update an object at the same time. Sometimes not all objects are stored in the same location or
even on the same system. Multiple versions of the same object may exist. The building of systems involves
providing support for the construction of products from the objects in a configuration. A typical example is the
construction of an executable file from several source files. Finally, the verification of a configuration involves
ensuring that the current configuration is consistent and conforms to the configuration plan.

1.4.2 Software development methods

A wide variety of methods are in use for developing software products. We briefly review four of these methods:
structured analysis and design, object-oriented programming, the Cleanroom approach, and formal methods.

Structured analysis and structured design (SA/SD) is a family of design methods. These methods rely heavily
upon graphical representations, such as dataflow diagrams and entity-relationship diagrams, and are widely
used in industry. Object-oriented analysis and design is an extension of SA/SD.

Object-oriented programmaing is based on encapsulation, inheritance, and polymorphism, as supplied by lan-
guages such as SmallTalk and C++4. Encapsulation insulates parts of the system from changes in other parts.
For example, in an object-oriented language, the services of a stack would be encapsulated in a stack object that
can be accessed through a standard interface, but that hides the internal data structures used to implement the
stack. Consequently, the implementation data structure can be easily changed from, for example, an array to a
linked list, without affecting other parts of the system. Inheritance is a mechanism by which the services of one
object can be extended or changed, without having to reimplement the entire object. Polymorphism allows us
to provide the same service for objects of different types. For example, instead of having to implement a stack
of integers and a stack of strings separately, we can develop a single implementation that can store integers or
strings.

The Cleanroom method is based upon an evolutionary model of the software lifecycle. In the Cleanroom
approach, software development consists of a sequence of executable product increments. These increments
accumulate over the development lifecycle and eventually result in the final product.

Three key components distinguish the Cleanroom approach from other approaches to incremental development.

1. The specifications describe the required behavior as functions that are structured so that they can be
easily composed.

2. Program units are designed and implemented to satisfy the specification functions. However, these
program units are never executed by the developers, who rely solely on logical argument to convince
themselves that the software correctly implements the specification.

3. After a system increment is completed, it is certified through independent, statistically based testing, as
is often done in other areas of engineering and manufacturing. It is statistically based because the test
cases are chosen randomly from a frequency distribution intended to closely resemble the actual usage to
come.

The Cleanroom approach is based on error prevention rather than error detection, and empirical studies [9]
show encouraging results. When compared with more traditional approaches to software development, fewer
defects are found in software produced with the Cleanroom approach. What is interesting is that during these
studies both quality and productivity improved.

Formal methods provide specification notations with precisely defined mathematical meanings and proof meth-
ods. It 1s then possible to manipulate the specification mechanically to establish, for example, consistency
and completeness. In principle, it 1s possible to formally verify that a system implementation satisfies its
specification.

Examples of formal methods include model-based specification languages such as Z [4] and VDM [5]. These
languages specify software behavior in terms of a model of the state, using mathematical objects such as sets
and sequences. The algebraic [10] and trace [11] methods define the behavior directly in terms of sequences of
calls on the software.

Since formal specifications have a precisely defined meaning, they can support rigorous reasoning. The trend in
software engineering research is toward documents that are as formal as possible. Sophisticated mathematics
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e Correctness: extent to which system performs its specified service
o Reliability: likelihood of failure during actual use
e Robustness: how well a system behaves under unexpected circumstances
e Maintainability
e Readability: ease with which software can be understood
o Modifiability: ease with which software can be modified
e Verifiability: ease with which software can be verified
e User friendliness: ease with which the system can be used
e Performance: time and space efficiency of the software
e Portability: ease with which software can be moved to other platforms

Figure 1.3 Software qualities

is needed to achieve this formality; even simple systems often have complex specifications. Industrial software
developers typically find these specifications unreadable. Moreover, no figures are available for the cost of
reading, writing, verifying, and maintaining formal specifications for industrial systems. The result is a crippling
standoff; formal methods researchers insist on complete formality, and practicing programmers continue to rely
on the code alone.

Effective documentation depends on a more balanced view, based on two ideas. First, formality is not a
suttable engineering goal. While it is a powerful means for achieving engineering goals, such as reliability, it
is dangerously inappropriate as an end in itself. There is no inherent value to the customer in formality, only
in the other characteristics that may, or may not, be best achieved by formal methods. Second, the principal
purpose for documentation is communication between people. Therefore, formality should be used when it
facilitates this communication, and avoided otherwise.

Consider, for example, the sequence of integers s = (s[0], s[1], ..., s[n — 1]) and the following two assertions.

1. s contains no duplicates
2. (¥i,j € [0,n—1])(i # j — sli] # s[j)

Which is better? The answer depends on the audience. The first assertion is shorter and would be preferred
by many programmers. The second one is more precise and might appeal to readers with logic training.

1.4.3 Software quality assurance

Software has a reputation for poor quality; a reputation that is, to a large extent, justified. Errors are common
in software systems, and often the systems are hard to use. The software developers themselves suffer from
this poor quality. The systems they produce are hard to understand and maintain, translating into high
maintenance costs. It is therefore not surprising that software quality assurance, the attempt to ensure that a
system meets some quality standard, is an important consideration in every software project.

The list of qualities that must be considered for a software system is large. Figure 1.3 shows a partial list.
The qualities that are most important will vary from one project to another. Below we briefly expand on
correctness, reliability, and robustness; three qualities that are important in any software project.

Correctness refers to the extent to which the system behavior corresponds to the requirements specification.
While it is a fact of life that no non-trivial software system is completely correct, it is useful to establish
correctness as an important goal. Reliability focuses on the actual use of the system over time. One approach
for expressing reliability is mean-time between failures: the average time between two successive failures of the
system. A system may have errors but still be highly reliable if the errors appear only on inputs that never
occur in actual use. Robustness addresses how well a system behaves under unexpected circumstances, such as
incorrect user input and hardware failures. For example, many text editors allow the user to recover much of
an edit session after the system goes down unexpectedly, even if the user did not explicitly save any information
while editing.

Determining whether a system meets the user’s needs involves two tasks: verification and validation. Verifi-
cation determines whether a system meets its requirements specification. Validation determines whether the
requirements specification adequately captures the user’s needs. Since a lot more is known about verification
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than about validation, we focus on verification. Four approaches to verification are testing, walkthroughs,
inspections, and formal verification.

Testing is the execution of a program to reveal errors in its behavior. We already discussed the various levels
of testing that must be performed: module testing, integration testing, system testing, and acceptance testing.
Note that acceptance testing is a form of validation, and the other three are a form of verification.

Both walkthroughs and inspections are verification methods that are based on peer review. During a walk-
through, a person walks through a work product based on certain scenarios, with the intention of finding errors
in the work product. For example, a walkthrough of a piece of code may involve selecting some test cases
and “hand-executing” the code for those test cases. Inspections are more structured and focus on particular
inspection criteria, such as ensuring that every loop in a program terminates. By focusing on particular criteria,
there 1s a better chance of detecting violations of these criteria.

Formal verification involves formally proving that a system meets its specification. While testing, walkthroughs,
and inspections are widely applied in industry, formal verification has had little industrial application. However,
because the idea is so appealing, formal verification is, and will remain, an active research topic.

1.4.4 Software measurement

Measurement plays a critical role in software estimation and in determining and improving the quality of
software. To verify and improve on the estimates we make, we must compare our estimates to figures from
actual projects. Similarly, if we want to improve the quality of our software, we can use measurement to assess
both the current state of affairs and the impact of changes.

The first step in measurement is determining precisely what to measure. For software systems, one important
aspect 1s the work products, such as specifications, source code, and object code. Less obviously, we must also
measure properties of the process by which the software is created, such as how many people work on a project
and for how long.

We can roughly subdivide the properties suitable for measurement into three categories. The first is a notion
of size, which measures properties of work products. Here the notion of size is quite variable, ranging from
something as simple as the number of lines in a file to notions of complexity of a piece of source code. The
second is a notion of effort, which measures properties of human involvement. Typically this measurement is
expressed as a number of person-months or person-years expended on a project. The third category involves
measurements of the number of defects in a work product, which relates to the quality of the product.

To improve the products or the processes by which the products are created, an organization must go through a
continual cycle guided by measurement. During the first phase of the cycle, information is gathered by measur-
ing properties of the current products and processes. This information is then analyzed, and potential areas of
improvement are identified. Finally, the products and processes are changed to implement the improvements.
During the next cycle, new measurements will indicate whether or not the improvements have had their desired
effect.

A metric i1s a quantifiable measurement that is intended to capture relevant information. Many metrics have
been proposed for software systems. There are the obvious ones such as the number of source lines in a system
and the number of person-years expended on a project. More elaborate ones include the cyclomatic complexity
[12] and the Halstead metric [13], which measure the complexity of a piece of code based on its syntactic
structure. There are also metrics for other tasks and products in the software lifecycle. For example, metrics
such as statement, branch, and path coverage measure how many statements, branches, and paths are executed
in a program by a set of test cases. This is intended to measure how well the test cases exercise the program.

The two most important considerations for a metric are (1) how well it captures the quality of interest and (2)
how expensive 1t is to calculate. For many proposed metrics, the first consideration is a serious concern. For
example, it is not clear that there is a significant relationship between the statement coverage achieved by a
test suite and the quality of the test suite.

1.4.5 Software tools

In this section, we discuss the tools used by software engineers for constructing software systems. There is a
large list of standard tools that are essential and used in every project. These tools include editors, compilers,
debuggers, file systems, and standard libraries. The list of other tools is virtually endless. We briefly review
the tools that are now in common use in industry.
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Configuration management tools are essential for storing the large number of objects involved and for building
systems from those objects. Luckily, this area of software management has great potential for automation since
it is largely a bookkeeping task. Configuration management tools allow developers to build systems from the
objects in the configuration. For example, based on dependency files and time stamps, the UNIX make facility
can determine which object files must be recompiled and linked to generate an executable program. There
are also tools for version control, which, in their simplest form, track multiple versions of a file. Since storing
all the versions separately is typically unaffordable, these tools maintain the versions by storing differences
between successive versions. Examples of simple version control tools are the UNIX RCS and SCCS utilities.

Common testing tools include coverage measurement tools, file comparators, and keystroke capture and play-
back tools. Coverage tools measure which parts of the source code were executed by a set of test cases. For
example, the UNIX tool {cov measures which statements in a source file were executed. More sophisticated
coverage tools measure characteristics such as branch and path coverage.

Since many systems produce files as output, a number of testing tools exist for comparing files. The expected
output for a test case can be stored in one file and automatically compared with the actual output from the
test case, which is saved in another file. The UNIX utility diff does a line by line comparison of two files.
More sophisticated comparison tools are able to ignore certain aspects of the output, such as differences in the
number of whitespaces.

Although it is hard to completely automate the testing of interactive applications, a number of tools exist to
facilitate this task. A keystroke capture and playback tool is like a tape recorder for the characters entered
from the keyboard. During the capture phase, the characters typed by the tester are recorded. During testing,
the keystrokes entered by the tester are played back in the same sequence and at the same rate as the original
sequence. Keystroke capture and playback tools are often used in conjunction with tools to compare screen
images. During the recording session, the tester may save the current content of the screen. During the
playback phase, the new screen contents can be compared with the saved one.

The goal of Computer-Aided Software Engineering (CASE) is the automation of software engineering activities.
The first generation of CASE tools consisted primarily of tools to support structured analysis and structured
design. These include graphical editors for dataflow diagrams and entity-relationship diagrams, as well as
estimating and scheduling tools. The current trend in CASE tools is to move towards software development
environments: integrated collections of tools. Such environments include tools to support the planning, devel-
opment, and maintenance of a software project.

1.5 Bibliographic Notes

Pressman [14] provides a good overview of industrial software engineering issues and practices. Ghezzi et al.
[15] survey most of the known software engineering methods and provide an excellent bibliography.

Much has been written on the topics excluded from this text. DeMarco [16] and Yourdon and Constantine
[17] describe structured analysis and design; Ward and Mellor [18] show how to adapt these methods to real-
time systems. Boehm [19, 20] discusses prototyping and its impact on the software development lifecycle.
The Cleanroom approach is explained in detail by Dyer [21]. Jones [5] and Spivey [4] show how to apply
formal methods to software engineering using VDM and Z, respectively. A great deal has been written about
object-oriented programming, in SmallTalk [22], Ada [23], Eiffel [24], and C++ [25].

Techniques for project scheduling and management, including metrics, are presented by Humphrey [26] and
Grady [27]. Babich [28] focuses on configuration management.

13






Chapter 2

Software Engineering Fundamentals

It 1s easy for me to single out the one factor that led to our relative success: we were all engineers and had
been trained to organize our thinking along engineering lines. We had a need to rationalize the job; to define a
system of documentation so that others would know what was being done; to define interfaces and police them
carefully; ... [H. D. Benington]

2.1 Introduction

This chapter presents the Software Engineering concepts that will be used in the chapters to come. Section 2.2
describes the central role of documentation and presents the principles of effective documentation. Section 2.3
defines the seven work products—code and documentation—that are the output of our software development
phases. A key role is played by specifications: descriptions of the required behavior of a system or component.
In Section 2.4, we cover verification: demonstrating the correctness of a work product. Verification through
testing and inspection is discussed. Finally, Section 2.5 discusses software cost estimation.

2.2 Documentation Principles

2.2.1 Current practice

In the software industry today, many programmers view documentation as a necessary evil. They believe it
has little value and produce it reluctantly and with as little effort as possible. Only the production source code
is taken seriously. Often there is little or no documentation written, especially regarding system internals. In
other cases, there are shelves full of documentation, but it is so hard to use that it remains unused. Frequently
different sets of documentation are produced for each development phase: one set for analysis, another for
implementation, and yet another for maintenance. The relationship between the sets of documentation is
uncontrolled and poorly understood.

This approach causes numerous difficulties. The documentation is incomplete and inaccurate, a serious problem.
A deeper problem is that the documentation is unplanned and undisciplined. Inappropriate assumptions are
made about the knowledge and goals of the reader. It is hard to find specific facts. The terminology is
confusing and inconsistent, and key concepts are undefined or vaguely defined. Multiple terms are used for a
single concept; distinct concepts are described by the same term. Due to poor organization, the documents are
hard to maintain and, therefore, are not maintained. Producing independent sets of documentation for each
development phase is expensive and ineffective. Significant redundancy is inevitable. Because the documents
are used only once, they contain many errors. Only repeated use will reveal these errors and provide the
motivation to remove them.

2.2.2 Planned documentation

Careful planning is required to avoid the problems just described. Before the first document is written, a
document structure must be defined, specifying the roles of all the documents and the relationships between
them. This structure forms an information taxonomy: a set of classification rules providing, for each relevant
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fact, the document and section in which that fact will be stored. Such a structure makes documents easier to
create, use, and maintain. The document structure must be explicitly defined and clearly understood. A good
document structure will encourage documentation designed for reference use, so that specific facts are easy to
find; ease of review, so that errors can be found and corrected; and ease of change, so that the documents can
be kept consistent with the code.

For each document, criteria must be developed specifying the scope, purpose, and other required characteristics
of the document itself. These criteria guide document writers by establishing clear goals, help reviewers deter-
mine what constitutes an error, and tell readers what information to expect in a given document. Document
criteria must provide at least the following information:

o Audience: the intended readers. Successful technical communication depends on knowing the character-
istics of your audience.

e Prerequisites: knowledge the reader is assumed to have before reading the document. The prerequisites
determine which concepts must be defined and which should not be defined.

e Purpose: knowledge the reader can acquire from the document.

Specification documents play a central role in disciplined software development. These documents focus on the
observable behavior of a system or component. Among the readers of a specification, four roles naturally arise.
Consider specification S and implementation .

e The designer decides on I’s observable behavior and records it in S.
e The developer creates an implementation I to satisfy S.
e The verifier determines whether I does in fact satisfy S.

e The user reads S to learn how to use I.

While most documentation is created during system development, it is critical to keep the maintainer in mind.
Typically, the maintainer is not a member of the development team and is not present at project meetings. He
or she therefore depends heavily on the documentation. Further, because 1t is so expensive, maintenance is a
prime target for cost savings.

2.2.3 Triple-purpose documents

We have described the problems associated with producing different sets of documentation for each development
phase. To avoid these problems, we use triple-purpose documents: a single set of documents for design,
implementation, and maintenance.

Initially, these documents are the focus of the design effort. They record design decisions independently of the
implementation and serve as the basis for design reviews, revealing many errors before implementation. During
implementation the same documents support parallel development, telling users what they can expect, telling
implementors what must be done, and serving as the basis for correctness during testing. During maintenance
the documents are used again. They support analysis of change requests, provide a structure in which to record
changes, and aid in training new staff.

With the same documents used in design, implementation, and maintenance, less documentation is required.
Further, this approach supplies the repeated use needed to discover errors and to motivate their removal.

2.2.4 Summary

Industrial documentation suffers from problems so serious that programmers rely almost exclusively on the
code. To remedy these problems, the documents must be designed as carefully as the code they support. The
same set of documents must be used for design, implementation, and maintenance.

Our design methodology is based on the central role of documentation. It is, in some ways, more important
than the code. Discard the code and keep the documents, and you can recreate the code quickly and capably.
Discard the documents and keep the code, and the resulting system will be hard to control and expensive to
maintain.
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Table 2.1 stack interface syntax

Routine name | Inputs | Outputs | Exceptions
s_init

s_push integer full

s_pop empty

g-top integer empty
g-depth integer

2.3 Work Products

Our design method is based on seven work products: a generic term for deliverables, including documentation,
code, and data files. We begin by defining the essential terms, and then describe the work products.

2.3.1 Terminology

We define a module as a programming work assignment and a module interface (hereafter just interface) as the
set of assumptions that programmers using the module are permitted to make about its behavior. We view
a module as a black box, accessible only through a fixed set of access routines. We divide the access routines
into three groups: (1) set routines that modify the internal module state, (2) get routines that return values
computed from the module state, without modifying it, and (3) sei-get routines that do both. Intuitively, set
routines correspond to pure procedures, get routines to pure functions, and set-get routines to functions with
side effects. In access routine names, we use the prefix s_ to indicate set access routines, g_ to indicate get
routines, and sg_ to indicate set-get routines.

Under certain circumstances, an access routine call may be illegal: issuing the call will generate an ezception.
The module implementation is required to detect the occurrence of an illegal call and to signal the module
user that the associated exception has occurred. These ideas are illustrated on a stack module (see Table 2.1),
providing a pushdown integer stack with a maximum of MAXSIZ elements. The module behaves as follows:
s_init initializes the stack, with no elements. s_push(:) pushes i onto the stack, signaling the exception full
if the stack contains MAXSIZ elements. g_top returns the value of the top stack element and s_pop discards
this element; both calls signal empty if the stack has no elements. g_depth returns the number of elements in
the stack.

2.3.2 Work product definitions

The seven work products are described below in the order in which they would be developed under ideal
circumstances. Here the descriptions are brief; each work product is described and illustrated in detail in Part

I1.

1. Requirements Specification: describes the required behavior of an application program in terms of its
observable inputs and outputs. Both normal and abnormal behavior are specified. To reduce maintenance
costs, expected changes in the system’s required behavior and environment are recorded. Since most
systems are too large to be implemented by a single person, the development task is decomposed into
modules.

2. Module Guide: describes and motivates the module decomposition. For each module, the Module Guide
provides two items: (1) a sketch of the service offered by the module and (2) a description of the expected
changes that might impact the module.

3. Module Interface Specification: precisely describes the services that each module provides. Interface
specifications are black boz; that is, no mention is made of internal data structures and algorithms.

4. Module Internal Design: specifies the internal data structures, or module state, in the syntax of the
implementation programming language. The effect of each access routine is also specified, in terms of
the module state.
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1. Requirements Specification
Specification of the required system behavior.
2. Module Guide
Description of and motivation for the module decomposition.
3. Module Interface Specification
Specification of the required behavior of each module.
4. Module Internal Design
Specification of the module internal data structures.
5. Module Implementation
Production source code.
6. Test Plan
Strategy for selecting and executing tests.
7. Test Implementation
Source code, data files, and manual procedures required for testing.

Figure 2.1 Work product summary

Abnormal Normal
Assumptions Exceptions Normal case
Uncontrolled Controlled

behavior behavior

Figure 2.2 The specification trichotomy

5. Module Implementation: the production source code and the build procedures.

6. Test Plan: describes the strategy used for selecting test cases, for executing the tests, and for checking
the output for correctness.

7. Test Implementation: consists of the source code, data files, and manual procedures required for testing.
We make heavy use of scaffolding so that modules can be tested in isolation. Where practical, tests are
automated so that they can be repeated cheaply and accurately.

The work products are summarized in Figure 2.1. In terms of the lifecycle described in Section 1.3, the Module
Guide 1s an architectural design work product and the Module Interface Specification and Module Internal
Design are detailed design work products.

A given system will consist of multiple instances of each of these work products. Typically one or more
Requirements Specifications and one Module Guide are developed per system, and one Module Interface Spec-
ification, Module Internal Design, Module Implementation, Test Plan, and Test Implementation are required
for each module. A Test Plan and Test Implementation are also required for system testing. For example,
the SHAM System has two Requirements Specifications, one Module Guide, nine instances of work products
3-5, and ten instances of work products 6 and 7. Note that only one of the seven work products—the Mod-
ule Implementation—is delivered code; the others are, in fact, overhead. While so much overhead may seem
disturbing, 1t is needed to control software development and maintenance.

2.3.3 The specification trichotomy

In specification work products, it is important to distinguish between normal and abnormal situations. A key
step is establishing the specification trichotomy, a division of the possible situations into (1) implementor’s
assumptions, (2) exceptions, and (3) normal cases. The assumptions describe the abnormal situations that the
implementation need not handle and the exceptions describe the abnormal situations that must be detected
and signaled; the remaining cases are considered normal. The specification trichotomy is illustrated graphically
in Figure 2.2.

When developing specifications, we begin by deciding which situations will be normal and which will be
abnormal. There are two main reasons to consider a user request abnormal:
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1. Inherently illegal requests. The request is inherently illegal or undefined. For example, a call to g_top
when the stack is empty is an inherently illegal request.

2. Resource limitations. The request cannot be satisfied due to resource limitations. For example, a call to
s_push is illegal if there is no more memory available.

Once the normal/abnormal division has been established, we must subdivide the abnormal cases into imple-
mentor’s assumptions and exceptions. Assumptions arise for two main reasons:

1. Undetectable violations. The request is illegal, but not in a way that the implementor can detect. For
example, when a pointer 1s passed as a function parameter, there may be no way to determine whether
the pointer value is a legal address.

2. Cost considerations. The illegality is detectable, but the cost of detection is too high. For example,
checks for illegal array subscripts are usually omitted from production code for performance reasons.

In SHAM, we take a conservative approach, preferring exceptions to implementor’s assumptions when exception
detection is feasible.

It is important to realize that establishing the specification trichotomy involves making influential decisions.
For example, deciding that a given case should be considered normal may make the software more useful but
may also significantly increase development cost or degrade performance.

2.4 Verification

Verification is the task of showing that a work product is free from errors. For example, we may verify that a
system meets its Requirements Specification or that a Module Implementation obeys an indenting convention.
The work product criteria define the required characteristics of each work product and thus determine what
constitutes an error. Systematic verification is critical in software engineering, to reveal errors and to enforce
adherence to standards. Without verification, errors will be numerous, and standards will be ignored.

There are substantial benefits to discovering errors as early as possible. Generally speaking, the later an error
is discovered the more the cost to fix it. Suppose, for example, that the Requirements Specification has an
error. If it is revealed while verifying the specification, only the specification must be changed. However, if the
error is discovered during system testing, design and code changes are frequently needed as well.

It is useful to divide errors into two classes. A failure is the occurrence of incorrect system behavior, that is,
an incorrect output. A fault is an error in the work product itself. There are two complementary approaches
to verification, distinguished by the errors revealed and the techniques applied. Inspection is designed to find
faults through human review. Testing is designed to find failures using program execution.

2.4.1 Inspection

Software inspections are based on peer review by small teams and have been widely used in industry with
impressive success. For example, over 2.5 million lines of code have been inspected at Bell-Northern Research
(BNR), a Canadian developer of telephone switching equipment [29]. On average, one fault was found per
person-hour invested. While this may seem expensive, inspection was two to four times as effective as testing.
Further, it cost BNR an average of 4.5 person-days to fix a fault discovered after installation in the field.
Clearly, early fault discovery pays off.

The inspection process is structured: roles are assigned to each team member and specific steps are followed.
The moderator plays the most important role, controlling all meetings and ensuring that the conduct is pro-
fessional and the criticism constructive. The reader paraphrases the work product line by line, attempting
to convince the inspection team that it is fault-free. The recorder produces a written record of the faults
found. The remaining team members are the inspectors; they listen, seeking faults in the work product or
in the reader’s paraphrasing. Inspection teams are small, typically consisting of three to five people. Usually
the reader is not the author of the work product; the author tends to paraphrase too quickly. Also, having a
non-author as reader helps ensure that the work product will be comprehensible.

The inspection process consists of five steps:
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1. Overview meeting. This brief meeting provides an overview of the work product and its context. Copies
of the work product are distributed to all team members.

2. Preparation. Each team member studies the work product.

3. Inspection meeting. The reader paraphrases the work product, line by line. Questions from the inspectors
are pursued only until a fault has been identified. In this meeting, there is no discussion of who is to
blame for the fault or of how the fault will be removed. Normally inspection meetings do not exceed two
hours in length, due to the intense concentration required.

4. Rework. The faults discovered in the inspection meeting are removed by the author.

5. Follow-up. The moderator ensures that the rework has been completed. If many changes were made, the
moderator normally requires reinspection of the entire work product.

Our inspections are proof-based in the following sense: For each work product, we establish a specific set of
criteria. In an inspection meeting, the reader is obliged to show that the work product satisfies the criteria. In
many cases this obligation is best accomplished with a “proof” —a logical argument that the work product has
the required characteristics. For example, when inspecting a Requirements Specification, the reader must
show that the specification is complete; every input has been considered and dealt with. Typically, the
proof is presented informally, in the style normally used for communication between programmers. The proof
orientation of our inspections has a substantial impact on work product design; the documents are structured
to make the inspection-meeting proofs as simple as possible.

In summary, inspection is a systematic approach for fault detection. The primary benefits are early fault
discovery—because specifications as well as code can be inspected—and feedback to developers on error-
prone habits. Inspection is also an effective educational technique; new staff members can learn programming
techniques and documentation standards by attending inspection meetings.

2.4.2 Testing

According to Dijkstra “Program testing can be used to show the presence of bugs, but never their absence”
[30]. As a consequence, testing alone cannot provide much confidence. Testing is, however, quite valuable as
an independent check on code that has been carefully designed and inspected.

For software testing, we adapt two important concepts from hardware testing. Controllability refers to the ease
with which an arbitrary input may be applied to a system or module. Observability refers to the ease with
which the output may be observed.

Test scaffolding 1s code whose purpose is testing the production system or its components. Consider a module
M. A driver is test code written to call access routines provided by M. A stub is test code that serves as a
substitute for an access routine called by M.

There are three principles underlying effective and affordable testing.

1. Building and maintaining test suites. Often tests are developed during or after implementation and are
discarded after acceptance. It is important to plan testing early in development, so that testability can
be used to influence system design, and to deliver and maintain tests along with the production code.
A system should not be considered complete until both production code and test code are complete.
Without testing in place, the system may appear finished, but it i1s a maintenance problem in disguise.

2. Isolating the module under test. It is typically difficult to thoroughly test a module M while it is installed
in a production system. M’s access routines are often not directly accessible. If M is a general-purpose
module, some of its access routines may not be called at all in a particular production system. Errors in
other modules may appear to be errors in M. Conversely, errors in M may be masked by errors in other
modules. In short, when M is running in its production environment, controllability and observability
are often poor. Using test scaffolding, M may be tested in isolation from the production environment. In
practice, modules are best tested with a mixture of scaffolding and production code; the critical tradeoff is
between the benefits realized through isolation and the cost of developing and maintaining the scaffolding.

3. Applying design for testability. While stubs and drivers can improve controllability and observability, the
module decomposition and the module interfaces also have a significant effect on testability. In VLSI
design, interchip communication is extremely expensive, and so it is minimized. In software, there is no
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Table 2.2 Testing versus inspection

Testing Inspection
Pro | Many tasks are automatable. Automation is difficult. Con
Results are guaranteed. Results are suspect.
Results are specific. Results are general.
Con | Debugging is still required. No debugging is required. Pro
Executable work products only. | Executability not required.

such physical limitation. For example, there is no time or space cost in communication through global
variables. Yet, experience has shown that uncontrolled module interactions significantly increase test
cost. Like poor performance, poor testability must be viewed as a design weakness.

2.4.3 Inspection versus testing

Testing and inspection closely complement each other: the advantages of one are the disadvantages of the
other. Testing operates by examination of run-time behavior and has two principal advantages:

1. Much of the testing task can be automated. While test development is largely manual, tests can often
be run with minimal labor cost.

2. The results are guaranteed, in the sense that they come from actual execution of production code.
Testing has three main disadvantages:

1. The results are specific, applying only to program behavior on the test inputs. Because there is normally
an extremely large number of possible inputs, most are never tested.

2. When failures are found, they are symptoms. Debugging is needed to locate the fault in the program
source, and the debugging is expensive.

3. Testing can be applied only to executable work products.
The primary advantages of inspections are:

1. The results are general, often applying to all inputs.

2. The errors found are faults in the work product itself. No debugging is needed to trace from the failure
to the fault.

3. Any work product can be inspected; executability is not a requirement.
The primary disadvantages are:

1. Significant benefits from automation are unlikely, at least in the near term.

2. The results are questionable, because inspection of complex code is itself complex and, therefore, error-
prone.

The dual nature of testing and inspection is summarized in Table 2.2.

2.5 Estimation

Because multi-version, multi-person software projects are so expensive and because the software industry is so
competitive, accurate cost estimates are extremely important.
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2.5.1 Estimating concepts

Estimating the cost of a complex task typically requires three steps:

1. Break the task into subtasks. Estimates are best done on relatively small subtasks, so the subtasks may
themselves need to be broken down.

2. Provide a cost estimate for each subtask. Important costs to consider include person-hours, calendar
time, and machine resources.

3. Generate the task cost by summing the subtask costs.

Initially, the estimates will be mere guesses, and significant cost overruns will be common. (Schedule pressure
makes overestimates rare.) There are three ways of achieving more accurate estimates:

1. Sketch—partially solve—the task until you have a good understanding of the work remaining. Generally,
more detailed sketches produce more accurate estimates.

2. Base your estimate on actual cost figures from a similar, previous project. Obviously, this approach
depends on the availability of cost figures from past projects. Thus, it pays to record actual costs
carefully.

3. Practice. With experience, the accuracy of your estimates will improve substantially.

2.5.2 Software estimating

Estimates are frequently demanded as part of the requirements analysis phase and rightly so. Unfortunately,
an accurate estimate is difficult to produce at this time. With a good requirements specification, much better
estimates are possible; while much is still unknown, the developer’s obligation is precisely and completely
defined. The module decomposition step is critical for the estimator as well as for the developer; it identifies
the modules and their services. Then, for each module M, five subtasks are immediate: the development of
M’s interface specification, internal design, implementation, test plan, and test implementation. Frequently,
these tasks are small enough to be estimated directly. Of course, errors in the module decomposition may
cause serious errors in the estimate.

During maintenance, estimating is often simpler because the existing work products suggest much of the task
breakdown. For example, given a change request, the following steps can be used:

e Sketch the changes to the requirements specification and review these with the user to be sure that the
request is well understood.

e Determine the modules affected by the change. The module guide is specifically designed to make this
task as easy as possible.

e For each affected module, review the five work products associated with that module and estimate the
change cost for each.

In summary, during both new development and maintenance, a disciplined work product structure significantly
eases the estimator’s task.

2.6 Summary

We discuss the central role of documentation in Software Engineering above, and we describe the severe
problems resulting from current approaches to documentation. The importance of human-readable system de-
scriptions is emphasized. We argue for triple-purpose documents, for design, implementation, and maintenance
and introduce the seven work products used in this text. We discuss verification, using the complementary
techniques of inspection and testing. Specification documents play a key role here: without them there is
no basis for correctness. Finally, we present a simple procedure for estimating and show how the seven work
products support accurate estimates during development and maintenance. In the next chapter, we consider
the mathematical concepts underlying the seven work products.
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2.7 Bibliographic Notes

Our approach to software design and documentation owes much to the writings [31, 1, 32] and lectures of David
Parnas, and to others who have applied Parnas’s methods [33, 34, 35]. Royce [36] and Boehm [20] describe
alternative software development lifecycles.

Software inspection was developed by Fagan [37] and widely applied in industry by Russell [29] and many
others. Our inspection strategy was heavily influenced by Harlan Mills; we use his characterization of “proof”
and his common-sense approach to the use of mathematical notation in proofs [38]. Dyer [21] describes a
similar approach to proofs in inspection meetings. Jackson and Hoffman present the results of an industrial
experiment in proof-based inspection of Module Interface Specifications [35].

Among the many books on software testing, the practical text by Myers [39] is perhaps the best known. Howden
[40] presents the theoretical foundations for many testing techniques.
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Chapter 3

Mathematical Fundamentals

The power of a formal notation should manifest itself in the achievemenis we could never do without it. [E.

W. Dijkstra]

3.1 Introduction

The purpose of this chapter is to supply the mathematics needed to read, write, and verify the work products
introduced in Chapter 2. We focus on specification functions: functions that arise naturally in software
specifications. For specification functions, the best known description is large and complex. Typically, this
description is not a monolithic formula but instead a collection of simple formulas each applicable to a different
situation. Frequently, specifying the different situations takes as much effort as specifying the behavior required
in each situation. Thus, the task of partitioning the function domain strongly influences the specification
effort, the choice of notation, and the verification arguments. The mathematics is simple and familiar; only
the function representation is new.

Section 3.2 defines functions in terms of sets and relations. Section 3.3 presents logic, the language of condi-
tions. Logic plays a critical role in partitioning the domain of a specification function. Section 3.4 presents a
simple type scheme for defining structured objects: sets, sequences, and tuples. Sections 3.5 and 3.6 describe
the multiple assignment statement and conditional rules, programming-language-like constructs with simple
functional semantics. Section 3.7 introduces Finite State Machines (FSMs), a powerful specification construct
defined in terms of sets and functions. Section 3.8 presents Module State Machines (MSMs), a special kind of
FSM designed for specifying software modules.
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To make the text reasonably self-contained, we have included an introduction to sets, relations, and logic in
this chapter. Most of this material can be found in any textbook on discrete mathematics, such as Piff [41].
Similarly, we use standard notations for representing sets, sequences, and tuples. The reader already familiar
with this material can skip over the first few sections of this chapter and read only Sections 3.5, 3.6, 3.7, and

3.8.

3.2 Functions

3.2.1 Sets

A set is an unordered collection of elements. The distinguishing characteristics of a set are that the number of
occurrences as well as the order of the elements are not defined; an element either belongs to a set or it does
not. When an element z belongs to a set S, we write z € S, and when it does not, we write z ¢ S.

There are several ways to define a set. We can enumerate the elements in the set: {21, 2s,...,2,} denotes the
set with elements z1, x4, ..., 2, where n > 0. We can use a logical condition: {z | p(z)} denotes the set of all
elements z that satisfy p(z). For example, {4,2,1,3} and

{z | z is an integer between 1 and 4 inclusive}
denote the same set. A third way to define a set is with an integer range of the form [i..j], which denotes the

set {z | z is an integer and z > 7 and z < j}. For example, [2..4] = {2,3,4} and [7.4] = {}.

3.2.2 Relations

A binary relation is a set of ordered pairs. In this text, the only type of relations we consider are binary
relations. For a relation R, the domain of R is the set of all values appearing as the first component of an
element in R. The range of R is the set of the second components. If we let (z, y) denote an ordered pair, then
the domain of a relation R is {z | (z,y) € R}, and the range is {y | (z,y) € R}.

Since a relation is a set, we can define it in the same way as we did with sets. For example, {(0, 1), (0,2), (2, 3)}
is a relation with domain {0, 2} and range {1,2,3}. When a relation contains an infinite number of elements,
we can no longer enumerate the elements, but we can define the relation with a rule. For example,

{{z,y) | z and y are integers and z < y}

defines the familiar less-than relation. In this case, both the domain and the range consist of the set of integers.

3.2.3 Functions

A function is a relation in which each element in the domain appears exactly once as the first component of
an ordered pair in the relation. Since a function is a relation, we can define a function in the same way as
a relation. We can enumerate the elements; for example, {(0, 1), (1,2),(2,3)} is a function. However, not all
relations are functions: {({0, 1}, (0,2}, (1,2)} is not, because 0 is the first component of both (0, 1) and (0, 2).
We can also define a function with a rule. For example,

{{z,y) | x is an integer and y = z?}
is a function. On the other hand,
{{z,y) | y is an integer and vyl = z}

is not a function, because both (4,2) and (4, —2) are in this set.

A function associates each element of the domain with a unique element of the range. For function f, we often
write f(a) = b when (a,b) € f and say that b is the output of the function f for the input a. Thus, for

f={{(z,y) | z is an integer and y = z?}

we have f(0) = 0 and f(2) = 4. Using this notation, we can define a function by giving a rule that computes
the value for each of the inputs. For example, we can define f by the rule f(z) = 22
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Table 3.1 Truth table for the logical connectives

p q —-p PAg | PVG |P—q|Pg
true | true false | true | true true true
true false | false | false | true false false
false | true true false | true true false
false | false | true false | false | true true

When we define a function by a rule, the domain and range of the function may not be clear. For example, the
function f defined by f(z) = z* could be defined over the natural numbers, the real numbers, etc. To reduce
ambiguity, we introduce a notation to restrict the domain and range. The expression

[T =1

states that the domain of f is a subset of 77 and the range of f is a subset of 75. For example, the expressions

[ :integer — integer and f(z) = 2*

define the integer square function; the domain of f is the integers and the range is the set of non-negative
integers.

Functions can have more than one input or output. This does not violate our original definition: each function
is a set of ordered pairs. It means that one or both of the components of the ordered pair can be a composite
object, such as another ordered pair. Many common mathematical functions have more than one input. For
example, the addition function over the integers is defined by

{{{z1,22),y) | #1 and 5 are integers and y = 21 + 2}

A clockwise rotation by 7/2 radians of a point in two-dimensional Euclidean space can be defined by the
function

{{z1, 1), (x2,¥2)) | 1, y1, T2, and y2 are integers and z3 = y; and y2 = —21}
This function takes a pair of numbers as input, and produces a pair of numbers as output.

Some functions have as output a truth value. Consider the function
{(z,y) | z is an integer and y = (z > 0)}

Some pairs belonging to this function are (0, false), (—1, false), and (1,¢rue). As another example, consider
the function not: {(true, false), (false,true)}.

3.3 Logic

3.3.1 Logical expressions

A logical expression is a statement whose truth can be determined. An example of such a statement is 5 < 7.
Each logical expression has a truth value associated with it: either true or false. For example, the truth value
of 5 < 7 is true and that of 7 < 5 is false.

True and false are the simplest types of logical expressions. We can form more complex expressions from
simpler ones by using the standard logical connectives: =, A,V,—, and <. The truth table in Table 3.1 defines
the meaning of these logical connectives. There is a row in the truth table for each assignment of truth values
to p and ¢q. The columns of the truth table define the truth values for each of the logical connectives, given
the truth values for p and ¢. For example, since both 7 < 5 and 2 + 2 = 5 are false, the truth value of
((7T<5) — (242 =05)) is true, as is indicated by the last entry under p — q.

With logical expressions, we can make the definition of sets, relations, and functions more precise and compact.
For example, we can define the set [1..10] by the expression

{z | z is an integer and (z > 1) A (z < 10)}
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Table 3.2 Truth table for =(—pV —¢)

P g op | ma | =pV g | o(opVog)
true true false | false | false true
true false | false | true true false
false | true | true | false | true false
false | false | true | true true false

Table 3.3 Quantifiers

Quantifier Meaning
(Vz € S)(p(z)) | for all z € S, p(z) is true
(3z € S)(p(z)) | there exists an z € S such that p(z) is true

Although the expression
{z | z is an integer and (z > 1)V (z < 10)}

is similar, 1t defines quite a different set: the set of all integers.

So far we have been careful with the placement of parentheses in logical expressions. To avoid an abundance of
parentheses, we define a precedence on the logical connectives. The order of precedence, in decreasing order, is:
=, A, V, —, and <. Sequences with the same logical connective are evaluated left to right. Thus pAgVrAs
represents (pAq) V (rAs), and p A q Ar represents (p A gq) Ar.

Consider the expression =(—p V —¢). Given any pair of truth values for p and ¢, we can calculate the truth
value for the entire expression: replace p and ¢ by their truth values, and simplify the expression with the rules
from the truth table. We can do this for all pairs of truth values for p and ¢, and summarize this information
in the truth table shown in Table 3.2. Each column contains the truth values of a subexpression, with the final
column representing the truth value of the expression itself. Note that the entries in the last column are the
same as for p A q. This means that =(—pV —¢) and p A q are logically equivalent.

3.3.2 Quantifiers

In software engineering, we rely heavily on the use of variables, and we often need to use variables inside logical
expressions. Once we introduce variables, we have to concern ourselves with the {ype of a variable. Although
variable types is the subject of Section 3.4, we need to briefly discuss it here. One problem that arises is that
the expression 5 < z is not defined for all values of z; for example, it is not defined when z is the color red. To
circumvent this problem, we associate with each variable a type: a set of values from which the variable can
take its values. In many cases, the type of a variable is clear from the context. When it is not, the type needs
to be stated explicitly.

Once we introduce variables, it is useful to gquantify a logical expression over a given variable. We therefore
introduce the universal quantifier V and the existential quantifier 3 as shown in Table 3.3. In this table, the set
S denotes the type of the variable z. When the type of a variable is clear from its context we can omit the set
S and abbreviate the quantified statements as (Vz)(p(z)) or (3z)(p(z)). When we want to quantify over more
than one variable it is convenient to group these variables together. For example, we use (Va,y € S)(p(z,y))

as a shorthand for (Vz € S)((Vy € S)(p(z,y))).

The expression (Fz € S)(p(x)) is true if and only if there exists a value v of type S such that p(v) is true.
The expression (Yz)(p(z)) is true if and only if p(v) is true for all values v of type S. For example, (Jz €
integers)(z < T) is true, because there exists an integer z (e.g., 5) such that < 7. The expression (Vz €
integers)(z < 7) is false, because z < 7 does not hold when, for example, z = 9.

We can also nest quantifiers. Thus, if z and y are both integers, then (Vz)(Jy)(y < z) is true. If they are
both natural numbers, then the expression is false, since there is no natural number smaller than 0. On the
other hand, (3z)(Vy)(z < y) is true for the natural numbers, but false for the integers. Another example of a
nested quantified statement is the definition of the limit of a function: limgy_ 4, f(2) = L is defined as

(Ve € positive reals)(36 € reals)(|z — zo| < 6 — |f(z) — L| <€)
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where |z| denotes the absolute value of z.

Two remarks about variables in quantified statements: first, the truth value of a quantified statement is
independent of the name of the variable used in the quantifier. In other words, just as in many programming
languages, variables are merely place holders. Second, the scope of a variable in a quantified expression
extends only to the smallest subexpression following it. Parentheses may be used to extend that scope. Thus,
(Vz € S) p(z) A q(z) and (Vz € S)(p(z) A q(z)) are not logically equivalent. The first one is equivalent to
(Vy € S) p(y) A q(z). Performing a similar renaming for the second expression produces (Vy € S)(p(y) A q(v)).

A variable is bound in an expression if it appears in the scope of a quantifier. A variable is free if it 1s not bound
to any quantifier. For example, in (Vy € S)p(y) Aq(z), the variable y is bound, and z is free. Strictly speaking,
we can only talk about the occurrence of a variable being bound or free. For example, in (Vz € S) p(z) A q(z),
the first occurrence of z is bound, and the second one is free.

When an expression contains a free variable, we often cannot determine the truth value of that expression. For
example, we cannot determine if z < 7 is true or false, without knowing a value for z. If a logical expression
contains no free variables, then its truth value is defined. We have already determined that (Vz € integers)(z <
7) is false and that (3z € integers)(z < 7) is true.

3.4 Types

In this section, we define precisely what we mean by a “type” and we introduce the types and operations that
are used in this text. Many other types and operations are possible.

3.4.1 Defining types

A t{ype is a set of values—any precisely defined set is a type. We distinguish primitive types and user-defined
types. The primitive types are integer, boolean, char (character), and string. To define a user-defined type,
the set of values belonging to the type has to be given. A convenient way of defining new types is with {ype
constructors, which allow us to build more complex types from simpler ones. The type constructors that are
used in this text are set, sequence, and tuple.

If T is a type, then

X1, %o, ..., &y T
specifies that variables x1, zs,...,z, are of type T" where n > 1. For example, the statements
x: integer

a,b,c: string

define the integer variable z and the string variables a, b, and c.

To define a user-defined type, we use a type definition, which is of the form
T=d
where T' is the name of the new type, and d is its definition. For example,

color = {red, white, blue}

defines the new type color as the set {red,white, blue}. We can now declare variables of type color. For
example,

z : color

defines a variable x of this type.
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Table 3.4 Operations on integer

Operation | Meaning

+,—, %,/ addition, subtraction, multiplication, integer division

=,# equal, not equal

<, <, 2,> less than, less than or equal, greater than or equal, greater than

Table 3.5 Operations on strings (s, s1, and s2 are strings)

Operation | Meaning
s

—

i..J] substring of s from position ¢ to position j

|| s2 concatenation of s; and s»

0
[y

,F equal, not equal
¢

Myl

, member, non-member

1] 1-th character of s
|

n

s length of s

3.4.2 Primitive types

The integer type is the infinite set {...,—2,—1,0,1,2,...}. The operations on integer variables are shown in

Table 3.4.

The boolean type is the set {true, false}. The operations on boolean variables are the logical connectives
shown in Table 3.1.

The char type consists of the set of ASCII characters. To represent a character constant, we enclose it in single
quotes. The only operations on character variables are equality (=) and inequality (#).

The string type consists of all finite sequences of characters. To represent a string constant, we enclose it in
double quotes. For example, "" is the empty string and "abc" contains the characters *a’; ’b’, and *c¢’. The
operations on string variables are shown in Table 3.5. Positions in strings are zero-relative. For the substring
operation, if i > j, then s[i..j] is defined as the empty string.

For example, if # = "abcd" and y = "ef", then

z[0..3] = "abcd"  z[3..3] = "d" z[3.1]=""
z ||y ="abcdef" y| z="efabcd"

’c? czx ’c? ¢ Yy

z[0] = ’a’ z[3] =4’

2] = 4 ell2l=2 =2

3.4.3 Sets

A setis an unordered collection of elements of the same type. To declare a set of type T', we use the expression
set of T.

We have already seen various ways to define sets. We can enumerate the elements in the set: {z1,z2,...,2,}
denotes the set with elements 21, 2, ..., 2,, where n > 0. We can use a logical expression: {z | p(z)} denotes
the set of elements z that satisfy p(z). And we can define a set with an integer range of the form [i..5], which
denotes the set {z | z € integer Az > i Az < j}.

For example,
T = set of {red, green, blue}

defines the type T' as the power set (the set of all subsets) of {red, green,blue}. Three possible values for
variables of type T are {}, {red}, and {red, blue}. The declaration

x : set of integer
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Table 3.6 Operations on sets

Operation | Meaning

u,n, —, x union, intersection, difference, Cartesian product
=,# equal, not equal

€, ¢ member, non-member

|s| size of set s

defines the variable z as a set of integers. Among the possible values for z are {} and {1,3,5,7,9}.

The operations on set variables are shown in Table 3.6. For sets a and b, set union, intersection, difference,
and Cartesian product are defined as follows.

alUb {z|zeaVeeb}
anb {z |z eanzeb}
a—>b {z|zeanz ¢b}
axb = {{z,y)|zr€aryeb}

For example, if a = {1,2,3} and b = {2, 3}, then

aUb=>bUa=1{1,2,3}
anb=>bnNa={23}
a—b={1} b—a={}
axb={(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)}

lea 1¢b

la| =3 |b] = 2

3.4.4 Sequences

A sequence is an ordered collection of elements of the same type. Since the elements of a sequence are ordered,
an element can occur more than once in a sequence. A sequence is sometimes referred to as a list, and it
is similar to the array used in many programming languages. To declare a sequence of type T, we use the
expression sequence of T.

We use an expression of the form (zg,#1,...,2,) where n > 0 to represent the sequence with elements
2o, Z1,...,2n. Thus, () represents the empty sequence, and (1,3,5) represents a sequence with three ele-
ments. The positions in a sequence are zero-relative. For example, the element in position 1 in list (1,3, 5) is
3, and 1 is the element in position 0.

The declaration
T = sequence of {red, green, blue}

defines the type T as the set of all sequences of elements from {red, green, blue}. Three possible values for
variables of type T are (), (red), and (red, blue, red). The declaration

x : sequence of integer

defines the variable z as a sequence of integers. Among the possible values for z are () and (1,3,1,3,1).

The definitions above are for variable-length sequences. To define a fixed-length sequence of type T with length
[, we use the expression sequence [I] of T', where [ is a positive integer. Similarly, fixed-size arrays of arbitrary
dimensions can be defined by expressions of the form

sequence [ly,la, ... l,] of T
which is shorthand for

sequence [l1] of sequence [l3] of ... sequence [l,] of T
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Table 3.7 Operations on sequences (s, s1, and sy are sequences)

Operation | Meaning

s[i..4] subsequence of s from position ¢ to position j
s1 || 82 concatenation of s; and s»

=,# equal, not equal

€, ¢ member, non-member

s[1] i-th element of s

|s| length of s

The operations on sequences are shown in Table 3.7. If a = (1,2,3,4) and b = (5, 6), then

al0..3] = (1,2,3,4) al3..3] = (4) af3.1]= ()
allb=1(1,2,3,4,5,6) bl a=(561234)

Jex 3¢y

al0] =1 a3 =4

la| = 4 la[1..2]| = 2 [b] = 2

Note that the operations on sequences are the same as the operations on strings. This is not surprising, since
a string is a sequence of characters.

We have seen that sequences and strings have many things in common. They also have a common problem.
The operations s[i] and s[i..j] on strings and sequences are not always defined. For example, for any string or
sequence s, the value s[—1] is undefined. Similarly, if |s| = 2, then s[2] is undefined. In general, s[i] is undefined
if i ¢ [0..|s| — 1]; s[¢..5] is undefined if i € [0..|s| — 1]V j & [0..|s| — 1]. Care is required to avoid such undefined
values.

Special problems arise with logical expressions on sequences. Suppose that we want to write an expression that
is true for a sequence of integers s if and only if all the values in s are non-negative. A first attempt could be

(Vi € integer)(s[i] > 0)

However, when i = —1, s[i] is undefined, and s[¢§] > 0 is neither true nor false. To solve the problem we
explicitly restrict the type of the variable in the quantified statement, as in

(Vi € [0.s] = 1])(s[i] > 0)

3.4.5 Tuples

A tuple 1s a collection of elements of possibly different types. Each tuple has one or more fields associated
with it, and each field has a unique identifier called the field name. In some programming languages, a tuple
is referred to as a record or a structure. To declare a tuple, we use an expression of the form

tuple of (fr 111, f2:To, ..o, fu 1 Th)

where n > 1, f; is the field name, and T; is the field type of i-th field. If all fields are of the same type ¢, then
we use the abbreviated form

tuple Of (fl;f?a . "afn : T)
For example, the declaration
pair = tuple of (id : integer, val : string)

defines the type pair to be a tuple with two fields: the first field has the name ¢d and contains an integer, and
the second field has the name val and contains a string.

To define the value of a tuple, we use an expression of the form (x1,zs,...,2,) where n > 1 and #; is an
expression of the same type as the i-th field in the tuple. For example, (4, "cat") is a value of type pair.

The operations on tuples are shown in Table 3.8. For example, if z is a variable of type pair and z = (4, "cat"),
then z.id = 4 and z.val = "cat."
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Table 3.8 Operations on tuples

Operation | Meaning
=,# equal, not equal
t.f value of field f of tuple ¢

3.4.6 Examples

With type constructors, we can build types of arbitrary complexity. For example,
T = set of pair
defines the type T' as a set of pairs. We could equally well declare T' by the expression
T = set of tuple of (id : integer, val : string)

Examples of values of this type are {} and {(1,"cat"), (3, "dog"}}.

We can now define functions on variables of this type. The function
f T — boolean, where f(S) = (Yz € S)(z.id > 0)

returns true if and only if the field ¢d for all the tuples in the set S is greater than 0. For example, f({}) = true,
FH(1, "cat™), (3, "dog") }) = true, and f({(l, "cat"), (0, "dog")}) = false.

3.5 The Multiple Assignment Statement

The multiple assignment statement assigns values to variables. The general form of the multiple assignment
statement is
V1,V9,...,0p (= €1,€2,...,€En

where n > 1, the v;s are distinct variables, and each e; i1s an expression of the same type as v;. To evaluate the
above statement, first compute the values of all the expressions e; and then assign these values simultaneously
to the corresponding variables v;. When n = 1 we have the more familiar single assignment statement, which
assigns a value to a single variable.

Some examples of multiple assignment statements are

z,y:=0,10
z,y: =10,z
2,y =y,

The first assignment statement assigns 0 to z and 10 to y. The second one assigns 10 to z and assigns the
value of z to y. Note that this does not have the same effect as performing the single assignments z := 10 and
y := x one after the other. The third assignment interchanges the values of z and y. Table 3.9 shows the effect
of these three multiple assignment statements for different values of z and y.

The multiple assignment statement is a convenient tool for defining the meaning of pieces of code. We define
the state of a program to be the values of the variables in the program at a given time. To represent a state,
we define an order to the variables and use a tuple of the form (vy,va,...,v,) to represent the values of the
variables, where n is the number of variables in the program. For example, if program P contains the integer
variables z, y, and z, then a state is represented by a triple (vq, va, v3) where vy represents the value of z, vq
the value of y, and vs the value of z. The state space is the set of all states. Thus, the state space for program
Pis
{{v1,v2,v3) | v1 € integer A vy € integer A vs € integer}.

Note that to interpret a tuple in the state space, we need to know not only the variables in the program, but
also the order in which these variables are represented.
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Table 3.9 Examples of multiple assignment statements

Before | After

Assignment | z y T y
z,y :=0,10 1 2 0 10
4 7 0 10

z,y: =10,z 1 2|10 1
4 7110 4

T, Y =9y, T 1 2 2 1

4 7 7 4

Table 3.10 Meaning of example multiple assignment statements

Assignment Meaning

z,y:=0,10 {{{z1,y1,21),{(z2,¥2,22)) | 22 = 0A yo = 10 A 22 = z1 }
z,y:=10,z {{z1,y1,21), (22,92, 22)) | 12 = 10 Ayp = 21 AN 20 = 21}
T,y =y, T {{z1,91,21), (@2, 42, 22)) | Zo = g1 Ayo = z1 A z2 = 21}

We can now view the multiple assignment statement as a function on the state space of the program. In the
following, we assume that the state space consists of triples of values for variables z, y, and z. For example,
the assignment z := y + 1 defines the function

{({z1, 0, 21), (T2, 90, 29)) | 2o =+ LAYy =1 Az = 21}

Both the input and output of this function are integer triples. The first value of the output triple is the second
value of the input triple incremented by one, and the second and third values of the output triple are the same
as those of the input triple. Note that in this representation, we have considerable freedom in the choice of
variable names. For example, we could also use

{{a,b,c), {dye, i)Y |d=b+1Ae=bAf=c}
to define the meaning of the above assignment statement. Table 3.10 shows the functions defined by the

multiple assignment statements in Table 3.9.

Consider the sequence of assignments
r=y+1
Yy =z Xz

We can express the meaning of this sequence of assignments as the function
e, 21), (22,92, 22)) [z2 =i + LAYy = (y1 +1) x 21 Aza = 21}

which is the same function as defined by the multiple assignment statement z,y := y+1, (y+1) x z. In general,
for any sequence of assignments, we can find a multiple assignment statement that defines the same function.

3.6 Conditional Rules

A conditional rule is an expression of the form
(ci1=>rmleca=ra|...lcn = rn)

where n > 1, the ¢;s are logical expressions, and the r;s are rules. We call ¢; = r; the i-th component of
the rule, ¢; a condition, and r; a rule. To apply the above conditional rule, evaluate the conditions in order,
starting with c¢1; for the first ¢; that evaluates to true, apply rule r;. If no condition evaluates to true, then
the conditional rule is undefined.

We can use a conditional rule to define the value of a function. For example, we can define the minimum
function with the rule

min(z,y) =(z<y=>z|z>y=y)
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Table 3.11 Tabular form for conditional rule defining minimum function

Condition | min(z,y)
£y
T >y

Table 3.12 Tabular form for conditional rule defining sorting of two variables

Condition | z:= | y:=
r<y T Y
T2y y z

Sometimes it is useful to nest one conditional rule inside another. For example, we can define a lexicographic
order on pairs of integers (z,y) with the rule

(z1,91) < {z2,¥2) = ( 21 < 23 = true|
z1 =23 = (1 <y2 = true |y > y2 = false) |
r1 >z = false)

This rule is equivalent to the simple conditional rule

(21 < z2 = true |
z1 =23 Ay < yg = true |
z1 = x2 Ay > Yo = false |
r1 > xy = false)

which can be shown from the definition of conditional rule.

Another application of a conditional rule is to define the meaning of a program, i.e., a function on the state
space of the program. For example, we can define the meaning of the statement

if (# < y) then z:=z else z := y
which assigns the minimum of z and y to z, with the conditional rule
(z<y=Dzi=z|lz>y=z:=y)

Similarly, we can express the meaning of a piece of code that sorts the variables # and y with the conditional
rule
(z<y=ay=zylz>y=>zy:=yuz)

For long conditional rules, it is often clearer to express the conditional rule as a table. Translating a conditional
rule to tabular form is straightforward. For example, Table 3.11 contains the tabular form of the conditional
rule

min(z,y) =z <y=>z|z>y=y)

In the tabular form, we use one row for each component; the first column contains the condition, and the
second column the rule. Similarly, Table 3.12 shows the tabular form of the conditional rule

(r<y=>zy=zyle>y=zy:=yr)

In this case, we use two columns to define the rule part. The tabular form becomes particularly attractive
for nested rules, where we can use indenting in the condition column to indicate the nesting. For example,
Table 3.13 contains the tabular form of the conditional rule

(z1,y1) <{m2,y2) = ( 21 < x9 = true|

21 =122 = (Y1 < Y2 = true [ y1 > yo = false) |
r1 >z = false)
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Table 3.13 Tabular form for conditional rule defining lexicographic order

Condition {zo, yo) < {z1,11)
zo < 21 true
o = T1
Yo < Y1 true
Yo > 41 false
To > 1 false
upP upP UpP UP

UP

"DOWN ~~ DOWN ~—~ DOWN ~— DOWN

Figure 3.1 Counter finite state machine

4 2

We end this section by pointing out the difference between the logical connective “—” and a conditional rule

with one component. In the following, we assume that z and y are integer variables. The conditional rule
(x < y = false)

defines a function on pairs of integers (z,y) that is false if # < y, and not defined otherwise. The logical
expression
r <y — false

is defined for all values of = and y; it is false if z < y, and true otherwise. The following conditional rule is
equivalent:
(x <y= false |z > y = true)

3.7 Finite State Machines

In this section, we consider various kinds of Finite State Machines (FSMs) that differ in the way they produce
output. However, every FSM contains at least the following four components:

e S: a finite set of states.
e sq: the indtial state (sg € S).
e [: a finite set of inputs.

o T:5 x I —S: the transition function, where T'(s, z) defines the new state for input z while in state s.

For example, Figure 3.1 shows the states and transitions for an FSM that models a counter that is incremented
by the input UP and decremented by the input DOWN. When the counter reaches its maximum value, 4, the
input UP has no effect, and when its value is 0, the input DOWN has no effect. In this case, the set of states
S is {0,1,2,3,4}, the initial state sq is 0, the set of inputs I is {UP, DOWN }, and the transition function 7' is
defined by the conditional rule in Table 3.14.

So far, we have only considered inputs, states, and transitions of an FSM. When we use an FSM for software
specification, we are interested in describing the input/output behavior of the software. As a result, we are not
really interested in the states and the transitions of the FSM: the sole purpose of the states and transitions is to
define the input/output behavior. We will now look at two methods for associating outputs with an FSM. We
can then use FSMs for software specification by requiring that, for each input sequence, the software produces
the same output as the FSM.

The first type of output that an FSM can produce is called an event output, which is an output associated
with a transition of an FSM. That is, we can associate a set of event outputs Og with an FSM and define
an event-output function £ : S x I — Opg, where E(s,z) is the event output associated with the transition
corresponding to state s and input z.
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Table 3.14 Transition function for counter finite state machine

Condition T(s,z)
¢ = DOWN
s=0 0

sefl.4] | s—1

z=UP
s€[0..3] | s+1
s=4 4

Table 3.15 Event-output function for counter finite state machine

Condition E(s, z)
s=0

¢ =DOWN | ALARM

¢ =UP NORMAL
s €[1..3] NORMAL
s=4

z=DOWN | NORMAL
z =UP ALARM

For example, Table 3.15 defines an event-output function for the counter FSM shown in Figure 3.1. The set
of event outputs Og is {ALARM, NORMAL}. The event-output function E defines the event output as
ALARM when the input is DOWN and the counter cannot be decremented any further, or when the input is
UP and the counter has reached its maximum value. In all other cases, E defines the output as NORM AL.
Intuitively, the ALARM output signifies a failure of the FSM to properly maintain the count of UP and
DOWN events.

The second type of output is called a condition output, which is an output associated with a state. In this case,
we associate a set of condition outputs O¢ with an FSM and define a condition-output function C' : § — O¢
where C(s) is the condition output associated with state s.

Table 3.16 defines a condition-output function for the counter FSM shown in Figure 3.1. The set of condition
outputs O¢ is {NORMAL,WARNINGY}. The condition-output function C' defines the condition output as
WARNING when the counter is at its minimum or maximum value, and as NORM AL in all other cases.
Intuitively, the WARN IN G output signifies that the next input may cause the FSM to fail.

In summary, every FSM has a set of inputs, a set of states, an initial state, and a state transition function. In
addition, the types of FSMs we are interested in also have event outputs, condition outputs, or both. Since
event outputs are associated with transitions, they are instantaneous and available only during the transition.
Therefore, event outputs are well suited to model the output of functions in software. Condition outputs, on
the other hand, are associated with states and their value is unchanged until the next transition. Therefore,
condition outputs are well suited to model screen output.

The type of FSM defined in this section is known as a Mealy machine if it has an event-output function and
as a Moore machine if it has a condition-output function. There are many other types of finite state machines,
such as non-deterministic state machines or state machines based on final states rather than output functions.
Some of the FSMs that we will consider in this text are non-deterministic: more than one transition or output
is possible for a given state and/or input. To define a non-deterministic FSM, we replace one or more of the
transition, event-output, or condition-output functions by relations. In the next section, we consider MSMs: a

Table 3.16 Condition-output function for counter finite state machine

Condition | C(s)

s=0 WARNING
s€[l.3] | NORMAL
s=4 WARNING
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Table 3.17 list module state machine—access routines

Routine name | Input Output | Exception

s_init

s_add integer full
integer pos

s_del integer pos

s_val integer pos
nteger

g-val integer | integer pos

special kind of FSM designed for specifying software modules.

3.8 Module State Machines

Module state machines (MSMs) provide the mathematical basis for three work products: Module Interface
Specification, Module Internal Design, and Module Implementation. Here we describe a language for specifying
MSMs and illustrate the language features on two examples.

3.8.1 Specification sections

An MSM consists of a state declaration and one section for each access routine, describing its behavior in
terms of the state. The state variables section defines the specification state space by declaring a collection
of typed variables. The access routine semantics section contains one subsection for each access routine.
Each subsection contains two entries, whose form depends on whether the access routine is a set, get, or set-get
routine.

e Set access routine entries. A transition and an exceptions entry are required. The transition entry
specifies a state transition: new values for the state variables expressed in terms of the old values. The
transition is usually specified by a multiple assignment statement, with state variables on the left-hand
side. In some cases, it is important to explicitly distinguish between the new and old state values. For
state variable z, pre(z) refers to z’s value just before the transition; post(z) refers to its value just after.
The exceptions entry specifies the situations in which each exception must be signaled. The exceptions
are specified by an assignment to the special variable exc, or by “none,” indicating that no exception is
ever signaled.

e (el access routine eniries. An output and an exceptions entry are required. The output entry
describes the access routine return value, specified by an assignment to the special variable out. The
exceptions entry is as for set routines.

e Sei-get access routine entries. A tramsition-output and an exceptions entry are required. The
transition-output describes a state transition and an output. The transition is specified as in the
transition section of a set call; the output is specified as in the output section of a get call. The
exceptions entry is as for set routines.

3.8.2 Example: list module

Consider the list module, which provides access to a list of at most N integers. List elements are accessed by
position (zero-relative), and elements may be added and deleted at any position. The access routines for list
are shown in Table 3.17. s_init initializes the module, with the list empty. s_add(é, z) inserts z at position 4,
and s_del(i) deletes the element at position i. s_val(s, z) replaces the value at position i with z, and g_val(i)
returns the value at position 1.

The access routine semantics are shown in Figure 3.2. The state is the single variable s, holding the list
contents. s_init assigns the empty list to s and never signals an exception. s_add(i, z) inserts z immediately
following s[i — 1] and signals the exception full if s has N elements and the exception pos if i is out of range.
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state variables
s : sequence of integer

access routine semantics
s_init:
transition: s := ()
exceptions: none
s_add(z, z):
transition: s :=s[0..s — 1] || {z) || s[e..|s| — 1]
exceptions: exc:= (|s| = N = full | i ¢ [0..|s]] = pos)
s_del(z):
transition: s :=s[0..0 — 1] || s[i + 1..|s| — 1]
exceptions: ezxc:= (i € [0..]s| — 1] = pos)
s_val(z, z):
transition: s[i]:= =
exceptions: ezxc:= (i € [0..]s| — 1] = pos)
g-val(z):
output: out := s[i]
exceptions: exc:= (i € [0..]s| — 1] = pos)

Figure 3.2 list module state machine—semantics

Note that insertions are permitted at position |s|, even though this position is one beyond the end of 5. s_del(7)
removes s[i], signaling pos if 7 is out of range. s_val(i,z) simply assigns z to s[i] and g_val(i) returns s[i].
Both signal pos if ¢ is out of range.

Table 3.18 shows two examples of an ezecution table: a tabular description of the “execution” of a trace—a
sequence of calls—by an MSM. There is one row for each call in the trace, and a column for the call, the new
state, the output, and the exception associated with the call. In table (a), the elements are stored in the order
they are added. In table (b), the s_add position parameter causes the elements to be stored in the reverse
order.

3.8.3 Additional specification rules

In the description of MSMs above, several important issues have been ignored.

e Non-determinism. For a given access routine call, is more than one new state permitted? Is more
than one output or exception permitted? We normally use an MSM as a specification. In this role,
non-determinism indicates that the implementor has some freedom in the observable behavior of the
implementation.

e FEzception semantics. When an exception occurs, are there any constraints on the new state or output?

e Completeness. Are there calls for which no transition or output is specified? In other words, are there
traces for which there is no specified behavior?

Different answers to these questions give rise to different MSM definitions. We next provide one set of answers:
the ones used for all MSMs in this text.

e Non-determinism. MSMs are non-deterministic in a number of ways. For set calls, the transition may
be non-deterministic, for get calls the output may be non-deterministic, and for set-get calls both the
transition and output may be non-deterministic. However, for all access routines, the exception behavior
must be deterministic.

e FEzception semantics. When an exception occurs, we constrain the state transition, but not the output.
Suppose that call C' causes an exception. If C' is a set call, then no state transition occurs. If C'is a get
call, then the output is dontcare: any output of the correct type is permitted. If C 1s a set-get call then
no transition occurs and the output is donicare.
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Table 3.18 list module state machine—execution tables (N = 3)
(a)
Call New state | Output | Exception
(1) s_init O — —
(2) | s_add(0, 10) (10) — —
(3) | s_add(1,20) | (10,20) — —
(4) | s_add(2,30) | (10,20,30) — —
(5) | gwal(2) | (10,20,30) 30 —
(b)
Call New state | Output | Exception
(1) s_init 0 — —
(2) | s_add(0, 10) (10) — —
(3) | s_add(0,20) | (20,10) — —
(4) | s_add(0,30) | (30,20,10) — —
(5) | gwal(2) | (30,20,10) 10 —

Table 3.19 Module state machines—semantics summary

Call Normal case Exceptions

set transition specifies exceptions specifies 0 or 1 exception(s).
1 or more states. transition ignored: no state change.

get output specifies exceptions specifies 0 or 1 exception(s).
1 or more outputs. output ignored; any output permitted.

set-get | transition-output specifies | exceptions specifies 0 or 1 exception(s).
1 or more state/output pairs. | transition-output ignored:

no state change; any output permitted.

e Completeness. MSMs must be complete. Whenever the exceptions entry does not indicate an exception,
the transition, output, or transition-output entry must provide the normal-case behavior.

These rules are summarized in Table 3.19.

3.8.4 Example: extended list module

The elist (extended list) module provides extensions to the list module, illustrating the rules described in the
previous section. The elist module supports the access routines shown in Table 3.20, as well as the list access
routines. The semantics for the list access routines are unchanged. The semantics for the new access routines
are shown in Figure 3.3 and paraphrased as follows: g_exval(z) returns true or false according to whether z
is in s. g_pos(z) returns the position of z in s and signals val if z does not occur in s. If z occurs in more
than one position, then any one of these positions is a correct out value. s_delval(z) deletes the element with
value z and signals val if z does not occur in s. Again, if z occurs in more than one position, then any one of
these may be deleted. Note the use of pre in the transition entry to ensure that it is clear which version of s
is intended. sg_val returns the value of some element of s and deletes it, signaling empty if s has no elements.
Both the transition and the output are non-deterministic.

Table 3.21 shows execution tables illustrating the rules for exception semantics, assuming N = 3. In table (a),
the s_add call in line 5 generates the exception full. There is no change in state, even though the expression
in the transition entry is defined. Table (b) shows a g_val call causing exception pos. While the output 0 is
shown, any other integer is equally correct.

Table 3.22 shows execution tables illustrating the rules for non-deterministic transitions and outputs. In table
(a), the g_pos call returns 0; 2 is also acceptable. Similarly, in table (b) the s_delval call shows a new state
of (10,20); (20, 10) is also correct. Table (c) illustrates transition-output non-determinism. While the new
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access routine semantics
g-exval(z):
output: out :=z € s
exceptions: none
g-pos(z):

3.8. MODULE STATE MACHINES

Table 3.20 elist module state machine—access routines
Routine name | Input Output | Exception
g-exval integer | boolean
g-pos integer | integer val
s_delval nteger val
sg_val integer empty

output: out := i where (z € [0..]s| — 1] A s[2] = z)
exceptions: exc:= (z € s = val)

s_delval(z):

transition: s := s[0..0 — 1] || s[¢ 4+ 1..|s| — 1], where pre(s)[i] = =
exceptions: exc:= (z € s = val)

sg-val:

transition-output: s,out := s[0..c — 1] || s[z + 1..|s| — 1], s[1]
where 1 € [0..|pre(s)| — 1]
exceptions: ezxc:= (|s| = 0 = empty)

(b)

Table 3.21

Figure 3.3 elist module state machine—semantics
elist module state machine—execution tables (N

Call New state | Output | Exception

(1) s_init O — —

(2) | s-add(0, 10) (10) — —

(3) | s_add(1,20) | (10,20) — —

(4) | s_add(2,30) | (10,20,30) — —

(5) | s_add(3,40) | (10,20, 30) — full
Call New state | Output | Exception

(1) s_init O — —

(2) | s-add(0, 10) (10) — —

(3) | s_add(1,20) | (10, 20) — —

(4) g-val(2) (10, 20) 0 pos
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Table 3.22 elist module state machine—execution tables (N = 3)
(a)
Call New state | Output | Exception
(1) s_init O — —
(2) | s_add(0, 10) (10) — —
(3) | s_add(1,20) | (10,20) — —
(4) | s_add(2,10) | (10,20,10) — —
(5) g-pos(10) (10,20, 10) 0 —
(b)
Call New state | Output | Exception
(1) s_init 0 — —
(2) | =s-add(o0,10) (10) — —
(3) | s_add(1, 20) (10, 20) — —
(4) | s_add(2,10) | (10,20,10) — —
(5) | s_delval(10) {10, 20) — —
(c)
Call New state | Output | Exception
(1) s_init O — —
(2) | s_add(0, 10) (10) — —
(3) | s_add(1,20) | (10,20) — —
(4) | s_add(2,10) | (10,20,10) — —
(5) sg-val {10, 10) 20 —

state/output pair shown is (10, 10)/20, the pairs (10,20)/10 and (20, 10)/10 are also correct.

3.9 Summary

We discussed the mathematics needed for specifying functions that naturally arise in software specifications.
The notations use the familiar notions of sets and relations, and the standard logical connectives and quantifiers.

We rely on a simple type scheme based on the primitive types integer, boolean, char, and string, and three
type constructors: sets, sequences, and tuples. Sets provide unordered collections of elements of the same type,
sequences provide ordered collections of elements of the same type, and tuples provide collections of elements
of possibly different types. These type constructors can be combined to build types of arbitrary complexity.

The multiple assignment statement and the conditional rule are two specification constructs with simple func-
tional semantics. The multiple assignment statement is a generalization of the familiar (single) assignment
statement, and the conditional rule is similar to the case statement provided by some programming languages.
For long and complex conditional rules, it is often clearer to express the rule in tabular format. Tabular
conditional rules are used heavily in SHAM Requirements Specifications.

The Finite State Machine (FSM) is a powerful specification construct. Each FSM has a set of inputs, a set of
states, an initial state, and a state transition function. The FSMs we are interested in also have outputs. A
Module State Machine (MSM) is a special kind of FSM designed for specifying software modules. MSMs form
the mathematical basis for three work products: Module Interface Specification, Module Internal Design, and
Module Implementation.
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3.10 Bibliographic Notes

Textbooks on discrete mathematics such as Piff’s [41] cover many of the topics discussed in this chapter. In
addition, many texts discuss each of these topics in more detail. Sets, relations, and functions are covered in
the classic set theory text by Halmos [42]. Hodges [43] provides a good introduction to logic, and Enderton
[44] covers the topic in depth. Our types and type constructors are generalizations of the types found in
programming languages such as Pascal [45]. A more formal treatment of types can be found in the literature
on algebraic specifications [46], the Z notation [4], and functional programming [47]. The multiple assignment
statement and conditional rule are taken directly from the text by Linger et al. [38]. Finite State Machines are
covered in most texts on automata theory [48]. Output automata, such as our Module State Machines, and
equivalences between pairs of output automata are described in more depth by Nelson [49] and Hoffman and

Jones [50].
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Chapter 4

Introduction

And now I see with eyes serene, the very pulse of the machine.

[W. Wordsworth]

4.1 The SHAM System

4.1.1 Purpose

The raison d’étre of SHAM, the Strooper-Hoffman Abstract Machine, is to demonstrate methods for specifying,
designing, implementing, and testing software systems. The important considerations for selecting SHAM as
an example are that:

1. SHAM is sufficiently complex to demonstrate the methods.

2. SHAM is easy to learn, so that the emphasis can be on teaching the methods, rather than on teaching
SHAM.

3. SHAM is entertaining enough that the reader is encouraged to read the remainder of this book.

)

However, no effort was made to make SHAM “realistic,” in the sense of a useful, complex, or even industry-like

system. SHAM is indeed a sham.

To make reasonable decisions about what services to include in SHAM, it helps to define a hypothetical purpose
for it. In the remainder, we assume that SHAM is a simple assembler used for teaching the basic aspects of
primitive von Neumann-style programming, where both program and data are stored in memory, and the
processor operates in a simple fetch-and-execute cycle. In setting out the requirements for SHAM, we follow
an ASAP approach, which in this case stands for “as simple as possible.” Despite its simplicity, SHAM is
sufficiently complex to demonstrate the methods, and surprisingly subtle specification, design, and verification
issues arise.

4.1.2 Overview of services offered

As explained in Chapter 1, during the Requirements Analysis phase of a software project the basic services
offered by the system are determined. While this text does not cover the Requirements Analysis phase in
detail, we briefly discuss the key requirements decisions made for SHAM.

We focus on the following questions.

o What is the register and memory model? We must decide how many registers there are, and how they
are used. For example, we must decide if index registers are supported. Similarly, we must decide on the
memory model; for example, is virtual memory supported?

o What s the instruction format? We must decide whether an instruction occupies one, two, or more
memory locations, what types of operands are allowed, and how the operands are stored.
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Table 4.1 SHAM instruction set

Instruction | Operand | Description
Memory access
LOAD a load value at address a into acc
STORE a store acc at address a
Arithmetic
ADD a add value at address a to acc
SUBTRACT a subtract value at address a from acc
Branch
BRANCH a branch to address a
BRANCHZERO a branch to address a if acc =0
BRANCHPOS a branch to address a if acc > 0
Miscellaneous
LOADCON 1] load integer 1 into acc
PRINT print value of acc
HALT terminate SHAM

o What instructions are supported? We need instructions to support memory access, arithmetic functions,
branching, and miscellaneous tasks such as input/output.

o What is the user interface? Does SHAM operate in batch or interactive mode? A good case can be made
for both modes of operation. A batch version is simpler to implement and is terminal-independent, so
that SHAM can run in many different environments. However, an interactive version can demonstrate
key issues relating to keyboard and terminal support in software specification, design, and verification.
Moreover, an interactive version is more intuitive for the user, better serving our hypothetical purpose
of teaching von Neumann-style programming.

Possible answers to these questions are discussed in most books on computer architecture [51]. We now discuss
the decisions that were made for SHAM. Clearly these decisions are somewhat arbitrary, but in our decisions
we are guided by the ASAP principle.

o Register and memory model. SHAM has two registers: the accumulator, ace, and the program counter,
pe. A flat memory model is used with a single memory array, accessed through integer addresses. Neither
index registers nor virtual addressing is supported.

e Instruction format. Each instruction is stored in a single memory location. Only numeric operands are
supported and, for instructions with an operand, the operand also occupies a single memory location.
Only unsigned decimal values are supported.

o Instruction set. Table 4.1 shows the SHAM instructions. Note that there is no way to read input in
SHAM; input values must be hard-coded into the program using LOADCON.

e User interface. Since a batch and an interactive interface to SHAM are both useful, we provide two
versions. BSHAM offers a batch interface; the source program is stored in a file and run in a load-and-go
fashion. The only output produced by this version is error messages and integers printed with the PRINT
instruction. The second version, ISHAM, provides an interactive interface; the registers and memory are
displayed on the screen and the user single-steps through program execution.

It is clear that after a system such as SHAM is placed into production, changes will be requested. Some of the
likely changes are influenced by the above decisions. For example, it is easy to imagine that the user would
want more instructions, index registers, or symbolic addresses. Another source for change requests is the user
interface. For example, changes to the syntax of the SHAM input file or the screen format for the interactive
version are likely to be requested. These, and other, likely changes are documented in the Requirements
Specification, so they can be taken into account when designing the system.

4.1.3 Overview of work products

Section 2.3 discusses the seven work products that we use in the development of SHAM. In the following
chapters, we describe each of these work products in detail; we now review the particular instances of each of
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the work products that exist for SHAM. There is one Requirements Specification for SHAM, but it contains
two parts. The first part defines the behavior of BSHAM, the batch version, and the second part defines
the behavior of ISHAM, the interactive version. Since there are few differences between the two versions, the
second part is written as an addendum to the first and defines only the ways in which the interactive version
is different.

There 1s one Module Guide for SHAM; it defines the modules for both BSHAM and ISHAM. There are nine
modules in SHAM. Three of these, absmach, load, and token, are used in exactly the same way in BSHAM
and ISHAM. Two modules, ezec and sham, are used in both versions, but in slightly different ways in each
version. And four modules, keybdin, scndr, scngeom, and senstr, are used only in ISHAM. Finally, there are
two modules, stack and symtbl, that are not part of SHAM proper, but that we frequently use for illustration.

For most of the SHAM modules, there is a Module Interface Specification, a Module Internal Design, a Module
Implementation, a Test Plan, and a Test Implementation. However, for some modules one or more of the work
products are omitted; only the Module Implementation is always present. For example, for some modules there
is no Test Implementation because the module is best tested during system testing. Finally, there is a Test
Plan and a Test Implementation for the system testing of both the BSHAM and the ISHAM systems.

4.1.4 Document conventions and notations

Each work product has its own conventions and notations; these are explained in the appropriate chapters.
However, certain conventions and notations are used in all work products.

There is an abbreviation for each of the work products: RS for Requirements Specification, MG for Module
Guide, MIS for Module Interface Specification, MID for Module Internal Design, MI for Module Implementa-
tion, TP for Test Plan, and TI for Test Implementation.

By default, all identifiers are shown in italics. The one exception to this rule is that all code fragments (from
the Module Implementation and the Test Implementation) are shown in typewriter font.

In the MG, a unique prefix is defined for each SHAM module. For example, the prefix for the stack module
is ps_, for “pushdown stack.” The prefix for module M is used on all identifiers exported by M. Thus, the
initialization access routine for stack is called ps_s_init. The prefix of an identifier is always included when
the i1dentifier appears in a work product. However, for readability, we omit the prefix when we reference the
identifier in the text, unless this leads to confusion. For example, we use s_init if it is clear that we are
referring to the initialization routine for stack.

4.2 Overview of Part II

The remaining chapters in Part II discuss the work products in detail. Chapter 5 explains how the required
behavior of a system is captured in the Requirements Specification. The module decomposition of a system,
which is recorded in the Module Guide, is described in Chapter 6. Chapter 7 discusses the design of module
interfaces, and the Module Interface Specification that is used to record this design. The Module Internal Design
specifies the internal data structures of a module and is discussed in Chapter 8 and the Module Implementation
is discussed in Chapter 9. Finally, Chapter 10 discusses the testing phase and its associated work products,
the Test Plan and the Test Implementation.
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Chapter 5

Requirements Specification

Observability is the essence of specification.

5.1 Introduction

The goal of the Requirements Specification (hereafter “RS”) is to precisely specify the required behavior of a
software system. The idea is to make the “what decisions” explicitly up front, not implicitly during design and
implementation. The RS supports the four roles described in Section 2.2. Here the users are the end users,
and the designers are the requirements engineers. The developers are the staff who write the Module Guide,
Module Interface Specifications, Module Internal Designs, and Module Implementations. The verifiers are the
inspectors and testers, especially the system testers.

To support these four groups of people, a well-organized reference document is needed. The RS defines all the
required system behavior in one place, accurately and consistently. Both normal and exceptional behavior are
specified. The RS supports the software development process in a number of important ways:

e Serves as a coniract between the users and the developers. The requirements typically include too many
details to memorize and frequently contain decisions hammered out in intense negotiations. A written
record is critical.

e Fnsures that developers need not decide what is best for users. It is not feasible for every developer to
be an expert in the application area. However, the RS can provide the developer with the information
needed to make good design decisions.

e Provides essential support for independent verification. Often, a developer and verifier disagree on system
correctness. The RS provides an authoritative source for resolving these disputes.

o Supports estimates of time and resources. Without a detailed description of the required behavior,
accurate cost estimation is rarely possible.

e Provides protection against personnel turnover. In software development, frequent turnover is a fact of
life. If the requirements information is stored only in a developer’s head, then that information leaves
when the developer leaves.

e Supports the maintainer. Many maintainers were not members of the original development team, and
therefore they rely heavily on the RS to obtain the required system behavior.

In the remainder of this chapter, we define the RS work product, review in detail the BSHAM and ISHAM
RSs, and describe the verification of RSs. The full BSHAM RS and ISHAM RS may be found in Appendix A.

5.2 Work Product Definition

It pays to recognize the type of information commonly recorded in an RS and to define a standard document
structure to organize that information. When properly designed, standardized documents are easier to write,
read, verify, and maintain.
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5.2.1 Document sections

Our RSs are based on finite state machines (FSMs) and are divided into seven sections. The Overview section
provides a brief description of both the system specified and the specification document itself. The required
hardware and software environment and the notational conventions used in the document are also defined.

The Environment variables section defines variables that are used to model relevant aspects of the system’s
environment. An environment variable declaration specifies a name, a type, and an interpretation: the rela-
tionship between the variable value and the environment. Environment variables are divided into two groups:
imput variables—which the system may read, but not modify—and ouiput variables—which may be written
but not read. For example, the ISHAM screen can be modeled with the output environment variable sen:

sen : sequence [24][80] of char
sen[r][¢] is the character at screen row r and column ¢,
with numbering zero-relative and beginning at the upper-left corner.

According to the declaration, sen[23][0] = *x° is true if there is an *x? in the lowest, leftmost position of the
terminal screen.

The State machine section is the core of the specification and defines one or more FSMs (see Section 3.7). In
practice, the FSM descriptions are rarely completely formal; such descriptions are too long and cumbersome
to justify their development and maintenance cost. Instead, parts of the FSM are described formally, while
other parts are sketched or omitted entirely. Generally, we sketch or omit what is obvious or unimportant.
Rather than strive for complete formality, we ensure that the description is complete and precise enough that
the required behavior is clear. In principle, from the RS description, the reader should be able to construct a
completely formal FSM.

Constants, types, and functions, using the concepts and notations presented in Chapter 3, make the RS easier
to understand and maintain. For example, in the Functions section of the BSHAM RS, a function is used to
compactly specify the text for exception messages.

In a successful system, change is inevitable. Changes in the application area, the need for improved performance,
and upgrades to the hardware and software environment all force systems to be modified. The knowledge of
what changes are likely is extremely valuable to the designer, because it allows him or her to structure the
system so that those changes are inexpensive to make. Such design for change is the focus of Chapter 6. To
support design for change, each RS contains an Expected changes section, describing the changes likely to
be requested after system development is complete.

While it is not possible to predict all future changes, certain types of changes occur often and can be predicted
well enough to support design for change. For example, input and output formats—for files, reports, and
terminal screens—change frequently, as user needs change and become better understood. New system features
are added, and old ones modified or deleted. The underlying hardware and software platform is subject to
frequent change. Nowadays, hardware may be replaced every few years, and new operating system versions
may well arrive annually. Users and developers can often suggest additional changes. For example, payroll
personnel know that tax calculations change frequently. The developer applies his or her knowledge of the
technology; it is the developer’s job to know when a new operating system version is arriving and how it differs
from the current version.

Of the seven sections just described, only the State machine section needs further discussion.

5.2.2 The state machine section
The State machine section is divided into the following five subsections.

1. Inputs. The inputs are defined, usually in terms of the input environment variables. In practice, inputs
vary widely in form, including commands from the keyboard, lines from a file, or even entire files or
directories.

2. Outputs. This section defines the outputs, usually in terms of the environment variables. As with the
inputs, considerable variety is encountered in practice. Both event and condition outputs (see Section 3.7)
may be specified.

3. State variables. The state space is defined in terms of state variables. Each variable is declared by
providing its name and type.
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Overview: overview of the system and the RS; notational conventions
Environment variables: declarations of variables modeling the environment

State machine: definition of the FSM on which the RS is based
Inputs: inputs, in terms of the input environment variables
Outputs: outputs, in terms of the output environment variables
States: declarations of variables storing the system state
Initial state: an initial value for each state variable
Transitions and outputs: new state and outputs, for each state/input pair

Constants: auxiliary constants
Types: auxiliary types
Functions: auxiliary functions

Expected changes: a list of changes likely after development is complete

Figure 5.1 Requirements specification sections

4. Initial state. The initial state is specified by providing a value for each state variable.

5. Transitions and outputs. This section specifies the outputs and new state corresponding to each input
and old state. Exceptions are explicitly defined, as conditions on the input and old state. Unless stated
otherwise, when an exception occurs the transition is “none”: no change in any state variable.

The RS document sections are summarized in Figure 5.1.

5.3 BSHAM Requirements Specification

The BSHAM RS describes the required behavior of the batch version of the SHAM system. The dataflow
diagram in Figure 5.2 shows the interaction between the bsham program and its environment. A box indicates
a data source or sink, an oval an executable program, and an arrow a discrete dataflow. Thus, bsham reads
source program lines from srcfil and writes normal output lines and exception messages to stdout.

The BSHAM RS must specify, in detail, what normal and exceptional output is produced for each possible
srefil. The RS focuses on the following areas:

o Language syntaz—source and object. What are the legal instructions and operands, input format, and
source-code-to-object-code mapping?

o Registers and main memory. What are the word size and memory size?

e Language semantics. What is the effect of each instruction on memory, the registers, and the program
output?

e FEzceptions. Under what conditions do exceptions occur? What action must be taken?
Even though the service offered by the BSHAM system is simple, developing a detailed RS is challenging.

The remainder of this section describes the key parts of the BSHAM RS; the full document may be found in
Appendix A.

5.3.1 RS section: Overview

This section provides an overview of the BSHAM system, briefly described in Chapter 4. BSHAM runs on
Sun/3 and Sun/4 workstations running SunOS. It is implemented in the C programming language and requires
the UNTX/C standard libraries [52]. A simple naming convention is used throughout the RS, as follows. All
identifiers are shown in ¢talics. The names of constants and abbreviations are all uppercase. The others are
all lowercase, except for types, whose names end in ‘7.
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normal
source output line

T PR
srefil o bsham ) stdout

exception
message

Figure 5.2 BSHAM dataflow diagram

5.3.2 RS section: Environment variables

As suggested by Figure 5.2, there are two environment variables, declared as follows.
srcfil @ string
The file name passed on the command line.

stdout : string
UNIX stdout.

5.3.3 RS section: State machine

BSHAM behavior is specified using two FSMs: one for each of the load and execution phases. The load-phase
FSM reads the source program a line at a time, and loads the object-code version into BSHAM’s main memory.
Exception messages are issued as needed. If the load phase is exception-free, then the execution-phase FSM
begins running. It continues until a HALT instruction is reached or an exception occurs.

Command-line invocation
BSHAM is invoked by typing
bsham srcfil

on the command line. Input is read from src¢fil and output is written to stdout.

The required response to command-line exceptions is specified using a type and a function, shown in Table 5.1.
The type excidT introduces identifiers for command-line, load-phase, and execution-phase exceptions. The
function exzcmsg specifies the message text corresponding to each exception identifier. Some messages include
the illegal token (tok) or the location (loc) in the source or object code. As Table 5.1 shows, there are two
command-line exceptions. If the srcfil argument is not present

exemsg(NOFILEXC,0,"")
is written to stdout. If srcfil is unreadable (or does not exist)
exemsg(FILSYSEXC, 0, srcfil)

is written to stdout. If there are any command-line exceptions, BSHAM execution terminates.

Load phase

The specification of the load phase depends on the constants and types shown in Figure 5.3. MAXLINLEN
is the maximum length of a srcfil input line, MAXINT is the largest integer that can fit in a memory word,
and MEMSIZ is the total number of words of main memory. The set of legal memory addresses, and the set
of legal register or memory values are specified by shamaddrT and shamintegerT, respectively.

The SHAM instructions and their arguments are shown in the Language Syntax Table (Table 5.2). The first
column contains the instruction mnemonic used in this document. Column two contains the string that must
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Table 5.1 BSHAM exceptions—ezcidT and excmsg

excidl = {FILSYSEXC, NOFILEXC,
BLANKLINEXC MISSINGOPEXC, NOMEMEXC,
OPFMTEXC,SOURCEEXC,
ADDREXC,ARITHEXC,NOOPEXC,OBJECTEXC}

excmsg : excid] X integer X string — string

if id is | then ezcmsg(id, loc, tok) is
Command-line messages
FILSYSEXC Command line error. Cannot open file: tok
NOFILEXC Command line error. No file name specified
Load-phase messages
BLANKLINEXC Load exception at loc. Blank line illegal
MISSINGOPEXC | Load exception at loc. Operand missing
NOMEMEXC Load exception at loc. Program too large
OPFMTEXC Load exception at loc. Illegal operand: tok
SOURCEEXC Load exception at loc. Illegal instruction: tok
Execution-phase messages

ADDREXC Execution exception at loc. Illegal operand: tok
ARITHEXC Execution exception at loc. Arithmetic overflow
NOOPEXC Execution exception at loc. Operand not accessible
OBJECTEXC Execution exception at loc. Illegal instruction: tok
Constants

Name Value

MAXLINLEN 100

MAXINT 999

MEMSIZ 100
Types

shamaddrT = [0. MEMSIZ — 1]
shamintegerT = [0. MAXINT]

Figure 5.3 Constants and types
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Table 5.2 Language syntax table

Mnemonic | I.source | I.object | Operand type
Memory access
LOAD load 0 | shamaddrT
STORFE store 1 | shamaddrT
Arithmetic
ADD add 2 | shamaddrT
SUBTRACT sub 3 | shamaddrT
Branch
BRANCH br 4 | shamaddrT
BRANCHZERO | brz 5 | shamaddrT
BRANCHPOS brp 6 | shamaddrT
Miscellaneous

LOADCON loadcon 7 | shamaintegerT
PRINT print 8
HALT halt 9

Inputs

FEach input is a line from src¢fil, read in the order it appears in srcfil.
Outputs
Normal-case output and exception messages are written to stdout.
States

mem : sequence [0. MEMSIZ — 1] of shamintegerT
Initial state
Every element of mem is set to 0.
Transitions and outputs
For line I, with line number n:
if the Load-phase Exception Table specifies an exception then
write the specified message to stdout
else
if no previous line had an exception then
if there is room in mem then
load the object code form of L into mem
else

write ezemsg(NOMEMEXC,n,””) to stdout

Figure 5.4 Load-phase FSM

be used in srcfil, and column three contains the object-code form generated by BSHAM. The last column
shows the type of the instruction operand, if any. In this table and throughout the RS, I.source and I.object
refer to instruction I’s source-code string and object-code integer, respectively. Thus, SUBT RACT .source is

sub and SUBTRACT.object is 3; SUBTRAC'T takes a single operand of type shamaddrT.

At load time, the contents of srcfil are scanned a line at a time, converted to object-code form, and loaded
into main memory. Each line in srefil must contain exactly one BSHAM instruction. Input lines must not
exceed MAXLINLEN characters—BSHAM behavior is unpredictable on longer lines. On each input line,
tokens must be separated by one or more blanks. Object-code instructions are loaded contiguously, beginning
at address 0. Instructions without an operand occupy a single memory location. Instructions with an operand
occupy two consecutive memory locations: the instruction code in the first location and the operand in the
second.

The load-phase FSM is shown in Figure 5.4. The Inputs and Outputs are self-explanatory. The States entry
declares one variable; main memory is represented by an array of MEMSIZ integers. Initially, all the memory
elements contain zero. The Transitions and outputs entry describes the processing of the nth line in srcfil.
If the line is exception-free and mem is not full, then the object code specified by the Language Syntax Table
(Table 5.2) is loaded.

Table 5.3 illustrates normal-case behavior for the BSHAM load phase. The first column shows the source code
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Table 5.3 Example: the 2 4+ 2 program

Object code ‘After’ values
srcfil Address | Value | pc | acc | mem[8] | stdout

loadcon 2 0 T 2 2 0 0

1 2
store 8 2 1 4 2 2 0

3 8
add 8 4 2] 6| 4 2| ()

5 8
print 6 8| 7 4 2 {4)
halt 7 9 7] 4 2 [ (4)

sourceT = {LOAD .source, STORE.source, ADD.source, SUBT RACT.source,
BRANCH .source, BRANCHZERO.source, BRANCH POS.source,
LOADCON.source, PRINT.source, HALT .source}

opOsourceT = {HALT.source, PRINT.source}

oplsourcel = sourceT — opO0sourceTl

Figure 5.5 Types for classifying source code instructions

for a trivial BSHAM program that computes and prints the value of 2 + 2. For each mem address in column
two, column three contains the object-code value specified by the Language Syntax Table. The remaining four
columns will be discussed below under the execution phase.

The load-phase exception behavior is specified using a tabular conditional rule, the ezemsg function already
described, and several new types. The types are shown in Figure 5.5. The type sourceT enumerates the source
code instructions whose string values are shown in Table 5.2; opOsourceT and oplsourceT partition opsourceT
into the zero and one-operand instructions. In the Load-phase Exception Table (Table 5.4) the normal case
and exception situations are defined by the conditions in column one. The message text is specified in column
two, where Normal case indicates that no exception is to be signaled.

Table 5.5 shows a purposely flawed program, and the specified exception messages. Consider the first line of
Table 5.5 in terms of Table 5.4. Here:

L=br 115, K =2, T; = br, and 75, = 115.

We follow the conditional rule in the Load-phase Exception Table (Table 5.4), top-down and noting only the
conditions that are true. We find that

K >0, Th € oplsourceT, K > 1, Ty # LOADCON .source, Ty & shamaddrT
Thus exemsg(OPFMTEXC,1,115) is indicated. Figure 5.1 shows that the message text is
Load exception at 1. Illegal operand: 115.

Note that the last instruction in Table 5.5 generates no exception message, even though ADD takes only
one operand. While it might seem that a correct srefil line must have exactly one or two tokens, careful
examination of the Load-phase Exception Table (Table 5.4) will show that srcfil lines of three, four, or more
tokens may be correct; it is only the first one or two tokens that are significant. This provides BSHAM with a
crude commenting feature, as shown in the sample programs in the BSHAM RS.

If there are any load-time exceptions, BSHAM execution terminates at the end of the load phase.
Execution phase

The execution phase is based on the Language Semantics Table (Table 5.6). This table specifies the effect of
each exception-free BSHAM instruction on the values of mem, ace, and pc. We illustrate its use with three
examples.
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Table 5.4 Load-phase exception table

Let L be the current line, with line number n (numbered one-relative).

Let 71,75, ..., Tk be the tokens in L.

Condition Message
K =0 (L is blank) excmsg(BLANKLINEXC,n,"")
K >0
11 € opOsourceT Normal case
T1 € oplsourceT
K=1 exemsg(MISSINGOPEXC,n,"")
K>1
Ty = LOADCON .source
T> € shamantegerT Normal case
T, & shamintegerT excmsg(OPFMTEXC,n, T3)
Ty # LOADCON .source
T5 € shamaddrT Normal case
T, & shamaddrT ezemsg(OPFMTEXC,n, T3)
T\ & sourceT excmsg(SOURCEEXC, n,T1)

Table 5.5 Example: load-phase exceptions

srcfil Exception message
br 115 Load exception at 1. Illegal operand: 115

lode 7 Load exception at 2. Illegal instruction: lode

add Load exception at 3. Operand missing
add 5 8

1. Suppose that pc = 5, ace = 10, mem[5] = 1, and mem[6] = 50. Because pc = 5, the current instruction

is mem/[5] and its operand is mem[6]. According to the Language Syntax Table (Table 5.2), mem[5]
contains the object-code value for a STORE instruction. Referring to the Language Semantics Table,
we see the following multiple assignment statement for STORFE .object:

mem|[op], pc := ace, (pe+ 2) mod MEMSIZ
where op = mem[pc + 1]. Substituting the current values for op, pc, and acc, and simplifying, we get
mem[50], pc := 10,7

Thus, the STORFE instruction at address 5 copies the accumulator to the address in mem/[6]. All other
mem locations and acc remain unchanged.

2. Suppose that pc = 5, ace = 10, mem[5] = 2, mem[6] = 50, and mem[50] = 5. According to the Language

Syntax Table, mem[5] is an ADD instruction. The Language Semantics Table contains the following
multiple assignment statement for ADD.object:

acc, pc := acc + mem|op], (pc + 2) mod MEMSTZ.
Substituting the current values for ace, op, and pe and simplifying, we get
ace,pc = 15,7.

Thus, the ADD instruction at address 5 adds the value at address mem][6] to the accumulator. All mem
values remain unchanged.

. Suppose that pc = 5, mem[5] = 5, and mem[6] = 5. According to Table 5.2, mem[b]isa BRANCHZERO
instruction. The Language Semantics Table contains the following conditional multiple assignment state-

ment for BRANCHZFERQO .object:
pe:= (ace = 0= op | ace > 0 = (pc+ 2) mod MEMSIZ).
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Substituting the current values for op and pe, and simplifying, we get
pc:=(acc=0=5]acc>0=T).

Thus, if acc = 0 then the BRANC H Z ERO instruction will cause an infinite loop; otherwise, it will have
no effect beyond advancing the pc to the next instruction.

Table 5.6 Language semantics table (op = mem[pe + 1])

Instruction at mem[pc] | Effect on mem, acc, and pc
Memory access

LOAD .object acc, pc := mem[op], (pc + 2) mod MEMSIZ
STORE.object mem[op], pc := acc, (pc + 2) mod MEMSIZ
Arithmetic
ADD.object acc, pc := acc + mem[op], (pc + 2) mod MEMSIZ
SUBTRACT.object acc, pc := acc — mem[op], (pc + 2) mod MEMSIZ
Branch
BRANCH.object pc = op

BRANCHZERO.object | pc:=(acc=0= op
| acc > 0 = (pc+ 2) mod MEMSIZ)
BRANCHPOS.object pe = (acc > 0= op
| acc =0 = (pc+2) mod MEMSIZ)

Miscellaneous
LOADCON .object acc, pc := op, (pc + 2) mod MEMSIZ
PRINT.object pe = (pc+ 1) mod MEMSIZ
HALT.object no change to acc, pc, mem

Given the Language Semantics Table, the execution-phase FSM is straightforward (see Figure 5.6). There are no
Inputs; only the mem values collected during the load phase are needed. The Outputs are integers generated
by PRINT instructions and execution-phase exception messages. The States are the same as for the load-phase
FSM. The Initial state consists of the mem values as they were when the load phase completed processing
the last line in srefil, and the initial value of ace and pe is 0. According to the Transitions and outputs
section, the FSM executes the instructions in mem[pc] until an exception occurs or mem|[pc] = HALT.object.
Note that, while the load phase may generate multiple exception messages, the execution phase halts on the
first exception.

We illustrate the execution-phase FSM by again using Table 5.3. Columns four through seven show the values
of pe, ace, mem|[8], and stdout after the instruction in each row has completed execution. The algorithm is
simple: LOADCON puts 2 in the accumulator, which is then stored at address 8, added to the accumulator,
and printed. As column two shows, the object code instructions occupy words 0-7, and address 8 is the first
available location for data. Note that the HALT instruction has no effect on the state variables.

As for the load phase, the execution-phase exception behavior is defined using a tabular conditional rule, the
exemsg function, and several types. The types are shown in Figure 5.7. The type objectT enumerates the
object code instructions whose integer values are shown in Table 5.2; opQobjectT and oplobjectT partition
opobjectT into the zero and one-operand instructions. In the Execution-phase Exception Table (Table 5.7),
the normal-case and exception situations are defined by the conditions in column one. The message text is
specified in column two, where Normal case indicates that no exception is to be signaled. The execution-
phase exceptions are subtle; this table deserves careful study. We next walk through the exceptions defined in
the table. For convenience, let i = mem[pc] and op = mem[pc + 1].

1. ARITHEXC: signaled if ¢ is an ADD (or SUBTRACT) instruction and the result of the addition (or

subtraction) is not a legal integer. The result is not representable in the accumulator.

2. ADDRFEXC'" signaled if i is a one-operand instruction requiring an address, and op is not a legal address.
If the address is illegal, then the operand cannot be retrieved from mem.

3. NOOPEXC'" signaled if ¢ is a one-operand instruction in the last word of mem. Here, op is needed but
undefined.
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Inputs
None.
Outputs
Normal-case output and exception messages are written to stdout.
States
mem : sequence [0. MEMSIZ — 1] of shamintegerT
acc : shamintegerT
pc : shamaddrT
Initial state
mem, acc,pc := (the final value from the load phase FSM), 0,0
Transitions and outputs
for the instruction beginning at mem[pc]:
if the Execution-phase Exception Table specifies an exception then
write the specified message to stdout
terminate SHAM
else if mem[pc] = HALT.object then
terminate SHAM
else
if mem|[pc] = PRINT.object then
write to stdout : acc || newline
modify mem, acc, and pc as shown in the Language Semantics Table

Figure 5.6 BSHAM execution-phase FSM

objectT = {LOAD.object, STORE.object, ADD.object, SUBT RACT.object,
BRANCH.object, BRANCHZFERO.object, BRANCH POS.object,
LOADCON.object, PRINT.object, HALT .object}

opOobjectT = {HALT.object, PRINT.object}

oplobjectT = objectT — opOobjectT

Figure 5.7 Types for classifying object code instructions
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4. OBJECTEXC': signaled if 7 is not a legal instruction. In this case, no line in the Language Semantics
Table applies.

Table 5.8 explores a BSHAM program that generates ADDREXC'. Column one shows the source code,
columns two and three the object code, and columns four, five, and six, the values of pe, acc, and mem[5] after
each instruction has been executed. The LOADCON instruction places 500 in the accumulator, which is then
stored at address 5, the address of the BRANC H instruction’s operand. Because 500 is not a legal address,
execution of the BRANC'H instruction generates ADDRFEXC'. Referring to the Execution-phase Exception
Table (Table 5.7), we find that the following conditions are true:

i € oplobjectT, pc € [0. MEMSIZ — 2],

it # LOADCON .object, op & shamaddrT.

Here pc = 4, i = mem[pc] = 4, and op = mem[pe + 1] = 500. Tt is interesting to note that the BRANCH
operand was legal at load time, but was overwritten at execution time. This is an instance of code modification,
which is generally considered bad programming practice and is prohibited by many operating systems.

Table 5.7 Execution-phase exception table

Let 1 = mem[pc] and op = mem[pc + 1]

Message
Normal case

Condition
1 € opOobjectT
1 € oplobjectT
pc € [0.MEMSIZ — 2]
1= LOADCON.object
1 # LOADCON .object
op € shamaddrT
1= ADD.object
acc + mem[op] € shamintegerT

Normal case

Normal case

acc + mem[op]| € shamintegerT

i = SUBTRACT .object
acc — mem[op] € shamintegerT
acc — mem[op]| € shamintegerT

true

op &€ shamaddrT
pe= MEMSIZ —1
1 & objectT

exemsg(ARITHEXC, pc,"")

Normal case
ezemsg(ARITHEXC, pc,"")
Normal case
excmsg(ADDREXC, pc, op)
ezemsg(NOOPEXC, pc,"")
exemsg(OBJECTEXC, pe, 1)

Table 5.8 Example: execution-phase exception

Source Object code ‘After’ values
code Address | Value | pc | acc | mem[5]
loadcon 500 0 7 2 | 500 0
1 500
store 5 2 1 4 | 500 500
3 5
br 0 4 4 4 | 500 500
5 0

5.3.4 RS section: Expected changes

Figure 5.8 shows the expected changes to the BSHAM system. Changes are frequently requested to input and
output formats. Here the command-line format and the srcfil format, as well as the handling of overlength
lines, are subject to change. The abstract machine is the core of the BSHAM system; the changes listed
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Input/output format
o Command-line parameters besides srcfil.
o Different input format: new tokens, delimiters, and instruction formats.
e Handle overlength lines robustly.
Abstract machine
e Change in word size, number of words in main memory.
e New or extended data types, especially signed integers.
o More registers, e.g., index registers.
e More or different SHAM instructions.
e More addressing modes.
e Symbolic data and branch addresses.
Platform
o Different operating system: other UNIX platforms or MS-DOS.
Exception handling
e Limits on the number of exceptions reported or instructions executed.
e Changes in the conditions defining exceptions and in the message text.

Figure 5.8 BSHAM expected changes

describe desirable features found in other assemblers. Platform changes are inevitable within a few years of
system delivery. We will surely “port” BSHAM to other UNIX platforms and possibly to MS-DOS. Finally,
system use will suggest improvements to exception handling.

5.3.5 Summary

The BSHAM system offers a simple service. Nonetheless, developing a complete RS is challenging. While the
RS contains many details, the document structure is simple and easy to learn. The document is driven by
two FSMs. The load-phase FSM is specified in a half-page (Figure 5.4). This figure is short because most
of the details are elsewhere: in the Language Syntax Table (Table 5.2) and the Load-phase Exception Table
(Table 5.4). The Constants, Types, and Functions sections are also used. Similarly, the execution-phase
FSM (Figure 5.6) is short and depends upon the Language Semantics Table (Table 5.6) and the Execution-phase
Exception Table (Table 5.7).

5.4 ISHAM Requirements Specification

The ISHAM RS describes the behavior of the interactive version of the SHAM system. The dataflow diagram in
Figure 5.9 sketches the interface between the isham program and its environment. As with BSHAM, ISHAM
reads source program lines from srefil and writes load-phase exception messages to stdout. However, the
ISHAM execution phase is different. The user has limited control over execution through STEP and EXIT
commands entered through stdin. The values in main memory, the accumulator, and the program counter are
displayed on scn, the terminal screen. Similarly, the execution-phase exception messages are displayed on scn.

The ISHAM RS must specify, in detail, the scn contents corresponding to each possible srefil and sequence of
commands from stdin. The RS focuses on the following areas.

o Keyboard input. A new input variable, stdin, is introduced to model keyboard input.

e Formatted screen. A new output variable, scn, is introduced to model screen output. Considerable effort
is invested to precisely specify the screen format.

e FEzecution phase. The BSHAM execution-phase FSM is replaced by one that reads commands from stdin
and updates scn.

5.4.1 RS section: Overview

This section specifies the behavior of ISHAM, the interactive version of SHAM. The ISHAM and BSHAM load
phases are identical, as are the language syntax and semantics, but the execution phases differ in two ways. In
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source load phase

line / exc. msg.
srefil isham) stdout

exec. phase

STEP or exc. msg.
EXIT
stdin sen

Figure 5.9 ISHAM dataflow diagram

ISHAM:

1. Object code execution is “single-stepped” under user control.

2. Output is through a formatted screen with main memory and the registers displayed and updated after
each instruction execution.

Because ISHAM and BSHAM have much in common, this document is written as an addendum to the BSHAM
RS, describing only the differences between ISHAM and BSHAM. In summary, these are (1) environment
variables to model keyboard input and formatted screen output, (2) a detailed format for precisely describing
screen updates, (3) a new execution-phase FSM, and (4) several new expected changes.

5.4.2 RS section: Environment variables

Two new environment variables are needed:

stdin : string
UNIX standard input
sen : sequence [24][80] of char
sen[r][¢] is the character at screen row r and column ¢,
with numbering zero-relative and beginning at the upper-left corner.

As shown in Figure 5.10, we divide scn into screen fields that are either fized or varying. The fixed fields are
written when ISHAM execution begins and remain unchanged while ISHAM is running. The varying fields may
change repeatedly during ISHAM execution. Each varying field has an identifier: MEM , ACC, PC, PRT, or
MSG. The extent of each varying field on the screen is the character positions occupied by the field identifier,
and the trailing -s if present. When a MEM , ACC', PC, or PRT value is shorter than the extent shown, it is
right-justified and padded left with blanks; MSG values are left-justified and padded right with blanks. The
MEM field occurs 100 times on the screen, and a particular ME M occurrence is indicated by row and column
subscripts, numbered zero-relative, top-down, and left-to-right. For example, MEM][9,0] is the leftmost and
lowest occurrence.

5.4.3 RS section: State machine
Command-line invocation
ISHAM is invoked by typing

isham srcfil
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012345678901234567890123456789012345678901234567890123456789012345678901
ek ko kR ok ok ok ok o ok K Ko ook o oK Ko o o ok K K o o ok sk ok ok oK o o s ok o ok Ko ok o o K K Kok ok ok o sk K

SHAM
0 1 2 3 4 5 6 7 8 9
Main 0 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

memory: 10 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
20 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
30 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
40 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
50 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
60 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
790 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
80 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
90 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

Program counter: PC
Accumulator: ACC
Last value printed: PRT

Enter command: ’s’ to single step; ’e’ to exit
Message: MSG---—-————-—————————————— - -
ko ok ko o ok sk ook sk ok sk ook sk ok sk ok ok ok s ok ok o sk ook o o sk o ok o sk o ko sk sk oo sk ok ook o ok ook ok ko ook ok ok o ok ok ok ok

Figure 5.10 Screen format

on the command line. Input is read from srcfil and stdin, and output is written to stdout and scn.

If the srefil argument is not present,
exemsg(NOFILEXC,0,"")
is written to stdout. If srcfil is unreadable (or does not exist),
exemsg(FILSYSEXC, 0, srcfil)

is written to stdout. If there are any command-line exceptions, ISHAM execution terminates.

Load phase

Unchanged from the BSHAM Requirements Specification.

Execution phase

The execution-phase FSM is shown in Figure 5.11. Each input is a keystroke from stdin; each output is an
update to sen. As with BSHAM, the initial state for the execution phase consists of the final values stored in
mem after the load phase and 0 for ace and pe.

The Transitions and outputs section is more challenging. Briefly, each STFE P command causes an update
to the state, and a corresponding update to the scn fields. Only the EXIT command causes ISHAM to
terminate. Examining this section in more detail, we find three cases, based on the value of ¢: (1) EXIT, (2)
STEP, and (3) other. In case (1) we terminate ISHAM, and in case (3) we display an exception message, but
do not terminate. Case (2) has three subcases: (a) exception, (b) HALT, and (c) other. In cases (a) and (b)
we display a message. In case (c), we clear the message field, update the PRT field (PRINT instruction only),
and update the FSM state.

The primary effect on the screen is specified separately, by stating a relationship between sen and the FSM
state that the ISHAM system must maintain. Ttem (1) requires that the fixed fields be displayed. Ttem (2)
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Inputs

Keystrokes from stdin.
Outputs

All outputs are to scn and its fields.
States

Same as for the load phase FSM.
Initial state

5.4. ISHAM REQUIREMENTS SPECIFICATION

mem, acc,pc := (the final value from the load phase FSM), 0,0

Transitions and outputs
For each character, ¢, from stdin
if c= EXIT then
clear scn
halt ISHAM execution
else if c = ST FP then

if the BSHAM Execution-phase Exception Table specifies

an exception for mem[pc] then
MSG = the specified message
else if mem[pc] = HALT.object then
MSG := HALTMSG
else
MSG ="
if mem[pc] = PRINT.object then
PRT :=acc

modify mem, acc, pc, as per the BSHAM Language Semantics Table

else

MSG :=CMDERRMSG

Notes on screen updating:
e Initially and between transitions, ensure that:

1. The fixed fields shown in the ISHAM screen format are displayed.

2. MEM, PC, and ACC are such that

(Vr,c € [0.9])(MEM]r,c] = mem[10 x r + ¢]) A ACC = acc A PC = pc

3. MEM][pc/10, pc mod 10] is displayed in inverse video.

e Initially the MSG and PRT fields are blank

Figure 5.11 ISHAM execution-phase FSM
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1. The field positions and the contents of the fixed fields will change.
2. MEMSIZ will exceed 100 and vertical scrolling will be supported.

3. Different forms of stepping through the instructions will be supported, such as executing a specified number of
instructions or executing until a specified instruction is reached.

Figure 5.12 ISHAM expected changes

specifies the required correspondence between mem, acc, and pc, and MEM, ACC, and PC. Ttem (3) requires
highlighting of the current instruction. In items (2) and (3), the subscript expressions compute the familiar
mapping between linear memory addresses, and row and column indexes in a two-dimensional array overlaying
the linear memory.

5.4.4 RS section: Expected changes

The expected changes are shown in Figure 5.12. Screen format changes are common, motivating item (1).
With MEMSTZ = 100, mem is small. However, if it is substantially enlarged, then some form of scrolling will
be required, motivating item (2). Finally, single-stepping through a long-running program is tedious; other
forms of execution will be requested.

5.4.5 Example

To illustrate the ISHAM execution behavior, Figure 5.13 shows an scn value corresponding to the program in
Figure 5.3. The scn value shown occurs just before the HALT instruction is executed or, equivalently, just
after four STEP commands have been executed. During actual execution, the ‘9’ in position MEM]0, 7] would
be displayed in inverse video.

012345678901234567890123456789012345678901234567890123456789012345678901
ek ko kR ok ok ok ok o ok K Ko ook o oK Ko o o ok K K o o ok sk ok ok oK o o s ok o ok Ko ok o o K K Kok ok ok o sk K

SHAM

0 1 2 3 4 5 6 7 8 9
Main 0 7 2 1 8 2 8 8 9 2 0
memory: 10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0

Program counter: 7

Accumulator: 4

Last value printed: 4

Enter command: "s" to single step; "e" to exit
Message:
ko ok ok ok o ok sk ok ok sk ok sk ook ook sk ok ok o s ok ook o sk ok o o sk o ok o sk o oo sk sk ko sk ok ook o ko ook ok ko ook ok ok o ko ok ok ok

Figure 5.13 Example: scn contents for 2 + 2 program
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o Audience. System users, system developers.
e Prerequisites. A reading knowledge of the RS format and notations.
o Purpose. Describe the characteristics of the system required by the user: no more, no less.

o Additional criteria.

1. Well formed. The specification is well formed with respect to the format described in Section 5.2.
2. Precise and comprehensible. The specification can be read and understood by the intended audience.

3. Complete. In every situation, either an assumption is violated, an exception is generated, or the normal case

is well defined.
4. Feasible. The system can be implemented and tested affordably.

Figure 5.14 Requirements specification criteria

5.4.6 Summary

The ISHAM RS has the same structure as the BSHAM RS. The primary differences are the introduction of the
scn environment variable—to precisely specify screen fields—and the new execution-phase FSM—to specify
screen updates.

5.5 Verification

5.5.1 Verification procedures

After an RS has been written, it must be verified. As described in Section 2.4, verification can be accomplished
using inspection and testing. However, our RSs are not executable and therefore cannot be tested. Figure 5.14
shows the RS inspection criteria. We review the “additional criteria” list from an inspection viewpoint.

1. Well formed. The inspectors check for violations of the work product definition, as described in Sec-
tion 5.2. For example, is the Expected changes section present? Is every constant that is used also

defined?

2. Precise and comprehensible. Here the inspectors serve as representatives of the intended audience. While
it is sometimes difficult to inspect for these criteria, disagreement by the inspectors regarding the meaning
of the document is strong evidence that it is not precise and comprehensible.

3. Complete. The inspection process is well suited for checking adherence to this criterion, especially if the
RS has been designed so that the completeness argument is straightforward to construct and comprehend.

4. Feastble. Accurately estimating the cost of system development is difficult. However, a good RS can help
tremendously. Sketches of the design and implementation may also be required.

5.5.2 Example: completeness of BSHAM execution phase

We illustrate the use of the RS criteria by presenting a completeness argument for the BSHAM execution
phase. We make no assumptions about the mem, acc, and pc values passed on from the load phase. The
exceptions are defined in the Execution-phase Exception Table (Table 5.7) and the normal case is defined by
the Language Semantics Table (Table 5.6). The completeness argument is driven by Table 5.7 and is broken
into two steps:

1. Conditions cover all situations. Show that the conditions in column one cover every situation.

2. Actions well defined. Show that each action in column two is well defined. For the exception entries, we
need only show that the exemsg call is defined in Table 5.1. For the normal case entries, we must show
that the assignment statements in Table 5.6 are well defined.

We begin by noting that pe € [0.. MEMSIZ — 1] is always true, because pe is initially 0 (see Figure 5.6) and is
incremented modulo MEMSIZ (see Table 5.6).
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Conditions cover all situations

We must show that, at each indentation level, every situation is handled.

e From the definitions in Figure 5.7, it is clear that exactly one of i € opOobjectT, i € oplobjectT, and
it € objectT must hold.

e Under 7 € oplobjectT: because pec € [0.MEMSIZ — 1] holds, one of pc € [0. MEMSIZ — 2] and
pc= MEMSIZ — 1 must hold as well.

e Under pec € [0.. MEMSIZ — 2]: obviously, 7 is either LOADCON.object or it is not.

e Under i # LOADCON .object: We know that pc € [0.. MEMSIZ — 2] at this point; therefore, op is
defined. Clearly, either op € shamaddrT or op & shamaddrT must hold.

e Under op € shamaddrT: here completeness is immediate because of the true entry for the third case.
e Under ¢ = ADD.object: obviously, acc + mem]op] is either in shamintegerT or it is not.

e Under ¢ = SUBTRACT.object: similarly, acc — mem|op] is either in shamintegerT or it is not.

Actions well defined

Examination of Table 5.1 shows that the exception entries are defined. The five Normal case entries are more
challenging. We discuss them in the order they appear in the table.

1. Because ¢ € opOobjectT, i is either a PRINT or a HALT instruction. As Table 5.6 shows, the actions
associated with these instructions are always defined.

2. Because acc and op are both of type shamintegerT, the LOADCON action is defined.

3. For this case and the next two cases, we know that i is a one-operand instruction other than LOADCON
and op is a legal address. Therefore, if acc + mem[op] is in range then the ADD entry in Table 5.6 is
defined.

4. Similarly, if acc — mem|op] is in range then the SUBT RACT entry in Table 5.6 is defined.

5. For each of the remaining instructions—LOAD, STORFE, and the branch instructions—the Table 5.6
entry is defined as long as op € shamaddrT is a legal address.

That concludes the completeness argument for the execution phase. No sophisticated mathematics is required:
just careful case analysis of a document designed to support case analysis.

5.6 Summary

The goal of the RS is to specify the required behavior of a software system precisely. The RS provides a
written record of the commitment the developers have made to the users. We favor a systematic approach with
standardized document sections, notations, and naming conventions. A standardized approach takes extra
effort initially, but over time it pays off.

In this chapter, we examine the BSHAM and ISHAM RSs in detail. These documents show how to describe
required behavior precisely and compactly long before implementation. While RSs for industrial systems are
far larger and more complex, the same techniques apply: FSMs, tables, and functions. An RS is a reference
document; frequently less than half the space is occupied by prose paragraphs. There is heavy use of tables and
formulas, though no single table or formula is particularly complex. While an RS does not make easy reading,
it provides precise answers to important questions about what must be built. Also important, it provides a
framework in which to ask precise questions.

The BSHAM and ISHAM RSs are precise and detailed enough to support useful verification for properties
such as completeness. It is critical that the RS be developed with verification in mind. Much of the power of
a good RS is shown in the chapters that follow; we rely on the RS in every development phase.
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5.7 Bibliographic Notes

Our approach to requirements specification has been influenced by the Software Cost Reduction approach
[53, 54] in which precise specifications are achieved by relying on tables rather than diagrams. Many other
approaches have been proposed. Alford describes the Requirements Statement Language [55] and Teichrow
presents the Problem Statement Language [3]. DeMarco [16] and Yourdon and Constantine [17] apply Struc-
tured Analysis and Structured Design (SA/SD) to requirements specification. Ward and Mellor show how
to adapt SA/SD to real-time systems [18]. With statecharts, state machine specifications are represented
in a graphical, executable form [56]. Dreger uses function poinis to estimate development cost based on a
requirements specification [57]. Davis provides a survey of requirements specification methods [58].
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Chapter 6

Module Decomposition

Divide et tmpera.

6.1 Introduction

In multi-version/multi-person programming, the systems are too large and complex to be developed “all at
once.” Instead, the development task must be divided into modules: programming work assignments. For a
given RS, there are a large number of possible module decompositions, some good and some bad. In a good
decomposition, the modules are of manageable size and complexity, and are independent. Ideally, each module
would be completely independent of the others. However, complete independence is rarely achievable; instead
interdependencies are carefully monitored and minimized. A good decomposition should provide the following
benefits:

o Shorter development time. Programmers working on different modules can work in parallel and with
relatively little interpersonal communication. In a decomposition with undisciplined dependencies, such
parallel work is infeasible.

o Improved verification. Verification is simpler and more reliable because the verification of each module
is largely independent of the other modules. Unnecessary dependencies can dramatically increase the
difficulty of verification and the likelihood of verification errors.

o Reduced maintenance cost. Maintenance costs can be reduced by encapsulating each expected change in
a separate module. Careful use of encapsulation can significantly reduce the ripple effect: the tendency
of a change in module M; to cause a change in module M5, which causes a change in M3, and so on.
When encapsulation is ignored, the ripple effect can be disastrous.

In today’s competitive environment, reduced time to market, improved reliability, and lower maintenance costs
are all highly desirable.

Below we describe information hiding—the module decomposition technique used in SHAM-—and the format
of the Module Guide (MG), the module decomposition work product. We review the SHAM decomposition
and MG in detail, and close by describing the MG verification procedure. The complete MG may be found in
Appendix B.

6.2 Information Hiding

6.2.1 The information-hiding technique

Information hiding is a module decomposition technique well suited to large, complex systems. Information
hiding is carried out in three steps.

1. Identify the expected changes. Record the characteristics of the system that are likely to change. Consider
the behavior seen by the end user, the internal data structures and algorithms, and the underlying
hardware and operating system.
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2. Encapsulate each expected change. Introduce one module for each change. We say that the module hides
the change, and we call the change the module secret.

3. Design the module interfaces. For each module, design an interface which will not change even if there is
a change in the module secret.

Steps 1 and 2 are the focus of this chapter; step 3 is covered in Chapter 7.

We divide the modules in an information-hiding decomposition into three groups.

e Behavior-hiding modules hide the behavior observable to the end user, as described in the RS. Typical
secrets include input formats, screen formats, and the text of messages.

o Software decision—hiding modules hide the internal data structures and algorithms. For example, a set
of strings may be stored in an array, a linked list, or a tree, and may be accessed by linear search or

hashing.

o Machine-hiding modules hide the characteristics of the underlying machine: the hardware machine or
the “virtual machine” provided by the operating system and utilities. Typical secrets are device register
formats and the parameter formats for operating system procedure calls.

Grouping modules by secret type is useful in two ways: i1t provides insight to the designers during module
decomposition, and it guides the maintainer when searching for modules affected by a change.

While the information-hiding technique is simple, applying it requires deep thinking. There are limits to what
can be hidden; information hiding sometimes conflicts with practicality and must be applied with common
sense.

6.2.2 An RS-driven approach to information hiding

In combination, the RS work product and the information-hiding technique support a systematic module
decomposition approach. The focus is on the RS variables; for each kind of variable—input, output, and
state—a small set of candidate modules is suggested, as follows:

o Input variables. For each input variable, two modules are suggested. A machine-hiding module gets input
from a hardware device or operating system service and hides the changeable characteristics of that device
or service. A behavior-hiding module extracts the relevant information from the input provided by the
machine-hiding module and hides the input format. We call this a behavior-hiding input-format (or just
input-format) module.

o Qutput variables. There are three modules corresponding to each output variable: a machine-hiding
module, a behavior-hiding output-format (or just outpui-format) module, and an additional behavior-
hiding module. The machine-hiding module writes output using a hardware device or an operating
system service and hides the changeable characteristics of that device or service. The output-format
module formats information to be written to the machine-hiding module and hides the output format.
The additional behavior-hiding module determines what values should be passed to the output-format
module and hides the RS rules that specify those values. We call this a behavior-hiding output-driver (or
just output-driver) module.

e State variables. For each state variable, two modules are suggested. A software decision—hiding module
provides operations on the state variable and hides the implementation data structures and algorithms.
A behavior-hiding module uses the software decision—hiding module to control the state variable value
and hides the RS rules that specify state values. We call this a behavior-hiding state-driver (or just
state-driver) module.

While the approach just described provides a useful framework for module decomposition, the designer’s
judgment is still critical. Sometimes suggested modules will be rejected as unnecessary; at other times additional
modules will be needed. Frequently, there will be a single module to handle a group of related variables, instead
of one module for each variable. Almost always there will be important considerations other than information

hiding.
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Module summary
Long name: descriptive name
Short name: short mnemonic for file names
Prefiz: short string prepended to exported C identifiers

Module service and secret
Service: brief description of features provided
Secret: likely change encapsulated

Figure 6.1 Module guide sections

6.3 Work Product Definition

The module decomposition is described in the Module Guide (MG), consisting of two sections. The Module
summary section lists the modules, grouped by secret type. For each module, three names are given. The long
name is descriptive and consists of one or more English words. The short name 1s a mnemonic identifier and is
used for file names. The prefiz is a short string; it is prepended to every C identifier exported by the module
to avoid name conflicts with other modules. For example, if this naming scheme is applied to the stack module
of Figure 2.1, the long name might be “Pushdown Stack,” the short name stack, and the prefix ps_. The
stack directory would contain most of the files for this module, such as stack.c—the Implementation—and
stack.tplan—the Test Plan. The initialization access routine would be called ps_s_init; other modules will
also have initialization routines, but with different prefixes.

The second section, the Module service and secret section, contains an entry for each module, briefly de-
scribing the service offered and the likely change encapsulated by the module. The detailed service specification
is contained in the Interface Specification (see Chapter 7).

The MG document sections are summarized in Figure 6.1.

6.4 SHAM Module Guide

6.4.1 BSHAM module decomposition

Before applying the procedure of Section 6.2, we make several decomposition decisions not directly motivated
by information hiding. We introduce the Load (load) and Execute (exec) modules, which model the RS load
and execute phases. A simple coordinator module, Sham (sham), is also introduced to initiate the load and
execution phases. While the BSHAM and ISHAM execution phases are different, a single exec module will
handle both versions. This initial decomposition follows the RS closely, simplifying verification. Note that the
existence of the load and exec modules is not mandated by the RS; the RS constrains the system behavior but
not its internal structure.

We now continue the decomposition, by considering the candidate modules suggested for each of the RS
variables. As described in Section 5.3, there is one input variable (srefil), one output variable (stdout), and
three state variables (mem, ace, and pe).

e Input variable: srefil. A machine-hiding and an input-format module are suggested. For the machine-
hiding module, we use stdio, a collection of C functions provided with nearly all C compilers. Following
the classical division into lexical and syntactic analysis, we have two input-format modules. The Token
(token) module extracts tokens from a string and gives access to the token type and string value of each
token. The module secret is the set of rules governing token types and separators. The Load (load)
module performs syntactic analysis on the extracted tokens; load hides the values and conditions in the
Language Syntax Table and the Load-phase Exception Table.

We review these modules from the perspective of likely changes. The stdio module must change if the
underlying file input/output does. While we do not maintain stdio, we do rely on its interface being
stable. The token module changes if, for example, the tab character is accepted in SHAM programs or
if signed integers are permitted. Support for symbolic addresses in SHAM source programs will require
changes to load, though not necessarily to token.
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e Output variable: stdout. For output variables, a machine-hiding, an output-format, and an output-driver
module are suggested. Once again, the machine-hiding module is stdio. Because the output format is
so simple, no output-format module is needed. There are two output-driver modules. The load module
generates exception messages and hides the exception rules and the exception message formats specified
in the Load-phase Exception Table and the RS function exemsg. The exec module writes normal-case
output and exception messages. exec hides only the way it uses other modules to implement the execution
phase; the language semantics are hidden by a state-driver module, described next.

e State variables: mem, ace, pc. For a state variable, a software decision—hiding and a state-driver module
are suggested. The software decision-hiding module Abstract Machine (absmach) maintains the values
of mem, ace, and pe. In the simplest design, mem will be implemented as an integer array, and acc and
pc as integer variables. Because SHAM is a toy language and its main memory is small, this design will
probably be used initially and never changed. Thus, the main motivation for encapsulating these variables
is not maintainability, but access control; we can detect and signal, for example, an attempt to retrieve
the mem value at address —10. There are two state driver modules; load provides the initial values
for the state variables and absmach changes them repeatedly during the execution phase. Considering
some likely RS changes and their consequences, we see that load will change if object code instructions
are always stored on even-word boundaries and absmach will change if index registers are added to the
SHAM instruction set.

The module services and secrets for the load, token, exec, and absmach are shown in Figure 6.2.

The sham Module

e Service. Uses the other modules to provide the load-and-go assembler specified in the SHAM Requirements
Specification.

e Secret. The way in which the other modules are used and the handling of command-line parameters.
The load Module

e Service. Performs the load phase. Issues exception messages for incorrect input and, for correct input, stores
the resulting object code in the absmach module.

e Secret. The details of the load-phase user interface, including the source language concrete syntax and the
exception messages.

The token Module

e Service. Extracts tokens from a string supplied by the user. Tokens are retrieved sequentially, in the order they
occur in the user’s string. The user is given access to the token value (a string) and the token type (integer,
identifier, or unknown).

e Secret. The rules governing token types and token separators.
The absmach Module

e Service. Implements the mem, acc, and pc state variables, as well as the Language Semantics Table from the
SHAM Requirements Specification. Following each instruction execution, the user is given a status indicator and
access to the state variables.

e Secret. The SHAM language semantics, including the execution-phase exceptions.
The ezec Module

e Service. Performs the execution phase, executing the program stored in absmach and managing the run-time
user interface, batch or interactive.

e Secret. The way in which the other modules are used, and the format and content of the exception messages.

Figure 6.2 SHAM module guide—BSHAM module service and secret

We summarize the BSHAM module decomposition from the perspective provided by the dataflow diagram in
Figure 6.3. The load module reads lines from sr¢fil and passes them to token to be split into tokens and
classified. For a correct instruction, the object code is loaded into absmach; otherwise, an exception message
is written to stdout. For a correct source program, instruction execution is carried out by absmach with exec
monitoring mem, acc, pc, and status values. Output from PRINT instructions and exception messages are
written to stdout by exec.
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Figure 6.3 BSHAM dataflow diagram

6.4.2 ISHAM module decomposition

To handle the terminal screen and keyboard, ISHAM adds four modules to the BSHAM decomposition.

e Input variable: stdin. A machine-hiding and an input-format module are suggested. The machine-hiding
module Keyboard Input (keybdin) provides character—not line—oriented input; ISHAM must respond to
the single-character STEP and FXIT commands without waiting for a carriage return. No input-format
module is required because the input format is so simple.

e Output variable: scn. A machine-hiding, an output-format, and an output-driver module are suggested.
The machine-hiding module Screen String (senstr) provides access to scn, the terminal screen. A string
may be written anywhere on scn and may be highlighted. To reduce the screen update time—one place
in SHAM where performance is critical—a buffering facility is supported; the effect of several updates
may be delayed and applied all at once. scnstr hides the system services used for sen access, the UNIX
curses package in this case. The scn format shown in Figure 5.10 specifies the row and column position,
and the length of each field on secn: over 300 values in all. The output-format module Screen Geometry
(scngeom) provides these values; scngeom hides, until run time, the field positions and lengths. The
output-driver module Screen Driver (scndr) uses sengeom and senstr to maintain consistency between
sen and absmach. sendr hides the way it uses sengeom, senstr, and absmach, and even the fact that it
uses sengeom and scnstr.

We consider one likely change for each of the three modules; scnstr will change if the relevant curses functions
do, scngeom will change if the ACC field is shifted left one column, and scndr will change if scrolling of MEM
is supported. The MG sections for keybdin, scnstr, scngeom, and scndr are shown in Figure 6.4.

We summarize the ISHAM decomposition using the dataflow diagram in Figure 6.5. The load phase is un-
changed from BSHAM. In the execution phase, exzec uses keybdin to retrieve commands from stdin. After
each ST EP command, absmach modifies mem, acc, and pc, and scndr updates sen. For each scn field, scndr
passes its identifier to scngeom, which supplies the row and column position of the field on sen. sendr passes
this position and the mem, acc, or pc value to senstr to be displayed on sen. The unlabeled arrow from senstr
to scn indicates that information flows from senstr to sen but says nothing about its format. The arrow from
stdin to keybdin should be interpreted similarly.

6.4.3 Module summary

The module summary in Figure 6.6 shows the module long name, short name, and prefix for each module,
grouped by secret type. The SHAM MG consists of the contents of Figures 6.2, 6.4, and 6.6.
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The keybdin Module
e Service. Provides keyboard input, one character at a time, without echoing or waiting for carriage return.
e Secret. The UNIX system services used to accomplish this task.

The scnstr Module

e Service. Provides write access to the terminal screen. A string may be written to any position on the screen,
the cursor may be moved to any position on the screen, and any screen position may be highlighted. To allow for
efficient screen control, scnstr calls are buffered. An “apply changes to screen” access routine is provided; scnstr
calls have no visible effect on the screen until the apply routine is invoked.

e Secret. The UNIX system services used to accomplish this task.
The scngeom Module

e Service. Provides the length, row, and column position for each screen field, as per the screen format in the
SHAM Requirements Specification.

e Secret. Hides, until execution time, the length, row, and column values.
The scrndr Module

e Service. Updates the terminal screen, using the values stored by absmach and according to the screen format
described in the ISHAM Requirements Specification.

e Secret. The means used to accomplish screen updates.

Figure 6.4 SHAM module guide—ISHAM module service and secret

6.5 Verification

After an MG has been written, 1t must be verified. Because the MG is not executable it cannot be tested;
verification must be accomplished through inspection. Figure 6.7 shows the inspection criteria for an MG.

We review the “additional criteria” list from an inspection viewpoint.

1. Well formed. Violations of this criterion are easily revealed by a line by line review.

2. Feasible. 1t is difficult to inspect for feasibility. In some cases, the only way to clearly establish feasibility
is to fully implement the system. Unfortunately, that is a costly approach to revealing decomposition
errors. Instead, later development work products can be sketched with just enough detail to judge the
feasibility of the decomposition. Module Interface Specification sketches are especially useful, typically
including just the access routine names, parameters, and return values.

3. Flexible. Again, flexibility is difficult to establish by inspection, and design sketches are often necessary.
Not surprisingly, the focus is likely changes. For each module, suppose that the likely change does occur
and show that the module encapsulates that change.

We illustrate the use of the flexibility criterion by showing that sen field locations can be encapsulated by
scngeom. A Module Interface Specification sketch is appropriate here. Suppose that scngeom provides the
access routines g_row and g_col, where g row(z) and g_col(z) return the sen row and column position of field
z. Because the code of the secngeom user will contain calls to g_row and g_col, rather than hard-coded row
and column numbers, sengeom correctly encapsulates field locations. For example, the RS screen format (see
Figure 5.10) specifies that g_col(ACC') should return 48. Suppose that a change is requested to move ACC
two columns to the left; sengeom must be modified so that g_col(ACC) returns 46. However, no changes to
other modules are required.

6.6 Summary

Obtaining a good module decomposition is a difficult task. There are many possible decompositions and a
poor choice among them can have a profound impact on system quality and cost. To reduce maintenance cost,
we must plan for the changes that will occur during maintenance. We cannot make all changes easy so we try
to make the likely ones easy. Obviously this approach depends on being able to predict changes. While it is
rare that all changes can be predicted, experienced developers and users can predict many changes. Common
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Figure 6.5 ISHAM dataflow diagram

sense dictates that we plan for those that we can predict. Information hiding guides the planning by suggesting
decompositions and providing inspection criteria. The resulting work product, the Module Guide, provides
critical guidance for the maintainer.

6.7 Bibliographic Notes

Dijkstra’s pioneering work on module decomposition established the basic principles [59] and demonstrated
them in practice [60]. The information-hiding technique [61] was developed by Parnas and he demonstrated it
in an industrial environment [62]. Stepwise refinement [38, 59, 63] may also be used for module decomposition.
Parnas provides a detailed comparison of information hiding and stepwise refinement, as applied to module

decomposition [64].
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format: long name (short name, prefix)

SHAM modules

Behavior hiding
Load (load, 1d.)
Token (token, tk_)
Abstract Machine (absmach, am_)
Screen Driver (scndr, sd._)
Screen Geometry (scngeom, sg_)

Software decision hiding
SHAM Coordinator (sham)
Execute (ezec, ex_)

Machine hiding
Keyboard Input (keybdin, ki_)
Screen String (scnstr, ss_)

UNIX modules

ctype, curses, stdio, string, strtod

Figure 6.6 SHAM module guide—module summary

e Audience. Software designers and maintainers.
e Prerequisites. An understanding of the RS and of information hiding.
e Purpose. Describe and motivate the decomposition of the system into modules.
e Additional criteria.
1. Well formed. The specification follows the format described in Section 6.3.

2. Feasible. Following this decomposition, a system can be implemented that is correct, and whose cost and
performance are acceptable.

3. Flexible. If a likely change is requested, the cost of the resulting modification will be reasonable.

Figure 6.7 Module guide criteria
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Chapter 7

Module Interface Specification

Hiding representation is the essence of design. [D. L. Parnas]

7.1 Introduction

The previous chapter focused on module decomposition: dividing the development task into modules. This
chapter shows how to precisely specify the module interfaces. We view the specification task in terms of the
four roles described in Section 2.2. Consider module M. The designer decides on M’s observable behavior and
records it in specification S. The developer creates an implementation I to satisfy S. The verifier determines
whether I does in fact satisfy S. The user reads S and writes programs invoking I. Here the user is typically
a programmer, not an end user. The purpose of a Module Interface Specification (MIS) is to support the four
roles. As a result, the specification must be carefully designed and reviewed. Interfaces that “just happen”
result in modules that are difficult to implement and especially difficult to verify and use.

It is common practice to use the module implementation itself as an MIS; users determine a module’s behavior
by reading its source code. This approach has a number of serious drawbacks. Again consider module M with
implementation I.

e During development, opportunities for programmers to work in parallel are limited. Without a specifi-
cation, developers of modules using M cannot proceed until I is complete.

e There is no record in I of the assumptions that the developer made about how the code will be used.
Misunderstandings about these assumptions are a common cause of software failures.

e The tester cannot begin work until 7 is complete. Even then, he or she has no basis for correctness and
must rely on guesswork in selecting tests and determining expected output.

o If M’s implementation is complex, then determining its behavior from the code will be difficult, especially
if M’s implementation uses other modules that in turn use other modules and so on. Frequently, a module
with a complex implementation provides a much simpler service. With an MIS, using the module can be
much simpler as well.

e In proprietary systems, the source code is normally not available to the user. Here a specification is
essential.

In summary, you will frequently use the source code as a specification; i1t may be all you have, or it may be
simple enough. However, in complex systems, the reliance on code as specification causes serious problems.
The techniques of this chapter help to avoid those problems.

Section 7.2 defines the MIS work product, based on the module state machine described in Section 3.8. Sec-
tion 7.3 explains interface design, discussing the basic issues, presenting a collection of design idioms, and
defining heuristics for evaluating design quality. Section 7.4 explains the specification of modules that interact
with modules other than their caller or with the environment: for example, the keyboard, screen, and file sys-
tem. Section 7.5 presents an MIS for each BSHAM module, and Section 7.6 presents an MIS for each additional
module used in ISHAM. Section 7.7 shows how to verify an MIS in an inspection meeting. Large portions of
the MISs for all nine SHAM modules are presented. The full work products may be found in Appendix ?7.
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Table 7.1 stack module interface specification—syntax

#define PS_MAXSIZ 100

Routine names | Inputs | Outputs | Exceptions
ps_s_init

ps_s_push int ps_full
ps_s_pop ps_empty
ps_g-top int ps_empty
ps_g-depth int

7.2 Work Product Definition

The wnterface between two programs is simply the set of assumptions that each makes about the other. A
module interface is the set of assumptions that (1) a module user is permitted to make about module behavior
and (2) the module developer is permitted to make about user behavior. A Module Interface Specification
(MIS) is a statement of these assumptions. We focus on robust modules: those where the type (1) assumptions
dominate and the type (2) assumptions are few. An MIS is divided into two sections: syntax and semantics.

7.2.1 Module interface specification—syntax

The syntax specifies the access routine names, the parameter and return-value types, and the exceptions that
are signaled. In addition, any exported types and constants are defined. The access routines are shown in
tabular form, and the types and constants are declared using C syntax. For readability, we use the type
boolean, with constants true and false, where the actual implementation will use the C type int, with 0 for
false and every other value denoting true. Table 7.1 shows the interface syntax for the stack module. The
typewriter font is used for all C identifiers.

Because the interface syntax tables used in the text are not suitable for input to a C compiler, the syntax
information is repeated in a C header file: a C source file whose name ends in “.h.” For example, stack.h is
found in Appendix ?7.

Normally, the inputs are passed as function parameters, and the outputs are passed back to the caller as
function return values. For example, the s_push implementation takes a parameter of type int and g_top
returns an int. Occasionally, the inputs or outputs are passed differently. For example, some outputs are
returned using call by reference: the access routine takes a pointer parameter and places the output values at
the address in the pointer. Such special cases are described by comments in the header file.

7.2.2 Module interface specification—semantics

The interface specification semantics are based on the specification trichotomy described in Section 2.2: as-
sumptions, exceptions, and normal case. The assumptions are expressed in prose, and the normal case and
exceptions follow the MSM format described in Section 3.8. However, an MIS contains several additional
sections: state invariant, local functions, local types, and local constants. The state invariant is a
predicate on the state space that restricts the “legal” states of the module. It is invariant in that, after every
access routine call, the state should satisfy the state invariant. For complex specifications, we also make use of
local functions, types, and constants. These are declared for specification purposes only and are not available
to the module user at run time. Occasionally there i1s information that does not fit anywhere in the format
just described; we put this information in a section called “considerations.”

Figure 7.1 shows the semantics for the stack module. The specification state is the single variable s: a sequence
of integers holding the stack elements, with the top element in the last position. We assume that s_init will
be called before any other access routine. To understand why, consider the alternative: a method would be
needed to detect the user’s failure to call s_init, and the notinit exception would be added to every access

80



Chapter 7 MODULE INTERFACE SPECIFICATION 7.2. WORK PRODUCT DEFINITION

state variables
s : sequence of integer

state invariant
|s| < PS_MAXSIZ

assumptions
ps-s_init is called before any other access routine.

access routine semantics
ps-s_init:

transition: s := ()

exceptions: none
ps_s_push(z):

transition: s := s || (z)

exceptions: ezxc:= (|s| = PSMAXSIZ = ps_full)
psS-_s_pop:

transition: s := s[0..]s| — 2]

exceptions: ezc:= (|s| = 0 = ps_empty)
ps_g-top:

output: out := s[|s| — 1]

exceptions: exc:= (|s| = 0 = ps_empty)
ps-g-depth:

output: out := |s|

exceptions: none

Figure 7.1 stack module interface specification—semantics

routine except s_init itself. This approach is awkward, and it prompted the simplifying assumption in the
specification.

The stack transition, output, and exceptions sections are straightforward. s_init sets s to empty and never
signals an exception. s_push(i) appends i to s, signaling full if s has PS_MAXSIZ elements. s_pop removes
the last element and g_top returns the value of that element; both signal empty if s has no elements. Finally,
g-depth returns the number of elements in s.

7.2.3 Exception signaling

The stack MIS states precisely when exceptions must be signaled, but it does not say how the signaling should
be done. We briefly describe the available methods for exception signaling and indicate the one used for SHAM
modules.

Exception signaling schemes fall into three main categories:

1. Idiomatic use of data. Signaling is done using a distinguished return value (e.g., —1), a special status
parameter, or a global variable.

2. Idiomatic use of control flow. A label or procedure is passed as a parameter to each access routine or
established by convention. Exceptions are signaled by branching to the label or invoking the procedure.

3. Built-in language constructs. Exceptions are signaled using the special exception constructs available in
languages such as PL/T or Ada.

All three methods can be used successfully. However, a systematic and planned approach is important.

In SHAM, we use method 2 above. To signal an exception, a call is made to an exception handler: a C function
with the same name as the exception. The module user implements the handler to take whatever action is
required. Thus, if s_pop is called on an empty stack, then the s_pop implementation must invoke the C function
empty. Figure 7.2 illustrates how this technique might be used in an s_pop implementation.

There are important differences between RS and MIS exceptions. An RS exception is caused by an end-user
error, and it usually produces a text message. An MIS exception is caused by an error made in a call on an
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access routine and produces a call to an exception handler. Generally speaking, SHAM code is written to
ensure that the MIS exceptions are never signaled, except during module testing. For example, a call to s_pop
is usually preceded by code such as:

if (ps_g-depth() > 0)

to ensure that the s_pop call will not generate the empty exception. Thus, in SHAM code, the occurrence of
an MIS exception indicates a fault in the code; the occurrence of an RS exception indicates an error made by
the end user.

7.3 Interface Design

Interface design consists of a series of decisions about module behavior. The designer must first see the available
alternatives and then record the decisions so that they can be reviewed and communicated to others. The design
effort is driven by the module service and secret, as recorded in the MG.

7.83.1 Access routine idioms

Some invention is required in every design. Design from scratch is expensive, however; it is surprising how
much trial and error 1t takes to get it right. Consequently, there is good reason to look for patterns, if they are
simple and general enough. We present a collection of access routine idioms. Each idiom is a set of routines
that provides access to a structure defined with the set, sequence, and tuple type constructors of Section 3.4.
Below are simple idioms for each type constructor. These provide the basis for a wide variety of interfaces.

Set idioms

Consider a module providing access to a set of at most N elements of type 7. One access routine idiom—
providing update access—is shown in Table 7.2. s_add(z) adds element z to the set, signaling mem if e is present
and full if the set has N elements. s_del(z) deletes z and signals notmem if z is not in the set. g mem(z)
returns true if z is present, and g_siz returns the number of elements in the set.

Sequence idioms

Consider a sequence of a maximum of N elements of type 7. Access i1s provided by absolute position or
sequentially, as shown in Table 7.3. For the absolute position case, s_add(i, z) adds z at position i, shifting
right the elements numbered i and higher. s_del(?) deletes the ith element, shifting left the elements numbered
i+ 1 and higher. s_val(i,z) changes the value of the ith element to z, and g_val(i) returns the value of the
1th element. g_siz returns the length of the sequence. s_add signals full if the sequence length is N. s_adqd,
s_del, s_val, and g_val signal position if the position parameter is out of range.

Sequential access allows the user to retrieve all of the sequence elements, one at a time. s_start initiates the
retrieval process; sg.next returns the next element, signaling end if no elements remain; and g_end returns
true if no elements remain. Note that the sequential access idiom can be applied to any collection of elements,
for example, a set or a tree. In the case of a set, the retrieval order is usually unspecified; the elements can be
returned in any order as long as each element is returned exactly once.

void ps_s_pop()

{
if (siz == 0) {
ps-empty ) ;
return;
}
--siz;
}

Figure 7.2 stack exceptions—s_pop implementation
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Tuple idioms

Consider a module providing access to a tuple of type
T =tupleof (fr:Ti,fa:To,...,fn :TN).

Two idioms are presented, as shown in Table 7.4. In the first, one set routine and one get routine are provided
for each field in the tuple. This approach is simple, but it is awkward when N is large: with N = 10, 20 access
routines are required. In the second approach, one set routine and one get routine are used, each passing the
entire tuple as a single parameter. This approach works well for larger N: N > 20 is common in practice. One
disadvantage is that the user must assign and retrieve all fields, even if he or she wants only one.

7.3.2 Quality criteria

The fundamental goal in interface design, and engineering design in general, is achieving the best product at
the lowest cost. Under cost, both development and maintenance must be considered. The best product will
maximize both run-time performance and interface quality. A lot is known about the former but little about
the latter: the subject of this section.

We present a set of quality criteria that we have found useful in interface design and review.

e Consistent. According to Brooks and Blaauw:

A good architecture is consistent in the sense that with a partial knowledge of the system the
remainder of the system can be predicted. We believe this to underlie all principles of quality

[65, page 42].

While Brooks and Blaauw are referring to CPU interfaces, their advice applies equally well to module
interfaces. It is important to consider every aspect of the interface, from naming conventions to exception

handling.

e Fssential. Omit unnecessary features. Do not offer the same service in two ways. Remove an access
routine if its service can be provided by a combination of other routines.

o General. Realize that users will want to use features in ways never imagined by the designer. Generality
includes open-endedness—Ileaving room for future expansion—and completeness—including all features
of a given class.

o Minimal. Avoid access routines that offer two different services that might be requested separately by
the user. Many set-get routines violate minimality by inappropriately coupling the set and get services.

e Opague. Ensure that the interface obeys the information-hiding principle. In an opaque interface the
secrets are hidden: if one of the likely changes does occur, then the interface need not change.

Frequently there is tension among the criteria and between cost and the criteria. For example, minimality
and generality increase the number of access routines and hence the cost; implementation considerations force
violations of the opaque criteria. It is important to realize that the criteria do not replace the designer’s
judgment. They do help in improving module interfaces. In our experience, a number of small improvements
result that, in sum, often produce a substantial improvement. In summary: be aware of the quality criteria
and violate them only with good reason.

Table 7.2  set access routine idioms—syntax

Routine names | Inputs | Outputs | Exceptions
s_add T mem

full
s_del T notmem
g-mem T boolean
g siz int
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Table 7.3 sequence access routine idioms—syntax

Routine names | Inputs | Outputs | Exceptions
By absolute position

s_add int position
T full
s_del int position
s_val int position
T
g-val int T position
gsiz int
Sequential
s_start
sgnext T end
g-end boolean

Table 7.4 tuple access routine idioms—syntax

Routine names | Inputs | Outputs | Exceptions
One set and one get routine per field

s_f1 T
g-f1 T
s_f2 1>
g-f2 1>
s_fn Tn
g-In Ty
One set and one get routine for entire tuple
s_val T
g-val T
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Table 7.5 symtbl module interface specification—syntax

#define ST_MAXSYMS 50
#define ST _MAXSYMLEN 20

Routine names | Inputs | Outputs | Exceptions
st_s_init
st_s_add charx* st maxlen
int st_exsym
st full
st_g_exsym charx boolean
st_s_loc charx st notexsym
int
st_gloc charx* int st notexsym
st_g_siz int

We next illustrate the access routine idioms and quality principles on the design of a module interface. We
begin the design task by defining the specification state, abstractly modeling the relevant aspects of the past.
While the state is often relatively simple, it is important that it be specified precisely. Then access routine
design can begin. The access routines are chosen, largely determining how the module service will be offered.
Next, the boundaries of the specification trichotomy are established, defining the normal operating range of
the module. Finally, the normal-case behavior is specified in detail.

7.3.3 The symbol table (symtbl) MIS

Symbol tables are used for a wide variety of purposes, especially in compilers and assemblers. The symtbl
module specified here was designed to support the use of symbolic addresses in SHAM. symtbl stores a set
of symbols (strings) and locations (integers). Symbols must be unique; locations need not. The location field
may be set and retrieved. symtbl is a software decision-hiding module; its secret is the algorithms and data
structures used in the implementation.

We represent the module state with the variable ¢bl of type
T = set of tuple of (sym : string, loc : integer)

where no two tuples in bl have the same sym value. The access routines are based on the set idiom, shown in
Table 7.2. The symtbl interface syntax is shown in Table 7.5. s_init initializes bl to empty, s_add(s, z) adds
(s,z) to thl, and g_siz returns the number of pairs in ¢bl. g_exsym(s) returns true if, for some z, (s, z) € tbl.
g-loc(s) returns the loc field in the pair containing s. s_loc(s,z) changes the location field in this pair to z.
Observe that s_del has been omitted, violating generality. We have omitted it to reduce implementation cost;
SHAM symbolic addresses will be added but never deleted. While there is no single access routine for checking
for set membership, g_exsym and g_loc can be combined to provide this feature.

It is useful to view symtbl from a functional perspective:
Let f(s) = g-loc(s) where dom(f) = {s | g_exsym(s)}

With f defined, we can see that symtbl maintains the function f: s_add and s_loc change f and g_exsym and
gloc compute f. Many modules maintain functions; it pays to recognize such an underlying function early in
interface design.

We next discuss the specification trichotomy, defined in the assumptions and exceptions entries in Figure 7.3.
There are two assumptions. They are not specified as exceptions because they are based on conditions that are
hard for the symitbl developer to check. The exceptions are due to both illegal requests and resource restrictions.
To indicate duplicates, s_add signals exsym. The module user can “predict” this exception by calling g_exsym.
To allow the developer to use static memory allocation, s_add signals maxlen and full. These exceptions can
also be predicted: by strlen (from the C library) for maxlen and by g_siz for full. Both s_loc and g-loc
signal notexsym to indicate that the request is illegal; notexsym can be predicted using g_exsym.

The state invariant expresses (1) the limit on the number of symbols in ¢bl, (2) the limit on the length of each
symbol, and (3) the requirement that no two ¢bl entries have the same sym value. The restrictions expressed
by the state invariant are enforced by the s_add exceptions.

85



7.3. INTERFACE DESIGN Chapter 7 MODULE INTERFACE SPECIFICATION

Figure 7.3 contains the normal-case semantics in the transition and output entries. These sections follow
closely the prose semantics given above. The generality criterion applies twice. The empty string is permitted
as a symbol, even though we do not expect it to be added. Negative numbers are permitted as locations,

though we expect only non-negative values
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state variables
tbl : set of tuple of (sym : string, loc : integer)

state invariant

1. |thl] < ST_MAXSYMS

2. (Yt € thl)(|t.sym| < ST_MAXSYMLEN)

3. (th,tQ (S tbl)(tl # to — t1.sym # tg.sym)

assumptions
st_s_init is called before any other access routine.
All string parameters are legal C strings.

access routine semantics
st_s_init:

transition: ¢bl := {}

exceptions: none
st_s_add(sym, loc):

transition: bl := tbl U {(sym, loc)}

exceptions: ezc:= (|sym| > ST_MAXSYMLEN = st_maxlen

| (Floc1)({sym,loc1) € tbl) = st_exsym
| [tbl| = ST_MAXSYMS = st_full)

st_g_exsym(sym):

output: out := (Iloc)({sym, loc) € tbl)

exceptions: none
st_s_loc(sym, loc):

transition: bl := (tbl — {{sym,loc1)}) U {{sym, loc)} where {sym,loc1) € tbl

exceptions: ezxc:= (—(Flocy)({sym, loci) € thl) = st notexsym)
st_g_loc(sym):

output: out := loc, where {sym,loc) € tbl

exceptions: exc:= (—(Jloc)({sym,loc) € thl) = st notexsym)
st_g_siz:

output: out := [tbl|

exceptions: none

Figure 7.3 symtbl module interface specification—semantics

7.4 Modules with External Interaction

Until now, we have specified modules that are standalone; they are required to interact only with their callers.
For example, in the stack module, access is provided solely through the access routines: no interaction is
required with other modules or with the environment. However, in a number of SHAM modules such “external
interactions” are present and must be reflected in the MISs. Four SHAM modules have substantial interac-
tion with the environment: keybdin, scnstr, sendr, and sham; three have substantial interaction with other
modules: load, exeec, and sham.

SHAM modules interact with the environment through the keyboard, the terminal screen, and the file system.
Often, the required interaction can be effectively communicated in prose. Occasionally more precision is needed
and can be achieved with the same approach used in the RS: model the environment with an environment
variable. Environment variables are described in a new MIS section: environment variables. As with
a state variable, an environment variable has a name and type. However, environment variables also have
an interpretation, which describes the correspondence between the variable’s value and the environment. For
example, the senstr module provides access routines to modify the contents of the terminal screen. To precisely
identify screen locations, we declare an environment variable.

sen : sequence[24][80] of char
sen[r][c] is the character at screen row r and column ¢,

with numbering zero-relative and beginning at the upper-left corner.

Thus, sen[23][0] = *x° is true if there is an *x? in the lowest, leftmost position of the terminal screen.
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Table 7.6 token module interface specification—syntax

#define TK_MAXSTRLEN 100
#define TK_MAXIDLEN 10
#define TK MAXINTLEN 5

typedef enum {TK_ID,TK_INT,TK BADTOK} tk_toktyp;

typedef struct {
char val[TK MAXSTRLEN+1];
tk_toktyp typ;

} tkvaltyp;

Routine names | Inputs | Outputs | Exceptions
tk_s_init

tk_s_str charx* tkmaxlen
tk_sg next tk_valtyp | tk_end
tk_g_end boolean

SHAM modules also interact with other modules. In some cases the interaction occurs, but it is “hidden”: it is
present in the implementation but there is no mention of it in the MIS. For example, a stack implementation
based on a linked list will use the UNIX malloc module for dynamic memory allocation. This use is not
mentioned in the stack MIS. As a result, the choice between array and linked list is hidden from the stack
user. In other cases, the external interaction should be described in the MIS. Consider the MIS for module
M7, which has required interaction with module M5. The interaction will be specified in the M; specification
either by naming calls on My or by naming M,’s state. For example, the load module’s primary purpose is
to store object code in the absmach module. Thus, the load MIS must describe the effect that load access
routines have on the state of absmach.

7.5 BSHAM Specifications

There are five BSHAM modules, as shown in the SHAM MG.

e token extracts tokens from a string.
e absmach stores mem, acc, and pc and modifies them by executing instructions.

e [oad drives the load phase, relying on token to scan source files and absmach to store the resulting object
code.

e cxec performs the execution phase, with most of the work done by absmach.

e sham serves as coordinator, doing module initialization and invoking load and ezec.

The required service for each of these modules is shown in Figure 6.2. The design and specification of the
module interfaces are described in the next five subsections.

7.5.1 The token MIS

The token MIS illustrates how local functions and types can be used to advantage. We represent the module
state with the variable toklist, of type

T = sequence of string.

Our intention is that, at any time, toklist contains the sequence of tokens not yet retrieved by the module user.

The specification syntax, shown in Table 7.6, is based on the sequential access idiom, shown in Table 7.3. We
could have provided access by absolute position. We chose the sequential access idiom because it is sufficient
for our application and because it is easy to support with the left-to-right scan of the input string often used
by developers.
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According to the MG, a tuple—a value/type pair—must be returned for each token. We return this tuple using
one get routine for the entire tuple, as shown in the lower part of Table 7.4.

Table 7.6 defines the constants, types, and access routines. Three constants establish maximum lengths for
the string passed by the user, and for identifier and integer tokens. The type tk_toktyp names the token
types; tk_valtyp is the structure used for returning a value/type pair. The access routine s_init initializes
the module and s_str(s) establishes s as the string to be scanned. sg next returns the value and type of the
next token and g_end returns {rue if no more tokens remain.

We next present the specification trichotomy and the normal-case semantics, shown in Figure 7.4. The as-
sumptions are essentially the same as for symtbl. There is one exception due to an illegal request: sg next
signals end if there are no more tokens. The end exception can be predicted by calling g_end. There is one
exception due to resource limitations: s_str(s) signals maxlen if s is too long; maxlen can be predicted using
strlen, from the C library.

The normal-case semantics are based on local types and functions. These are used by the sgnext entry to
specify, for a given string, the tokens, and their types. This information can be conveyed more simply when
removed from the sgnext entry. As shown in the local types section, idtoksetT is the set of all identifier
tokens and inttoksetT is the set of all integer tokens. As shown in the local functions section, the function
tokens defines the scanning rules: a token is a contiguous sequence of non-blanks, beginning at the start of
the string or preceded by a blank, and ending at the end of the string or followed by a blank. The function
toktyp(s) categorizes s as an identifier, integer, or illegal token.

Using the functions and types, the normal-case semantics are straightforward. s_init sets toklist to empty
and s_str(s) assigns the tokens in s to toklist. sg next returns the value and type of toklist[0] and removes
it from toklist. g_end returns true when toklist is empty .

7.5.2 The absmach MIS

The MIS for the absmach module is defined in terms of the SHAM RS, demonstrating how precise requirements
can be effectively used during design. The absmach specification also shows how a variety of access routine
idioms can be used in combination. The module state mimics the requirements variables: ace, pc, and mem
are declared.

The specification syntax is shown in Table 7.7. We view the state variables as a tuple, with access provided
by one set and get routine per field. Using a single set/get pair for the entire tuple would violate minimality:
a user who wanted only ace would have to retrieve pe and the mem array as well. While not immediately
obvious, execution of SHAM programs is provided using the sequential access idiom (Table 7.2). Access is
provided to the sequence of absmach states beginning at any given initial state. Because execution may begin
from any state, s_start is not needed here. The next state is generated by sg_exec, which returns status
information only. The status value AM_HALT makes a g_end access routine unnecessary. After sg_exec returns,
the user may access the state values using g_acc, g_pc, and g._mem.
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state variables
toklist : sequence of string

state invariant
none

assumptions
tk_s_init is called before any other access routine.
All string parameters are legal C strings.

access routine semantics
tk_s_init:
transition: toklist := ()
exceptions: none
tk_s_str(s):
transition: toklist := tokens(s)
exceptions: ezc:= (|s| > TK MAXSTRLEN = tk_maxlen)
tk_sg next:
transition/output: toklist, out :=
toklist[1..|toklist| — 1],
(toklist[0], toktyp(toklist[0]))
exceptions: exc:= (toklist = () = tk_end)
tk_g-end:
output: out := (toklist = ())
exceptions: none

local types
idtoksetT = {s | s is a string of alphabetic or numeric characters A
s[0] is alphabetic A |s| € [1..TK MAXIDLEN]}
inttoksetT = {s | s is a string of numeric characters A |s| € [1..TK_ MAXINTLEN]}

local functions
tokens : string — sequence of string
tokens(s) returns the sequence of tokens in s where
1. a token is a non-empty subsequence s[i..j] of s
2. s[i..j] contains no blanks
3.(t=0Vvsi—1=")YA(j=s|—1Vs[j+1]=")
toktyp : string — tk_toktyp
toktyp(s) :=
(s € idtoksetT = TK_ID
| s € inttoksetT = TK_INT
| true = TK_BADTUK)

Figure 7.4 token module interface specification—semantics
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Table 7.7 absmach module interface specification—syntax

#define AM_MEMSIZ 100
#define AM_MAXINT 999

typedef enum {AM_NORMAL,AM_HALT,AM PRINT,
AM_ARITHEXC, AM_ADDREXC,
AM_OBJECTEXC, AM_NOOPEXC

} am_stat;

Routine names | Inputs | Outputs | Exceptions

am_s_init

am_s_acc int am_int

am_g_acc int

am_s_pc int am_addr

am_g_pc int

am_s._mem int am_addr
int am_int

am_g_mem int int am_addr

am_sg_exec am_stat

We next discuss the specification trichotomy, based on the assumptions and exceptions sections in Figure 7.5.
We assume that s_init is called first. The exceptions deal with parameters that lie outside fixed ranges. For
negative or oversize integers, s_acc and s_mem signal int. For illegal addresses, s_pc, s_mem, and g_mem signal
addr.

We conclude with the normal-case semantics. In s_init, there is no compelling reason to prefer one choice
of initial state over another. The main virtue of our choice is that it is simple. We could have left the initial
state unspecified. The transition and output sections for the acc, pc, and mem set/get pairs are as expected.
The sg-exec transition-output section is based directly on sections of the SHAM RS. These sections could
be repeated in the MIS, but the duplication would make document maintenance more expensive. The critical
point is that, with a detailed RS, a precise absmach specification can be developed with relatively little effort.

7.5.3 The load MIS

The load MIS is shown in Table 7.8 and Figure 7.6. load interacts with the environment, but only by writing
error messages to stdout. There are no state variables because the object code is stored in the absmach module.
The interface syntax is short and simple: s_init initializes the module and sg_load(f) processes the source
code in file f, loading the object code into absmach. The assumptions concern module initialization and the
file parameter to sg_load.
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state variables

mem : sequence [AM_MEMSIZ] of [0..AM MAXINT]
acc : [0..AM_MAXINT]

pe : [0..AMMEMSIZ — 1]

state invariant
none

assumptions
am_s_init is called before any other access routine.

access routine semantics
am s_init:
transition: acc, pc, mem := 0, 0,all zeroes
exceptions: none
am_s_acc(i):
transition: acc :=1
exceptions: ezxc:= (i € [0..AM MAXINT] = am_int)
am_g_acc:
output: out := acc
exceptions: none
am_s_pc(a):
transition: pc:=a
exceptions: ezc:= (a ¢ [0..AMMEMSIZ — 1] = am_addr)
am_g_pc:
output: out := pc
exceptions: none
am_s_mem(a, 1):
transition: mem[a] :=
exceptions: ezc:= (a & [0..AMMEMSIZ — 1] = am_addr
| i ¢ [0..AM_MAXINT] = am_int)

?

am_g mem(a):
output: out := mem/[a]
exceptions: ezc:= (a ¢ [0..AMMEMSIZ — 1] = am_addr)
am_sg_exec:
transition-output:
(an error is specified in the Exec. Phase Exception Table =
out := the error identifier
| mem[pc] = SY_HALT = out := AM_HALT
| mem[pc] = SY_PRINT = out, pc := AM_PRINT, pc + 1
| true =  out := AM_NORMAL
acc, pc, mem := values specified in the RS Lang. Sem. Table)
exceptions: none

Figure 7.5 absmach module interface specification—semantics
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7.5. BSHAM SPECIFICATIONS

Table 7.8 load module interface specification—syntax

#define typedef enum {LD _NORMAL,LD ERROR} ld_stat;

Routine names | Inputs | Outputs | Exceptions
ld_s_init
1ld_sg-load FILE* ld_stat 1d_fil

environment variables
stdout
UNIX standard output

state variables
none

state invariant
none

assumptions

1d_s_init is called before any other access routine.

The absmach and token modules have been initialized.
The argument to 1d_sg_load points to an open file control block.

access routine semantics
1ld_s_init:
transition: none
exceptions: none

1d_sg_load(f): defined in terms of the SHAM Requirements Specification.

transition/output:
(file f has no load errors =

absmach.mem := the object code version of the program in f

out := LD_NORMAL
| true =

write the appropriate messages to stdout

out := LD_ERROR)

exceptions: ezxc:= (error reading file f = 1d_fil)

considerations

In 1dsg-load(f), if f has load errors or if 1d_fil occurs,

the value of absmach.mem is “dontcare.”

Figure 7.6 load module interface specification—semantics
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Table 7.9 exzec module interface specification—syntax

Routine names | Inputs | Outputs | Exceptions

ex_s_init

exX_s_execC

There is one exception: sg_load signals £il if f is unreadable. The normal-case semantics mimic the load sec-
tion in the SHAM RS. However, here assignments are to absmach state variables rather than the requirements
state variables. The considerations section indicates that in the case where sg_load signals an exception,
it does not matter what the final value of mem is in absmach. This violates the assumption discussed in
Section 3.8.3, which specifies that calls that signal an exception should not cause a state transition, but it
greatly simplifies the implementation of sg_load.

7.5.4 The exec MIS

The exec MIS is shown in Table 7.9 and Figure 7.7. The exec module interacts with the environment through
the terminal screen and through stdout. There are no state variables because the absmach module maintains
the required state. The interface syntax is simple: s_init initializes the module and s_exec executes the
program stored in absmach.

The assumptions require the initialization of ezec and absmach, and also require the setting of a compile-time
flag. With this flag, and the C preprocessor’s conditional compilation features, batch and interactive execution
can be supported by a single exzec implementation. There are no exceptions signaled to callers of exec routines.
If the program stored in absmach aborts, the end user will be informed through a message.

In the normal-case semantics there are separate cases for BSHAM and ISHAM. These merely refer to the
execution-phase FSMs from the BSHAM and ISHAM RSs. The alternative is to repeat these FSMs in the exec
MIS, modified slightly to reference the absmach MIS state variables rather than the RS state variables. How-
ever, this approach provides little benefit to the reader of the ezec MIS and generates a significant maintenance
problem: it is hard to keep the RS and MIS FSMs consistent.

7.5.5 The sham MIS

The interface to sham, the SHAM Coordinator module, is significantly different from the other SHAM module
interfaces. sham has no access routines, interacting solely through the keyboard, screen, and file system. As
a result, 1ts interface does not fit the module state machine scheme used for the other modules. The sham
interface is specified in the SHAM RS. Also, while sham uses other modules, that use is hidden. In summary,
for sham, there is no MIS; the RS provides the information normally found in an MIS. This approach is typical
for coordinator modules.

7.6 ISHAM Specifications

There are nine ISHAM modules. Five of these are shared with BSHAM; the other four are introduced to
handle interaction with the keyboard and screen:

e keybdin provides character-at-a-time keyboard access.
e scngeom stores the position, length, and initial value of each screen field.
e scnstr provides write access to the screen.

e scndr keeps the screen image up to date, relying on sengeom and senstr to help do so.

The required service for each of these modules is shown in Figure 6.4.
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environment variables
scn

the terminal screen
stdout

UNIX standard output

state variables
none

state invariant
none

assumptions
Before ex_s_exec is called, ex_s_init has been called and
the absmach module has been initialized.
At compile time, exactly one of these preprocessor flags is defined:
BSHAM, ISHAM

access routine semantics
ex_s_init:
transition:
if flag TSHAM is set then
initialize the screen
exceptions: none
ex_s_exec:
transition:
if flag BSHAM is set then
perform the execution phase as described in the BSHAM RS
else if flag ISHAM is set then
perform the execution phase as described in the ISHAM RS
In either case:
e Use the mem, acc, and pc values stored in the absmach module
e Invoke am_sg_exec to execute the next instruction
e Use the am_sg_exec return value to determine whether
a normal case or exception output is needed
exceptions: none

Figure 7.7 exec module interface specification—semantics

Table 7.10 keybdin module interface specification—syntax

Routine names | Inputs | Outputs | Exceptions
ki s_init

ki_sgmnext char

ki_s_end
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7.6.1 The keybdin MIS

The keybdin MIS is shown in Table 7.10 and Figure 7.8.

The specification syntax is based on the sequential access idiom, shown in Table 7.3: s_init begins the scan
and sg next returns the next character. Here, there is no end exception or g_end access routine.

The assumptions say that keybdin users must call the terminating access routine, s_end, if they wish to
reinitialize. The normal-case semantics are short. s_init turns echoing off, sg_next returns the next available
character, and s_end sets character echoing back to normal. The note under considerations addresses the
common situation where the next character has not yet been typed. Here sgnext blocks, not returning to its
caller until a key 1s pressed.

7.6.2 The scngeom MIS

The sengeom module provides an example of a module with no state: current access routine behavior does not
depend on previous calls. The lack of state causes no difficulties. Indeed, the scngeom MIS is simple. Because
scngeom provides access to a collection of constants, no state is needed.
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environment variables
stdin : string
UNIX standard input

state variables
none

state invariant
none

assumptions
The curses module has been initialized.

Calls to keybdin obey the following pattern:
(ki_s_init.ki_sg next x .ki_s_end)x, where X« indicates zero or more occurrences of X

access routine semantics
ki_s_init:
transition: turn off keystroke echoing
exceptions: none
ki_sg next:
transition-output: out := the next available character
exceptions: none
ki_s_end:
transition: turn on keystroke echoing
exceptions: none

considerations
o Keystrokes are returned by ki_sg next in first-in—first-out order.

e Characters are returned immediately, without waiting for a newline.

o If, on entry, there is no new keystroke available, ki_sg next will not return until another keystroke occurs.

Figure 7.8 keybdin module interface specification—semantics

The interface syntax is shown in Table 7.11. We view scngeom as computing the function f, mapping a screen
field identifier to a row/column/length/initial-value tuple. One get routine is provided for each field in this
tuple. Thus, g legfld defines the domain of f and g_row, g_col, g_len, and g_val together compute f.

A portion of the interface semantics is shown in Figure 7.9 (see the full version in Appendix ?7). For each field
identifier, the table in this figure defines the legal row and column positions, and the associated field in the
screen format from the RS. The specification trichotomy is straightforward; s_init must be called first. The
last four get calls reject invalid screen field identifiers, signaling badf1d.
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Table 7.11 scngeom module interface specification—syntax

#define SG_NUMROW 24
#define SG_NUMCOL 80

typedef enum {
SG_MEM,SG_PC,SG_ACC,SG_PRT,SG_MSG,
SG_SCNTTL,SG_MEMTTL1,SG_MEMTTL2,SG_MEMCOLHDR,SG_MEMROWHDR,
SG_PCTTL,SG_ACCTTL,SG_PRTTTL,SG_PROMPTTTL,SG MSGTTL

} sg_fldnam;

typedef struct {
sg_fldnam nam;

int row;

int col;
} sgfl4;
Routine names | Inputs | Outputs | Exceptions
sg_s_init
sg.g-legfld sg_£1d | boolean
sg_g-row sg_fld | int sg_badfld
sg-g-col sg_fld | int sg-badfld
sg-g-len sg_fld | int sg-badfld
sg g val sg_fld | charx sg_badfld

7.6.3 The scnsir MIS

The scnstr MIS is shown in Table 7.12 and Figures 7.10 and 7.11. The specification syntax is based on the by
absolute position idiom shown in Table 7.3. Because the screen size is fixed, s_add and s_del are not provided,
and the array height and width are supplied as constants. s_init initializes the module and s_clrscn clears
the screen. s_str(r, c, s) writes the string s, beginning at screen row r and column ¢. s_hlt(r, ¢/, f) modifies
the highlighting of the screen, beginning at row r and column ¢ for ! positions; highlighting is turned on if f is
true and off otherwise. Calls to s_clrscn, s_str, s_hlt, and s_cur have no visible effect until s_ref (“refresh”)
is called. At that point, all the changes since the last s_ref call are applied.

Three environment variables are used to model the terminal screen: sen contains the characters displayed at
each screen position, hlt indicates whether each screen position is highlighted, and cur indicates the position
of the terminal cursor. The state variables senbuf, hltbuf, and curbuf have the same type as their environment
variable counterparts, and they are used to specify the buffered-write scheme described in the MG.
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Legal Legal Associated field in
Identifier row values | column values | ISHAM RS
Variable fields
SG_MEM [0..9] [0..9] MEM
SG_PC 0 0 PC
SG_ACC 0 0 ACC
SG_PRT 0 0 PRT
SG_MSG 0 0 MSG
Fixed fields
SG_SCNTTL 0 0 Screen title
SG_MEMTTL1 | O 0 MEM title line 1
SG_MEMTTL2 | O 0 MEM title line 2
SG_MSGTTL 0 0 | Error message title

state variables
none

state invariant
none

assumptions
sg-s_init is called before any other access routine

access routine semantics
sg_s_init:
transition: none
exceptions: none
sg-g-legfld(fld):
output: out := (fId is a legal field identifier)
exceptions: none
sg-g-rou(fld):
output: out := starting screen row for fld, zero-relative
exceptions: exc := (fld is not a legal field identifier = sg_badf1d)

sg-g-col(fld):
sg-g-len(£1d):
sg-g-val(fld):
output: out :=
(fld is a fixed screen field = as shown in the ISHAM RS

| fld is a variable screen field = "")
exceptions: exc := (fId is not a legal field identifier = sg_badf1d)

Figure 7.9 scngeom module interface specification—semantics
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Table 7.12 senstr module interface specification—syntax

#define SS_NUMROW 24
#define SS_NUMCOL 80

Routine names | Inputs | Outputs | Exceptions

ss_s_init

ss_s_clrscn

ss_s_str int SS_row
int ss_col
charx ss_len

ss_s_hlt int SS_row
int ss_col
int ss_len
boolean

ss_s_cur int ss_row
int ss_col

ss_s_ref

ss_s_end

The assumptions state that the s_init/s_end bracketing convention used in keybdin is also required in
senstr. The legality of string parameters is also assumed. There are three exceptions, all due to inherently
illegal requests; row, col, and len are signaled when the indicated position(s) does not lie on the screen.

In the normal-case semantics, s_clrscn, s_str, s_hlt, and s_cur affect only the state variables; s_ref specifies
the effect on the environment simply by assigning each state variable to the corresponding environment variable.

We note two violations of the quality heuristics.

1. s_clrscn violates minimality by homing the cursor: the user may want it left where it was. However,
the current design is sufficient for our needs and is simpler to implement.

2. The lack of get calls violates generality. For example, s_str writes a string to the screen, and no access
routine reads from the screen. Again, the current design is sufficient for SHAM and is simpler.

However, note that s_str and s_hlt accept “zero-length requests” to avoid violating generality. Finally, we
note that scnstr will interact with another module: the system module providing screen access. The nature of
this interaction is hidden—it is scnstr’s secret—and so i1s not mentioned in the MIS.

7.6.4 The scndr MIS

The sendr MIS is shown in Table 7.13 and Figure 7.12. The scndr syntax includes one call per screen field,
plus a few utility calls. s_init initializes the module, s_clrscn clears the screen, and s_con displays all of
the constant screen fields. s mem, s_pc, and s_acc copy the corresponding absmach values to the appropriate
screen locations. s_hlt(a, f) turns highlighting on or off in the MEM field with address a. s_prt(i) displays i
in the PRT field; s msg(s) displays s in the MSG field.

The environment variable sen is used to specify the effects of calls on the terminal screen. No state variables
are declared because scndr displays the values stored by absmach. The assumptions concern initialization
of sendr and of the three other modules on which it depends. Note that there are no assumptions regarding
the absmach module state: whatever is there is displayed.

The normal-case semantics are straightforward, based on assignments to screen fields. While we have focused
on sendr’s interaction with the environment, it does of course interact with the absmach module as well. Here
the interaction is specified because the scndr user needs to know where the displayed values come from.

7.7 Verification

After an MIS has been written, it must be verified. As described in Section 2.4, verification can be accomplished
using inspection and testing. However, our MISs are not executable and therefore cannot be tested. Figure 7.13
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environment variables
scn : sequence [SS_NUMROW|[SS_NUMCOL] of char
scn[r][c] is the character at screen row r and column c,
with numbering zero-relative and beginning at the upper-left corner
hlt : sequence [SS_NUMROW][SS_NUMCOL] of boolean
hit[r][c] is true if the position at screen row r and column c is highlighted,
with numbering zero-relative and beginning at the upper-left corner
cur : tuple of (row : [0..SS_NUMROW — 1], col : [0..SS_NUMCOL — 1])
the terminal cursor is at screen row cur.row and column cur.col
with numbering zero-relative and beginning at the upper-left corner

state variables

scnbuf : sequence [SS_NUMROW][SS_NUMCOL] of char

hltbuf : sequence [SS_NUMROW|[SS_NUMCOL] of boolean

curbuf : tuple of (row : [0..SS NUMROW — 1], col : [0..SS_NUMCOL — 1])

state invariant
none

assumptions
The curses module has been initialized.

Calls to scrstr obey the following pattern:
(ss_s_init.T * .ss_s_end)x, where
T is any call other than gs_s_init or ss_s_end
X« indicates zero or more occurrences of X
String parameters are legal C strings.

7.7. VERIFICATION

Figure 7.10 scnstr module interface specification—semantics part 1

Table 7.13 scndr module interface specification—syntax

Routine names | Inputs | Outputs | Exceptions

sd_s_init

sd_s_clrscn

sd_s_con

sd_s_mem

sd_s_pc

sd_s_acc

sd_s_prt int

sd_smsg charx*

sd_s_hlt int
boolean

101



7.7. VERIFICATION Chapter 7 MODULE INTERFACE SPECIFICATION

access routine semantics
ss_s_init:
transition: none
exceptions: none
ss_s_clrscn:
transition: scnbuf, hitbuf, curbuf := all *> °,allfalse, (0,0)
exceptions: none
ss_s_str(row, col, s):
transition: (|s| > 0 = scnbuf[row][col..col + |s| — 1] := s)
exceptions: exc :=
(row ¢ [0..8S_NUMROW — 1] = ss_row
| col & [0..8S_NUMCOL — 1] = ss_col
| |s| € [0..SS_NUMCOL — col] = ss_len)
ss_s_hlt(row,col,l, f):
transition: (I > 0 = hltbuf[row][col..col + 1 — 1] := f)
exceptions: exc :=
(row ¢ [0..8S_NUMROW — 1] = ss_row
| col & [0..8S_NUMCOL — 1] = ss_col
| I ¢ [0..8S_NUMCOL — col] = ss_len)
ss_s_cur(row, col):
transition: curbuf := (row, col)
exceptions: exc :=
(row ¢ [0..SS_NUMROW — 1] = ss_row
| col & [0..8S NUMCOL — 1] = ss_col)
ss_s_ref:
transition: scn, hlt, cur := scnbuf, hltbuf, curbuf
exceptions: none
ss_s_end:
transition: none
exceptions: none

considerations

ss_s_str and ss_s_hlt may alter the value of curbuf.

Figure 7.11 scnstr module interface specification—semantics part 2
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environment variables
scn
the terminal screen

state variables
none

state invariant
none

assumptions

sd_s_init is called before any other access routine.

The absmach, scnstr, and scngeom modules have been initialized.
The address passed to sd_s_hlt is a legal address.

access routine semantics
Note: MEM, PC, ACC, PRT, and MSG are screen fields from the ISHAM RS.

sd_s_init:
transition: none
exceptions: none
sd_s_clrscn:
transition: clear terminal screen
exceptions: none
sd_s_con:
transition: display the fixed screen fields
exceptions: none
sd_s_mem:
transition:
(Vr,c € [0.9))MEM][r,c] := am_gmem(10 x r + ¢),
converted to ASCII, right justified and padded left with blanks
exceptions: none
sd_s_pc: ...
sd_s_acc: ...
sd_s_prt(z): ...
sd_s_msg(s): ...
sd_s_hlt(a, f):
transition:
(f = true = display MEM[a/10, a%10] in inverse video
| f = false = display MEM[a/10, a%10] normally)
exceptions: none

considerations
For each field displayed by scrdr, the value is truncated to the field
length returned by scrngeom.

Figure 7.12 scndr module interface specification—semantics
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¢ Audience. Module designer, implementor, tester, and user.

e Prerequisites. A reading knowledge of the Module Interface Specification language.

e Purpose. Describe the assumptions that users are permitted to make about module behavior, independent of

the underlying implementation. Also describe the assumptions the module implementor is permitted to make.

o Additional criteria.

1. Well formed. The specification is well formed with respect to the format described in Section 3.8.

2. Comprehensible. The specification can be read and understood by the intended audience.

w

Complete. Fvery call in every state violates an assumption, generates an exception, or is handled by the
normal-case semantics.

State invariant holds. The state invariant is true after every access routine call.
Sufficient. The specified interface provides the required service.

Feasible. The module can be implemented and tested affordably.

s oo

High quality. Where practical, the interface satisfies the quality heuristics described in Section 7.3.

Figure 7.13 Module interface specification criteria

shows the MIS inspection criteria. We review the “additional criteria” list from an inspection viewpoint. Note
that items 1-3 describe characteristics of the specification document, while items 4-6 describe characteristics
of the interface specified.

1.

Well formed. The inspectors check for misuses of the MSM language. For example, does every set call
have a transition entry and an exceptions entry? Do calls in the semantics have the number and type
of arguments shown in the syntax?

. Comprehensible. Can the inspection team understand the document? Here the team members serve as

representatives of the intended audience.

Complete. Completeness is an ideal target for inspections: it is well suited to the inspection framework
and lack of completeness is a common cause of failures. The key questions are

e Are the assumptions reasonable?
e Are the exceptions detectable?

e On the normal-case domain—mno assumption is violated and no exception is generated—are the
transition, output, and transition-output entries well defined?

State invariant holds. Is the state invariant always true on access routine exit? Typically, the reader
argues that (1) when s_init returns, the state invariant is true and (2) for any other access routine, if
the state invariant holds when the routine 1s invoked, then it also holds when the routine returns.

Sufficient. It 1s often difficult to demonstrate sufficiency because the only precise specification of the
service is the MIS itself; the MG entry provides only a sketch. In some cases, hypothetical user code (or
pseudocode) is helpful. For example, Figure 7.14 shows that the token interface can extract the token
values and types from a string containing a variable number of tokens. In other cases, the RS can be
exploited. For example, the scnstr interface is sufficient because it can display and update the screen

shown in the ISHAM RS.

Feasible. While an MIS makes no mention of the underlying implementation, it is important that the
interface be implementable and that the implementation be testable through the interface. Where feasi-
bility is in question, it can be demonstrated with solution sketches, e.g., pseudocode implementations or
partial test plans.

High quality. The quality heuristics can be applied in a checklist fashion. Where the heuristics are
violated, justification must be provided.

We illustrate criterion 4 by showing that the stack state invariant shown in Figure 7.1 is established by s_init
and maintained by the other access routines. Tmmediately following s_init, s = () and so |s|] = 0. Thus,
calling s_init establishes the state invariant. Scanning the stack MIS, we see that only s_push and s_pop
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char s[TK_MAXSTRLEN+1];
tk_valtyp valtyp;

tk_s_init ();

tk_s_str(s);
while (!tkgend()) {
tk_sg next (&valtyp);
printf ("val=Ys typ=%d\n", valtyp.val,valtyp.typ);

Figure 7.14 Sufficiency: token module interface specification

change s. s_pop decreases |s| and so cannot cause |s| to exceed MAXSIZ. s_push does increase |s| by 1, but,
due to the exception entry, does so only if |s| < MAXSIZ. Thus, s_push maintains the state invariant.

7.8 Summary

Module Interface Specifications (MISs) play a vital role in controlling large software systems. While much of
this chapter is concerned with notational details, the notations themselves are secondary. The primary concern
is support for the four key roles in modular software development: designer, developer, verifier, and user. An
MIS gives the designer a medium for design and review, provides the developer with a clear statement of the
required task, supplies the verifier with a basis for correctness, and frees the user from having to know about
module internals. Without an MIS, the effectiveness of information hiding is severely limited. Throughout,
the goal is precise, written communication.

Our MISs are based directly on the MSMs presented in Section 3.8. To produce better interfaces with less
effort, we package past experience in the form of design idioms and quality heuristics. Special consideration is
given to modules with external interaction with other modules or with the environment.

The SHAM MISs show how precise, practical MISs can be written for a variety of behavior-hiding, machine-
hiding, and software decision—hiding modules.

Interface errors are a significant problem in large systems. By relying on the criteria presented in Section 7.7,
MIS faults can be detected before coding begins.

7.9 Bibliographic Notes

Parnas’s pioneering work established the key concepts and demonstrated the feasibility of precise Module
Interface Specifications [66]. Later work by Parnas et al. shows the tradeoffs required when designing interfaces
for performance-critical applications [67]. The industrial case study by Jackson and Hoffman shows how to
verify Module Interface Specifications in inspection meetings [35]. Considerable effort has been invested in
highly formal approaches to interface specification using VDM [5], Z [4], algebraic methods [10, 68], and the
trace method [11, 69]. Object-oriented methods often employ Module Interface Specifications in some form, as
shown by Meyer’s design by coniract [70] and in the documentation for The C++ Booch Components [71].
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Chapter 8

Module Internal Design

Representation is the essence of programming. [F. P. Brooks]

8.1 Introduction

After an MIS is written for a module M, the first step towards implementing M is to design the internal data
structures for M. The choice of data structures is recorded in the Module Internal Design (MID).

The MIS and the Module Implementation for M differ in two fundamental ways.

1. They differ in their use of state: the MIS uses abstract state variables, whereas the Module Implementa-
tion uses variables of the implementation language.

2. They differ in their expression language: the MIS expresses the behavior of the access programs in
terms of mathematical expressions and prose, whereas the Module Implementation uses statements of
the implementation language.

When the abstract and the concrete state differ significantly, it pays to overcome the above two differences in
two steps. The MID deals with the first difference: it specifies the concrete state of the module, and the effect
of each access routine in terms of this concrete state.

The abstract state is chosen for the clarity of the MIS. There are two reasons for introducing a concrete state
that is different from an abstract state.

1. The types of the abstract state variables are unavailable in the implementation language. For example,
while sequences and tuples have direct counterparts in C (arrays and structures), there is no counterpart
for sets.

2. An implementation using the abstract state is inefficient. For example, while look-up in an unordered
sequence takes linear time, it can be done in logarithmic time in an ordered sequence. Here, there is no
advantage in ordering the elements in the MIS, but it might be important for the Module Implementation.

Since the only difference between an MIS and an MID is the state space, the benefits from an MID are greatest
when there are major differences between the abstract and concrete states. In fact, there are no benefits to an
MID when the two state spaces are identical or when there is no concrete state. For such modules, we omit

the MID.

Section 8.2 introduces the MID work product, based on the module state machine described in Section 3.8. In
addition, the MID defines a state invariant and an abstraction function, whose roles are discussed in Section 8.3.
Section 8.4 discusses the MID of modules with external interaction and Sections 8.5 and 8.6 discuss the MIDs
of the BSHAM and ISHAM modules. Section 8.7 shows how to verify an MID in an inspection meeting. The
MIDs for all SHAM modules that have an MID are presented in detail. The full work products may be found
in Appendix ?7.
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8.2 Work Product Definition

The format of an MID closely follows that of an MIS. Since the interface syntax is the same as in the MIS, it is
not repeated in the MID. The semantics of the MID follow the MSM format described in Section 3.8. In this
case, the state variables are defined in the implementation language. In addition to the state variables and
access routine semantics sections, the MID contains two more sections: state invariant and abstraction
function. The state invariant is similar to the state invariant of the MIS and defines a predicate on the
concrete state space that restricts the “legal” states of the module. Thus, after every access routine call, the
concrete state satisfies the state invariant. The abstraction function associates an abstract state with each
concrete state. Specifically, it is a function from the legal concrete states to the abstract states. Just as for
MISs, complex MIDs sometimes make use of local functions, types, and constants. These are declared for
specification purposes only and need not be implemented. Information that does not fit anywhere in this
format is placed in a section called considerations.

8.2.1 The stack MID

Figure 8.1 shows the MID for the stack module. Recall that the abstract state for stack is the single variable s

state variables
int stack[PS_MAXSIZ];
int siz;

state invariant
siz € [0..PSMAXSIZ]

abstraction function
|s| = siz A (Vi € [0..siz — 1])(s[i] = stack[i])

access routine semantics
ps-s_init:
transition: siz :=0
exceptions: none
ps_s_push(z):
transition: stack[siz],siz := z,siz+1
exceptions: exc:= (siz = PS_MAXSIZ = ps_full)
psS-_s_pop:
transition: siz :=siz—1
exceptions: ezc:= (siz = 0 = ps_empty)
ps_g-top:
output: out := stack[siz — 1]
exceptions: exc:= (siz = 0 = ps_empty)
ps-g-depth:
output: out :=siz
exceptions: none

Figure 8.1 stack module internal design

representing the sequence of integers in the stack (Figure 7.1). Similarly, the concrete state contains an array
of integers, stack, to store the elements in the stack. Since there is no way of obtaining the depth of the stack
from this array, the concrete state also contains the integer siz, representing the depth of the stack.

The state invariant specifies that the value of siz must range between 0 and PS_MAXSIZ: when it is 0 the stack
is empty, and when it is PS_MAXSIZ the stack is full. Note that the state invariant must not restrict the contents
of the array stack: for any stack value, there is a trace that generates that value.

For each concrete state, the abstraction function defines the corresponding abstract state. For stack, the length
of s corresponds to the value of siz, and the contents of s correspond to the contents of the first siz elements
of stack. Note that the expression

(Vi € [0..siz — 1])(s[i] = stack[i])
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Table 8.1 stack module internal design—execution tables (PS_MAXSIZ = 3)

(a) s_init.s_push(1).s_push(2).g_top

Call Abstract state | Concrete state | Output | Exception
(1) s_init O {(?,72,7),0) — —
(2) | s-push(1) (1) (1,2,2),1) — —
(3) | s_push(2) {1,2) {(1,2,7),2) — —
4) g-top (1,2) ((1,2,7),2) 2 —

(b) s_init.s_push(1).s_pop.g-top

Call Abstract state | Concrete state | Output | Exception
(1) s_init O {(?,72,7),0) — —
(2) | s-push(1) (1) (1,2,2),1) — —
(3) s-pop 0 ((1,7,7),0) e 7
(4) | gtop 0 ((1,2,),0) 7 enpty

is not defined for values of siz > PS_MAXSIZ, because stack contains only PS_MAXSIZ elements. However, the
state invariant guarantees that this situation will not occur; the abstraction function is defined for all legal
states.

The stack access routine semantics are straightforward. s_init sets siz to 0 and never signals an exception.
s_push(z) places z in stack[siz] and increments siz, signaling full if siz is PS_MAXSIZ. s_pop decrements
siz, and g_top returns the value of stack[siz — 1]; both signal empty if siz is 0. Finally, g_depth returns siz.

8.3 State Invariants and Abstraction Functions

The state invariant and the abstraction function are important aids in understanding the choice of concrete
state. They serve as useful documentation expressing the designer’s intentions. The state invariant restricts
the concrete state space by eliminating values that are unreachable. The abstraction function provides an
interpretation of the legal concrete states by defining how each legal concrete state corresponds to an abstract
state. The state invariant and the abstraction function also play an important role in the verification of an
MID, as described in Section 8.7.

Let us look at some examples for stack. Table 8.1(a) shows the execution table for the abstract and concrete
states of stack for the trace
s_init.s_push(1).s_push(2).g_top

For brevity, we assume that PS_MAXSIZ = 3. To represent the concrete state, we use terms of the form
((s[0], s[1], s[2]}, n), where (s[0], s[1], s[2]) represents the contents of the array stack and n represents the value
of siz. For state and output values, the symbol 7 is used where no particular value is specified by the MID.

Note that in Table 8.1(a), after every call (1) the state invariant is satisfied by the concrete state, and (2)
applying the abstraction function to the concrete state produces the abstract state. It is straightforward to see
that the state invariant (siz € [0..3] since PS_MAXSIZ = 3) is satisfied by each concrete state. Since siz = 0 in
the initial concrete state, applying the abstraction function to this state results in the abstract state (), which
is the initial abstract state. Similarly, if we apply the abstraction function to the concrete state after s_push(1),
namely ((1,7,7),1), then we obtain (1), the abstract state after the same call. Finally, after s_push(2) the
concrete state is ((1,2,7),2), which corresponds to the abstract state (1,2). In addition, g_top returns 2 for
both the concrete state and the corresponding abstract state.

As a second example, the execution table for the trace
s_init.s_push(l).s_pop.g_top

is shown in Table 8.1(b). Again, it is straightforward to see that the state invariant is satisfied and that the
initial concrete state corresponds to the initial abstract state. Moreover, the next call—s_push(1)—is the same
as in the previous example. After s_pop the concrete state is ((1,7,7),0), and if we apply the abstraction
function to this state, we obtain the abstract state (). Finally, the operation of g_top signals the exception
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empty for both the concrete state and the corresponding abstract state. Note the output 7 shown for g_top;
because of the exception, any integer value is correct.

8.3.1 The symtbl MID

The stack state invariant and abstraction function are both simple. Figure 8.2 shows the MID for symtbl, which
has a more interesting state invariant and abstraction function. The abstract state for symtbl is the set tbl of
symbol/location pairs (Figure 7.3). Similarly, the concrete state consists of the array tbl of symbol/location
pairs and the integer tblcnt that represents the number of elements in the table. The symbols are stored in
tb1[0..tblcnt — 1] and each symbol is stored in an array of ST MAXSYMLEN+ 1 characters: the symbol is at most
ST _MAXSYMLEN characters long, and the extra character is needed to store the null character that terminates the
string. For simplicity, we have chosen to implement the symbol table as an array because for this application
it is not worth allocating the memory dynamically.

The state invariant is defined in three parts.

1. Every symbol in tb1[0..tblent — 1] contains a null character and is therefore a valid C string. This could
be expressed more formally as

(Vi € [0..tblent — 1])(3j € [0..ST MAXSYMLEN])
(tbl[i].sym[j] is the null character)

but we prefer the informal version because it is unambiguous and easier to understand.

2. There are no duplicate symbols in tb1[0..tblecnt — 1]. Again, we could express this more formally as
(Vi,j € [0..tblent — 1])(¢ # j — tbl[i].sym # tbl[j].sym)
but we prefer the informal version.

3. tblent is restricted to [0..STMAXSYMS]. In this case, the formal expression is shorter and clearer.

According to the abstraction function, the abstract state consists of the first tblent symbol/identifier pairs
of the array tbl. Note that the first and third part of the state invariant are sufficient to ensure that the
abstraction function is defined for all legal states. Although we could have weakened the state invariant by
omitting the second part, it provides valuable information about the concrete state space. In general, the state
invariant defines a superset of the concrete states that can be reached by a sequence of calls. Where feasible,
we want the state invariant to define exactly which concrete states are reachable.

To define the access routine semantics, we use the local function findsym. If s is one of the the first tblcnt
elements of tbl, findsym(s) returns the index of s in tbl; otherwise, it returns the local constant NOTFOUND.
The definition of findsym contains a slight abuse of notation. Strictly speaking, the last occurrence of 7 in the
expression

(3i € [0..tblent — 1])(s = tbl[i].sym) = ¢

is free (it appears outside the scope of the existential quantifier) and its value is therefore undefined. We have
taken this liberty, because we feel that the above expression is clear enough, and the alternative expression

(Fi € [0..tblent — 1])(s = tbl[i].sym) = ¢, such that ¢ € [0..tblent — 1] A s = tbl[i].sym

is clumsy and hard to understand.

A second liberty we have taken with the definition of findsym is that, as it is defined above, findsym is not
really a function: its return value depends on the values of tblent and tbl. To remedy the situation, tblent
and tbl would have to be added as arguments to findsym. Since it occurs regularly that state variables are
used in local functions, we assume that the state variables are implicit arguments to every local function.

With the definition of findsym, the access routine semantics are straightforward.
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state variables

struct {
char sym[ST MAXSYMLEN+1];
int loc;

} tb1[ST_MAXSYMS];

int tblcnt;

state invariant

1. Every symbol in tb1[0..tblcnt — 1] contains a null.

2. There are no duplicate symbols in tbl[0..tblcnt — 1].
3. tblent € [0..ST_MAXSYMS]

abstraction function
tbl = {(sym, loc) | (3¢ € [0..tblent — 1])(sym = tbl[i].sym A loc = tbl[¢].1oc)}

access routine semantics
st_s_init:

transition: tblent :=0

exceptions: none
st_s_add(sym, loc):

transition: tblent, tbl{tblent] := tblent + 1, (sym, loc)

exceptions: ezc:= (|sym| > ST MAXSYMLEN = st_maxlen

| findsym(sym) # NOTFOUND = st_exsym
| tblcnt = ST_MAXSYMS = St_full)

st_g_exsym(sym):

output: out := (findsym(sym) # NOTFOUND)

exceptions: none
st_s_loc(sym,loc):

transition: tbl[findsym(sym)].loc := loc

exceptions: ezxc:= (findsym(sym) = NOTFOUND = st notexsym)
st_g_loc(sym):

output: out := tbl[findsym(sym)].loc

exceptions: ezxc:= (findsym(sym) = NOTFOUND = st notexsym)
st_g_siz:

output: out := tblcnt

exceptions: none

local constants
#define NOTFOUND -1

local functions
findsym : string — integer

findsym(s) = ((3i € [0..tblent — 1])(s = tbl[i].sym) = ¢
| true = NOTFOUND)

Figure 8.2 symtbl module internal design
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8.4 Modules with External Interaction

Just as for MISs, MIDs for modules with external interaction can be quite different from MIDs for standalone
modules. We first discuss interaction with the environment and then interaction with other modules.

Interaction with the environment is typically modeled in an MIS by introducing environment variables. These
differ from state variables in that they not only have a name and type, but also an interpretation. For example,
the senstr MIS (Figure 7.10) defines the sen environment variable, representing the characters displayed on
the screen. The Module Implementation cannot use such variables, and often interaction with the environment
is accomplished through the use of system libraries. For example, in scnstr, we use the UNIX curses library
to obtain access to the screen.

For such modules, there need not be a direct relationship between the abstract and the concrete state and we
cannot define an abstraction function. This in turn means that there is little or no relationship between the
operations of the access routines on the abstract and on the concrete state. Three possible ways of dealing
with this situation are:

1. Just as for an MIS, introduce environment variables in the MID. Thus, the state space of an MID would
consist of both the concrete state and the environment variables.

2. Invent a state space for the libraries that are used in the Module Implementation, and express the effect
of the access routines in terms of this hypothetical state.

3. Omit the MID.

We prefer option 3. By introducing environment variables, the MIS and the MID become identical, and the
MID does not contribute anything at all. Similarly, inventing a new state space is a considerable amount of
work that contributes little to the primary purpose of an MID: to facilitate the construction and verification
of the Module Implementation.

For modules that interact with other modules, the MIS typically references access routines or the abstract state
of the other modules. For example, in the load MIS (Figure 7.6), the effect of 1d_sg_load is expressed in terms
of the state variable mem of the absmach MIS. In the Module Implementation, this effect is accomplished by
calling access routines of the other module and often no concrete state is needed. To express this effect in an
MID, we would again refer to the access routines or the abstract state of the other module, since we definitely
do not want to refer to the concrete state of the other module. This means that the MIS and the MID would
be the same, and we therefore omit the MID.

In the discussion above we have assumed idealized modules whose only purpose is either to interact with
the environment or with other modules. In general, we do not omit the MID simply because the module
interacts with the environment or other modules. We consider each module separately, taking into account
both how the interaction is modeled in the MIS, and how the interaction can be accomplished in the Module
Implementation. For example, even if a module has external interactions, part of the abstract state space might
have a corresponding part in the concrete state space. In such a case, we would define an MID for that part of
the state space. In the following sections, we discuss each of the SHAM modules and consider the above issues
for the modules that have external interactions.

8.5 BSHAM Module Internal Designs

In this section, we discuss the MIDs of the BSHAM modules. Since we assume that the reader already knows
how to program, we do not explain how to choose an appropriate concrete state. Instead, we focus on how to
record the choice of concrete state in an MID.

8.5.1 The token MID

The abstract state for token is the sequence of tokens that have not yet been returned by sg_next (Figure 7.4).
A possible concrete state would consist of an array to store the string passed by s_str and an index to keep
track of the last character to be scanned. However, with such a concrete state there are many special cases
that must be considered for sgnext: a string with only blanks, blanks (or not) before the first token in the
string, and blanks (or not) after the last token. We reduce the number of special cases by using two simple
techniques.
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1. Use a sentinel character. By placing a blank after the last character in the string, we are guaranteed
that every token in the string is immediately followed by a blank.

2. Always advance to the next token. By skipping over leading blanks, we are guaranteed that if there is a
token remaining, then we are always placed at the start of that token.

An MID for token incorporating these decisions is shown in Figure 8.3. The concrete state consists of the array
of characters buf to store the string, and the index cur to indicate the current character in the array. Note
the two extra characters in buf; one for the sentinel, and one for the null terminator.

The state invariant contains three parts. The first part states that buf contains a valid C string. The second
part restricts cur to [0../eftnull(buf)]; where leftnull is a local function that returns the index of the leftmost
null character in an array of characters. Note that leftnull is undefined when there is no null character in the
array and must therefore be applied with care. The third part states that if there is a token remaining in buf,
then (1) there is no leading blank before the next token and (2) the character before the leftmost null character
is a blank: the sentinel.

The abstraction function states that toklist, the sequence of remaining tokens, is the sequence of tokens in
buf, starting from buf[cur]. Since the MIS already defines what constitutes a token, there is no need to repeat
that information here.

The interesting access routines are s_str and sg next, where we rely on the state invariant for guidance on
(1) what to depend on at call invocation and (2) how to “clean up” just before call return. In s_str(s), to
satisfy the state invariant, we remove the leading blanks from s and append the sentinel to the end of s. In
sgnext, we return the current token and its type, where we rely on the fact that there are no leading blanks.
Again we use the fact that the MIS already defines what constitutes a token and the type of a token. We also
advance cur to the next token in buf, if there is one; otherwise, we advance to the leftmost null in buf.

8.5.2 The absmach MID

The abstract state for absmach consists of the integer variables acec and pe, and the sequence mem. Similarly,
the concrete state consists of the integer variables acc and pc, and the integer array mem. The MID is shown in
Figure 8.4. The state invariant restricts the range of acc, pc, and the values in mem. Because the abstract and
concrete states are nearly identical and the mapping between the two is obvious, the other sections of the MID
are omitted. For example, if we would have added the access routine semantics, the entries would be identical
to those of the MIS. Such redundant entries are not worth maintaining, and we therefore omit them.

8.5.3 The load MID

The load MIS (Figure 7.6) references the stdout environment variable, representing the UNIX standard output,
and the absmach abstract state variable mem. In the Module Implementation, the UNIX standard output is
affected by a call to printf and the absmach concrete state is updated by calls to am_s_mem. Therefore, there
is no concrete state for load and the MID is omitted.

8.5.4 The exec MID

The exec MIS (Figure 7.7) references the environment variables sen, representing the terminal screen, and
stdout, representing the UNIX standard output. It also makes references to calls from absmach. The exec
Module Implementation affects the terminal screen by calls to sendr access routines, and the UNIX standard
output by calls to printf. It also calls access routines from absmach. Therefore there is no concrete state for
exec and the MID is omitted.

8.5.5 The sham MID

sham is the SHAM Coordinator module. It has no access routines and its interface is specified in the SHAM
RS. It therefore has neither an MIS, nor an MID.
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state variables
char buf[TK_MAXSTRLEN+2] ;
int cur;

state invariant

1. buf[0..TK MAXSTRLEN + 1] contains a null.

2. cur € [0..leftnull(buf)]

3. cur < leftnull(buf) — (buf[cur] # > ’ A buf[leftnull(buf) —1] = ?)

abstraction function
toklist = the sequence of tokens in buf[cur..leftnull(buf) — 1]

access routine semantics

tk_s_init:
transition: buf, cur :="",0
exceptions: none
tk_s_str(s):
transition:
buf := (there is a token in s[0..leftnull(s) — 1] = rmblanks(s) || " "
| true = ")
cur := 0
exceptions: ezc:= (|s| > TK MAXSTRLEN = tk_maxlen)
tk_sg next:
transition/output:

Let curtok be the token beginning at buf[cur]
curtoktyp be the token type of curtok
out := (curtok, curtoktyp)
cur := (there is a token, beginning at position 1,
in buf[cur + |curtok| + 1..leftnull(buf) — 1]
=1
| true = leftnull(buf))
exceptions: ezxc := (buf[cur] = null = tk_end)
tk_g-end:
output: out := (buf[cur] = null)
exceptions: none

local functions
leftnull : string — integer

leftnull(s) := (there is a null in s = the index of the leftmost one)
rmblanks : string — string

rmblanks(s) := s, with leading blanks removed

Figure 8.3 token module internal design

state variables
int acc,pc;
int mem[AM_MEMSIZ];

state invariant

1. acc € [0..AM_MAXINT]

2. pc € [0..AM_MEMSIZ — 1]

3. (Vi € [0..AMMEMSIZ — 1])(men[z] € [0..AM_MAXINT])

considerations
Since the abstract and concrete states are identical, the abstraction function and the access routine semantics are

omitted.

Figure 8.4 absmach module internal design
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e Audience. Module designer and implementor.
e Prerequisites. An understanding of the MIS and of the C constructs for variable declaration.
e Purpose. Describe the behavior of each access routine in terms of the concrete state.

o Additional criteria.

1. Well formed. The MID is well formed with respect to the format described in Section 8.2. The state variables
are defined in the C language and the MID defines a state invariant and an abstraction function.

2. Comprehensible. The MID can be read and understood by the intended audience.
3. Correct. The MID is correct with respect to the MIS.
4. Feasible. The module can be implemented affordably.

Figure 8.5 Module internal design criteria

8.6 ISHAM Module Internal Designs

8.6.1 The keybdin MID

The keybdin module reads input from the keyboard. There is no concrete state for keybdin and it obtains
access to the sequence of characters entered through the UNIX curses library. Therefore, there is no keybdin

MID.

8.6.2 The scngeom MID

Because the secngeom module does not have an abstract state (Figure 7.9), no concrete state is required. This
is a special case of a module whose abstract and concrete state are the same. Since there are no state variables,
there is no state invariant. That is, for sengeom, the MID is omitted because 1t is identical to the MIS.

8.6.3 The scnsir MID

The scnstr module provides write access to the terminal screen. The MIS (Figure 7.10) defines three environ-
ment variables: sen represents the characters on the screen, hlt indicates which characters on the screen are
highlighted, and cur represents the cursor position. There are also three state variables that serve as buffers for
these environment variables. Since the curses library provides all the services required to implement scnstr,
there is no concrete state in the Module Implementation. As a consequence, we omit the MID.

8.6.4 The scndr MID

The sendr MIS defines the environment variable scn, representing the terminal screen. In the Module Imple-
mentation, 1t can use the access routines of absmach to access the screen data, those of sengeom to obtain
the screen positions, and those of senstr to apply the changes to the screen. Therefore, no concrete state is
needed, and we omit the MID.

8.7 Verification

8.7.1 Work product criteria

The criteria for an MID are shown in Figure 8.5. Note that the intended audience does not include the module
user; thus, the MID audience is usually much smaller than the MIS audience. Since the MID is not executable,
we can verify it only by inspection. Except for correctness, the “additional criteria” for an MID are similar to
the ones for the MIS (see Section 7.7) and can be inspected in the same way.

With an MID, we can verify the correctness of a Module Implementation in two steps. We verify first that the
MID is correct with respect to the MIS and second that the Module Implementation is correct with respect to
the MID. In this section, we discuss the first of these two steps.
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Figure 8.6 Transition and output commuting diagrams

To verify that an MID is correct with respect to an MIS, the state invariant and abstraction function play
important roles. We first verify that the state invariant holds in the same way that we verify that the state
invariant holds for an MIS. Second, we verify that if we apply the abstraction function to the initial concrete
state, we get the initial abstract state. Third, we verify that for each concrete state satisfying the state
invariant, the operations of the access routines on the concrete state correspond to the same operations on the
corresponding abstract state. After reviewing these steps in detail, we illustrate the techniques on the stack

MID.

8.7.2 Maintaining the state invariant

To verify that the concrete state satisfies the state invariant after every call, we first verify that it is established
by s_init. Second, we verify that every other access routine maintains the state invariant. That is, we assume
that the state invariant holds before a call to an access routine, and we verify that it must also hold after the
call.

8.7.3 Correctness of initial state

In the following, we use A to denote the abstraction function. For simplicity, we assume that all the access rou-
tines are deterministic, but the following verification procedures can be extended to deal with non-deterministic
MISs and MIDs [50]. To verify the correctness of the initial state, we must show that .4 applied to the initial
concrete state produces the initial abstract state.

8.7.4 Access routine correctness

The verification procedures are specified for set, get, and set-get routines.

Set access routines

To verify the correctness of a set access routine, we must verify the correctness of the exceptions and the
transition. For the exception behavior, we must verify that, for every concrete state s that satisfies the state
invariant, the MID specifies an exception e for s if and only if the MIS specifies the exception e for A(s).

For the transition correctness of a set access routine call ¢, we must verify that, for every concrete state
s1, applying ¢ to A(s1) yields the same abstract state as first applying ¢ to s; and then applying .A. More
intuitively, what we must verify is that first abstracting and then applying the transition operation is the same
as first applying the transition and then abstracting. This intuition is captured by the commuting diagram in
Figure 8.6(a). In the diagram, we use A.c to denote the transition for ¢ in the MIS and C'.c for the corresponding
transition in the MID. We must verify that this diagram commutes along the two paths beginning in the lower
left and terminating in the upper right. That is, if we let s; denote the state resulting from applying ¢ to s;
and sz the state resulting from applying ¢ to A(s1), then we must show that sz = A(s3).

In showing that the diagram commutes, we may make two assumptions. First, we may assume that the concrete
state s satisfies the state invariant. Second, since there is no transition when ¢ signals an exception for state
s, we may also assume that ¢ does not signal an exception.
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Get access routines

For a get access routine, we must verify the correctness of the exceptions and the output. The verification of
the exceptions is the same as for a set access routine. The commuting diagram for output correctness of a get
access routine c¢ is shown in Figure 8.6(b). Here the intuition is that first abstracting and then applying the
output operation must yield the same output as applying the output operation directly. Thus we must verify
that, for every concrete state s, the output value C'.v specified by the MID is the same as the output value A.v
specified by the MIS for A(s). Again, in verifying the output correctness, we may assume that s satisfies the
state invariant and that ¢ does not signal an exception.

Set-get access routines

For a set-get access routine, we must verify the correctness of the exceptions, the transition, and the output.
The verification of the exceptions and the transition are the same as for a set access routine, and the verification
of the output is the same as for a get access routine.

8.7.5 Verification of stack

The semantics of the stack MIS is shown in Figure 7.1, and the stack MID is shown in Figure 8.1.

Maintaining the state invariant

We first verify that the state invariant is maintained by showing that s_init establishes it, and that the
other access routines maintain it. The state invariant is siz € [0..PS MAXSIZ] and the transition for s_init is
siz := 0. So clearly, s_init establishes the state invariant.

For s_push, the state transition for siz is siz := siz 4+ 1. If we assume that the state invariant, siz €
[0..PSMAXSIZ], holds before the call, then the state invariant is satisfied unless siz = PS_MAXSIZ. But in that
case s_push signals the exception full, and there is no state transition. This shows that if the state invariant
is satisfied before a call to s_push, then it is also satisfied afterwards.

For s_pop, the state transition is siz := siz — 1. In this case, assuming that the state invariant holds before
the call, the state invariant is satisfied after the call unless siz = 0. But this is exactly when s_pop signals
empty, in which case there is no state transition.

The other two access routines, g_top and g_siz, are get access routines and have no state transitions. Therefore,
if the state invariant is satisfied before a call to these access routines, then it is also satisfied after the call.

Correctness of initial state

In the initial concrete state, the value of siz is 0 and the value of stack is unrestricted. Since siz = 0,
applying the abstraction function to this state yields (), the initial abstract state, as required.

Access routine correctness
The exception behavior for s_push in the MIS is
exceptions: exc := (|s| = PS_MAXSIZ = ps_full)
and the exception behavior in the MID is
exceptions: exc := (siz = PS_MAXSIZ = ps_full)

Since the abstraction function specifies that |s| = siz, the expression siz = PS_MAXSIZ in the MID is equivalent
to the expression |s| = PS_MAXSIZ in the MIS. Therefore the exception behavior for s_push is correct. For most
access routines, as is the case here, the MIS and the MID exception sections have a conditional rule with the
same number of components and the same right-hand sides. This greatly simplifies the proof of correctness,
because all we need to show is the equivalence of the corresponding left-hand sides (the conditions of the
conditional rule), assuming the state invariant and the abstraction function.
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s_push(z)
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Figure 8.7 stack module internal design—s_push transition correctness
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Figure 8.8 stack module internal design—s_pop transition correctness

The commuting diagram for the transition correctness of s_push is shown in Figure 8.7. We show the concrete
state as a term of the form ((sg, ..., sa—1), n), where (sq, ..., spr—1) represents the contents of the array stack,
n represents the value of siz, and M is a shorthand for PS_MAXSIZ.

Recall that to verify the transition correctness, we must show that first abstracting and then applying the
transition is the same as first applying the transition and then abstracting. Since n is the value of siz,
abstracting the concrete state first yields the abstract state (sq,...,s,—1) and applying the transition for
s_push produces (sg,...,S,—1,%). Note that we rely on the state invariant here, because if n does not fall in
the range [0..PS.MAXSIZ] then the abstraction function is undefined.

Going the other way, we first apply the state transition and then abstract. Applying the MID transition first
produces the concrete state

<<50:"'asn—lamasn-}-la"':SM—1>an+ 1)

Here we use the state invariant and the fact that s_push does not signal an exception, so we know that
n € [0.PSMAXSIZ — 1] before the call to s_push. Abstracting the above concrete state also produces the
abstract state (sg,...,s,—1, ), and thus the transition for s_push is correct.

The exception correctness of s_pop follows from the fact that siz = 0 in the MID if and only if |s|] = 0 in
the MIS. Figure 8.8 shows the commuting diagram for the transition correctness of s_pop. Abstracting first
and then applying the transition produces the abstract state (sg,..., sn—2). Applying the MID transition first

produces {(sg,...,Sp—2,8n—1,...,8M—1),7 — 1); here n > 0 because we are assuming that s_pop does not
signal an exception. Since abstracting this concrete state also produces (sg, ..., sn_2), the transition for s_pop
is correct.

The exception behavior for g_top is identical to s_pop, and is therefore also correct. The commuting diagram for
the output correctness of g_top is shown in Figure 8.9. Abstracting first yields the abstract state (sq, ..., sn-1),
and applying the output function to this abstract state produces s,_1. Since s, _; is also the result of applying
the output function directly to the concrete state, the output for g_top is correct.

The exception behavior for g_siz is correct, since both the MID and the MIS specify that no exception is
ever signaled. Figure 8.10 shows the commuting diagram for the output correctness of g_siz. Abstracting
first yields (sg, ..., s,—1) and applying the output function produces n, which is also the result of applying the
output function directly to the concrete state.

Discussion

Note that even for a simple module such as stack, 1t takes quite a bit of work to rigorously verify the correctness
of the MID. In practice, we must verify at rates that are far higher than can be attained during a rigorous proof
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Figure 8.9 stack module internal design—g_top output correctness
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Figure 8.10 stack module internal design—g_siz output correctness

such as the one above. Therefore, such a detailed verification is only performed if there are serious doubts
about the correctness of the MID. For example, it may be warranted if several faults have been discovered in
the MID.

However, it 1s important to have a good understanding of the full verification procedures. Although the actual
verifications are substantially abbreviated, they must, in principle, be extensible to a rigorous proof.

8.8 Summary

The MID serves as an intermediate work product between the MIS and the Module Implementation. It specifies
the concrete state of the Module Implementation and the effect of each access routine in terms of this concrete
state.

Since the interface syntax of the MID is the same as in the MIS, it is not repeated in the MID. The semantics
of the MID follow the MSM format described in Section 3.8. In addition, the MID defines a state invariant
and an abstraction function to clarify the choice of concrete state. The state invariant is a logical expression
on the concrete state space that restricts the legal states of the module. The abstraction function provides an
interpretation of the legal concrete states by defining how each legal concrete state corresponds to an abstract
state. The state invariant and the abstraction function also play an important role in verifying that an MID
is correct with respect to an MIS.

Since the only difference between an MIS and an MID is the state space, the benefits from an MID are greatest
when there are major differences between the abstract and concrete states. When the abstract and concrete
states are very similar or when there is no concrete state, it may not be cost-effective to develop and maintain
the MID.

8.9 Bibliographic Notes

Our notion of MID is based on the module design document proposed by Parnas [31]. Hoare [72] is usually
given credit for the key ideas of data refinement, which is the replacement of an abstract state by a concrete
one. More recently, this idea has been used extensively in the work on VDM [5] and Z [4]. The verification
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procedures for MIDs are based on the theory of modules developed by Gannon, Hamlet, and Mills [73]. Hoffman
and Jones [50] adapted these ideas to the MIS and MID work products discussed in this text and extended the
method to handle non-determinism and exceptions. Similar verification procedures also exist for VDM [5] and

7 [74].
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Module Implementation

Ezecutability is the essence of programming.

9.1 Introduction

While the Module Tmplementation (MI) is perhaps the most important work product, it is also the one that
is easiest to produce. The MI is important because it is the work product that makes up the executable
version of the system. Since the MI must be executable, machine readability is essential. For the other work
products, human readability is the essential quality. However, with the other work products in place, it should
be straightforward to construct an MI. The important design decisions have already been made in the RS, the

MG, the MIS, and the MID.

Programming is commonly considered as a trial and error process. However, first writing a program and then
trying to remove its errors leaves us with the difficult task of deciding when we have removed the last error.
As Linger et al. point out:

Since there is no way to be certain that you have found the last error, your real opportunity to gain
confidence in a program is to never find the first error. [38]

Thus, it is the programmer’s responsibility not to introduce any errors in the first place. It is not the tester’s
responsibility to remove all the errors that were made by the programmer; testing is effective only as an
independent check.

Clearly, 1t is not reasonable to ask a programmer to write a program of several hundred lines of code without
any errors. However, by carefully decomposing the system into modules, each access routine will typically
consist of less than a page of code. In addition, we can implement an access routine without errors only if we
know precisely what the access routine is supposed to do. This is exactly what the MID (or the MIS if the
MID is omitted) tells us: it allows us to code to specification.

Section 9.2 defines the MI work product. The technique of stepwise refinement, which is the subject of
Section 9.3, can be used to develop an MI from an MID in a series of refinement steps. Examples from stack
and symtbl are shown. The next two sections discuss the MIs of the BSHAM and ISHAM modules. Section 9.6
shows how to verify an MI in an inspection meeting; the testing of Mls is the subject of the next chapter.
While we discuss the MI of every SHAM module, we do not present every MI in full detail. The complete work
products may be found in Appendix ?7.

9.2 Work Product Definition

9.2.1 Format

The format of the MI is dictated by the rules of the implementation language—the C language in our case.
Thus, although the MI is also an MSM, we cannot follow the MSM format described in Section 3.8. In addition,
the state of the MI is already defined in the MID. Just as for the MIS and the MID, an MI sometimes makes
use of local functions, types, and constants. In the MID, the local functions, types, and constants are used
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void ps_s_push(x)

int x;
{
if (siz == PS_MAXSIZ)
ps_fullQ);
return;

}

stack[siz++] = x;

Figure 9.1 stack module implementation—s_push

void ps_g_dump()

{
int 1i;
printf ("siz=d\n",siz);
for (i = 0; 1 < siz; i++)
printf ("stack[%d]=%d\n",i,stack[i]);
¥

Figure 9.2 stack module implementation—g_dump

only for specification purposes, so that they need not appear in the MI. However, the same functions, types,
and constants might also simplify the MI, and as such they are often included in the MI.

The concrete state for the stack module (see Figure 8.1) consists of an array of integers, stack, and the integer
siz. Given this state, an implementation for s_push is shown in Figure 9.1. Recall that we signal an exception
by calling a C function with the same name as the exception (Section 7.2.3). Thus, s_push calls ps_full when
siz = PS_MAXSIZ.

In addition to the access routines, an MI often defines the function g_dump, implemented for debugging purposes.
This function prints the concrete state of the module in a suitable format. Figure 9.2 shows the implementation
of g_dump for stack. It prints the value of siz, and the first siz elements of the array stack.

9.2.2 Modules in C

To support modules in C, header files declare the exported identifiers of a module: the access routines, the
exported constants and types, and the exception handlers for the module. Note that the local functions,
constants, and types are defined in the MI, and not in the header file. We follow the convention that header
files have the suffix .h; the header files for all the SHAM modules are contained in Appendix 77.

Every MI that uses an identifier exported from module M must import the header file for M with the #include
preprocessor command. This includes the MI of M itself. In addition, every MI also imports the header file
system.h, which defines the system-wide constants and types for SHAM. For example, the first two lines of
the stack MI are:

#include "system.h"
#include "stack.h"

9.2.3 Code format rules

Each programmer typically has his or her own unique approach to spacing, commenting, indenting, etc. If we
allow each programmer to use his or her own style, then the format of the MIs will vary widely between different
parts of the system, making them harder to read and maintain. In addition, programmers will likely spend
hours converting code to their style and arguing about what the “best” format is. Therefore, each software
project should have a set of clearly defined rules regarding programming style.
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void ps_empty()

{

fprintf(sy_excfilp,"Exception ps_empty occurred\n");
}
void ps_full()
{

fprintf(sy_excfilp,"Exception ps_full occurred\n");
}

Figure 9.3 stack—default exception handlers

ps_s_push(z):
transition: stack[siz],siz = z,siz+ 1
exceptions: exc:= (siz = PS_MAXSIZ = ps_full)

Figure 9.4 stack module internal design—s_push

The Code Format Rules for SHAM are shown in Appendix C. Since there clearly is no “best” set of rules, these
rules were chosen somewhat arbitrarily. It is not the rules themselves that are important; what is important is
that they are applied consistently.

9.2.4 Default exception handlers

In SHAM, it is the responsibility of the user of module M to implement the exception handlers for M (see
Section 7.2.3). Since for many applications simple exception handlers suffice, we provide default exception
handlers for each module. This has the added advantage that, if a module is used in more than one application,
the same exception handlers can be used in every application.

Figure 9.3 shows the default exception handlers for the two stack exceptions: empty and full. The default
exception handlers write an appropriate message to the globally defined file sy_excfilp. These default excep-
tion handlers are used in both BSHAM and ISHAM. In BSHAM, the file pointer is set to stdout, the UNIX
standard output. Using stdout does not work very well for ISHAM, since it repeatedly redraws the terminal
screen. This means that if an exception message were printed to stdout, it could easily be “lost” between
screen updates. Therefore, for ISHAM, sy_excfilp directs the output to a file: the one whose name is defined
by the constant SY_EXCFIL.

9.3 Stepwise Refinement

The technique of stepwise refinement provides a systematic way for developing an MI from an MID [63].
With this technique, we gradually develop the MI through a sequence of refinement steps. At each stage
in the refinement process, we have a complete description of the program, with a mix of notation from the
specification and the implementation language. Each refinement step decomposes one or several specification
“statements” into more detailed statements in either the specification or the implementation language. We
start this process with the MID, which is defined in terms of the specification language. We end up with the
MI, which is executable because it contains only statements from the implementation language.

9.3.1 Example: stack

As an example, we show how we can obtain the implementation of s_push, shown in Figure 9.1, by a stepwise
refinement of its specification in the MID, shown in Figure 9.4. In the first refinement step, we choose a control
structure that will first check for an exception and then change the state only if no exception occurs. Recall
that the transition section applies only if the exceptions section does not specify an exception. In C, we
can implement this with an if-statement, and the resulting “program” is shown in Figure 9.5. The parts of
the “program” that are not executable and that are still expressed in the specification language are shown in
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void ps_s_push(x)

int x;
{
if (/*siz = PSMAXSIZ*/) {
psfull();
return;

}

/*stack[siz],siz = z,siz + 1%/

Figure 9.5 stack—first refinement of s_push

void ps_s_push(x)
int x;

{

if (/#siz = PS_MAXSIZ*/)
psfull();

else
/*stack[siz],siz := z,siz + 1%/

Figure 9.6 stack—alternative first refinement of s_push

comments. Figure 9.5 does not represent the only way in which we can refine the exception semantics. For
example, Figure 9.6 shows another possible refinement. In this way, stepwise refinement allows us to choose
between various implementations, by making a design decision during each refinement step.

The program in Figure 9.5 still contains two statements in the specification language (as comments) and must
be refined further. The expression

/*siz = PS_MAXSIZ*/

is further refined to

siz == PS_MAXSIZ

Finally, the statement
/*stack[siz|,siz := z,siz + 1*/

is refined into the single C statement
stack[siz++] = x;

resulting in the implementation shown in Figure 9.1.

The implementation of the other access routines for stack is straightforward, and can be derived in a similar
way. The stack MI 1s so simple that the power of stepwise refinement is not apparent; with symtbl, the
advantages are clearer.

9.3.2 Example: symtbl

Figure 9.7 shows the concrete state, the local constants, and the local functions of the symtbl MID, as well as
the specification of the access routine s_add. The concrete state consists of an array tbl of symbol/location
pairs, and the integer tblcnt that represents the number of symbols currently stored. The local function
findsym searches for a symbol in the table; findsym(s) returns the index of s in the table, or NOTFOUND if s
is not in the table.

We now use stepwise refinement to implement s_add. As a first step, we refine the exception semantics, which
produces the program shown in Figure 9.8. The further refinement of
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state variables

struct {
char sym[ST MAXSYMLEN+1];
int loc;

} tb1[ST_MAXSYMS];

int tblcnt;

access routine semantics

st_s_add(sym, loc):
transition: tblent, tbl{tblent] := tblent + 1, (sym, loc)
exceptions: ezc:= (|sym| > ST MAXSYMLEN = st_maxlen
| findsym(sym) # NOTFOUND = st_exsym
| tblcnt = ST_MAXSYMS = St_fulli)

local constants
#define NOTFOUND -1

local functions
findsym : string — integer
findsym(s) = ((3i € [0..tblent — 1])(s = tbl[i].sym) = ¢
| true = NUTFUUND)

9.3. STEPWISE REFINEMENT

Figure 9.7 symtbl module internal design—s_add

void ps_s_add(sym,loc)
char *sym;

int loc;
{
if (/*strlen(sym) > ST _MAXSYMLEN/) {
st maxlen();
return;

} else if (/*findsym(sym) # NOTFOUND*/) {
st_exsym();
return;

} else if (/*tblcnt = ST MAXSYMS*/) {
st_full();
return;

}

/*tblcnt, tb1l[tblent] := tblent + 1, (sym, loc)*/

Figure 9.8 symtbl—refinement of s_add
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/*strlen(sym) > ST_MAXSYMLEN*/

and
/*tblcnt = ST_MAXSYMS*/

into C is straightforward.

To refine the expression
/*findsym(sym) # NOTFOUND*/

we have, as usual, several options. The first of these is to implement the function findsym as a local function
in the MI. Recall, however, that local functions in the MID are there only to simplify the specification, and as
such they do not have to be implemented. A second option is therefore to refine findsym, and to incorporate
its implementation in s_add. We prefer the first option, because findsym is also useful in the access routines
g-exsym, s loc, and gloc. Recognizing “shared operations” like findsym is an important part of stepwise
refinement, since it can greatly simplify the resulting MI. Implementing findsym in this case has the additional
advantage that the implementation of s_add closely follows its specification in the MID, making it easy to verify
the correctness of s_add. We therefore implement the local function findsym and the local constant NOTFOUND.
The above statement 1s then simply refined to

findsym(sym) != NOTFOUND

The last statement in s_add that we must refine is
/*tblent, tbl[tblent] := tblent + 1, (sym, loc)*/
We first replace it by the three assignment statements

/*tbl[tblent].sym := sym*/
/*tbl[tblent].loc := loc*/
/*tblent := tblent + 1%/

which can then be further refined to

strcpy(tbl[tblent].sym,sym);
tbl[tblcnt].loc = loc;
tblcnt++;

Note that when refining a multiple assignment statement into more than one single assignment statement, the
ordering of these statements must preserve the meaning of the multiple assignment statement.

Figure 9.9 shows the complete implementation of s_add that results from this refinement. Note that the
correctness of this implementation depends upon the specification of findsym and is independent of the
implementation for findsym.

What remains is to implement findsym, whose specification is given in the MID (Figure 9.7). The predicate
(3i € [0..tblent — 1])(s = tbl[f].sym) in the specification suggests that we search through the array tbl. One
way to implement such a search is with a for loop, which leads to the refinement shown in Figure 9.10. The
only remaining non-executable statement

/*sym = tbl[i].sym*/

can then be refined to

I'stremp(sym,tbl[i] . sym)

The refinement of the other symtbl access routines is straightforward, and some of them also use the local

function findsym. Note that with findsym, the symtbl MI is quite straightforward; only a single loop is
needed.
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void st_s_add(sym,loc)
char *sym;
int loc;
{
if (strlen(sym) > ST_MAXSYMLEN) {
st_maxlen();
return;
} else if (findsym(sym) !'= NOTFOUND) {
st_exsymn();
return;
} else if (tblcnt == ST_MAXSYMS) {
st_full();
return;
¥
strcepy (tbl[tblent].sym,sym);
tbl[tblcnt].loc = loc;
tblcnt++;

Figure 9.9 symtbl module implementation—s_add

void findsym(sym)
char *sym;

{
int i;
for (i = 0; i < tblent; i++) {
if (/*sym = tbl[i].sym*/)
return(i);
}
return(NOTFOUND) ;
}

Figure 9.10 symtbl—refinement of findsym

9.3.3 Discussion

In the preceding examples, we went through a lot of steps and trouble to come up with fairly straightforward
implementations. In practice, and in the following sections, many of the intermediate refinement steps are
skipped. However, it is important to know that, when things get complicated, we can fall back on stepwise
refinement to obtain—and explain—our implementation through a sequence of refinements.

In the definition and the use of local functions, we use the idea of stepwise refinement in a disciplined and
consistent way. Every local function in an MI must have an explicit specification. This holds for local functions
that appear in the MID, such as findsym, and also for local functions that are not defined in the MID. This
means that when we call a local function from an access routine, we determine the function’s behavior from
its specification, not its implementation. As a separate step, the local function is then implemented according
to 1ts specification. This separation of specification and implementation of local functions i1s a key application
of separation of concerns, and it is the reason why stepwise refinement scales up to larger programs.

9.4 BSHAM Module Implementations

9.4.1 The token MI

Figure 9.11 shows the state variables and the state invariant sections of the token MID. The state consists
of the array of characters buf to store the string and the index cur to indicate the current character in the
array. Recall that the token MID requires that (1) a sentinel blank character is stored after the last character
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state variables
char buf[TK_MAXSTRLEN+2] ;
int cur;

state invariant

1. buf[0..TK MAXSTRLEN + 1] contains a null.

2. cur € [0..leftnull(buf)]

3. cur < leftnull(buf) — (buf[cur] # > ’ A buflleftnull(buf) — 1] = ?)

access routine semantics

tk_s_str(s):
transition:
buf := (there is a token in s[0..leftnull(s) — 1] = rmblanks(s) || " "
| true = ")
cur := 0

exceptions: ezc:= (|s| > TK MAXSTRLEN = tk_maxlen)

Figure 9.11 token module internal design

void tk_s_str(s)
char *s;

if (strlen(s) > TK_MAXSTRLEN) {
tk_maxlen();

return;
}
while (*s ==’ ’) /#skip over leading blanks*/
s++;
strcpy(buf,s); /*copy in what remains*/
if (xs !'= °\0’)
strcat(buf," "); /+add trailing blank as sentinel#*/
cur = 0;

Figure 9.12 token module implementation—s_str

in the string and (2) we skip over leading blanks so that we are always placed at the beginning of the next
token (see Section 8.5.1). These decisions are enforced by the third condition of the state invariant.

As we noted for the MID, the state invariant guides the processing that has to be performed by each access
routine. This carries over to the MI. For example, the transition for s_str is shown in Figure 9.11. This
transition is implemented in s_str by the code shown in Figure 9.12. Following the exception check, a two-line
while loop implements rmblanks. Then, if s has any non-blanks, the sentinel is added.

The implementation of sg_next is the most complicated part of the token MI. The purpose of sgnext is to
return the value and the type of the current token and to advance cur to the next token. To recognize the type
of token, we use a simple FSM (see Section 3.7) with five states: START, ID, INT, ERR, and END. The initial
state is START. The state ID indicates that the token recognized so far is an identifier, INT that it is an integer,
and ERR that it is neither an identifier nor an integer. The inputs to the state machine are the characters in
the array buf, starting with buf[cur]. Table 9.1 shows the state transitions, based on the type of the current
character, buf[cur]. We distinguish four types of characters: blank, numeric, alphabetic, and other. Note that
for START there is no transition defined for a blank character, because the state invariant guarantees that this
will not happen.

Part of the code that implements this state machine is shown in Figure 9.13. The state machine is implemented
as a loop over a case statement; each iteration of the loop performs one state transition, and the loop terminates
when the state END is reached. The case statement performs the state transition based on the current state
and the next input character. In sgnext, the states are defined through an enumerated type, and the local
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Table 9.1 token module implementation—state machine

01d state buf[cur] New state
START alphabetic 1D
numeric INT
other ERR
1D blank END
alphabetic or numeric 1D
other ERR
INT blank END
numeric INT
alphabetic or other ERR
ERR blank END
alphabetic, numeric, or other ERR

variable state is used to maintain the current state. After the state is initialized to START, the appropriate
state transitions are performed by the case statement inside the loop. For example, for the current state ID,
the next input character is tested. If it is a blank, a transition to END is performed, the end of the token is
marked, and the value of the token type is set in the typ field of the parameter valtyp. If the character is
either alphabetic or numeric (tested with the C library function isalnum), then there is no state transition.
For other characters, the token is not a valid identifier, and there is a transition to ERR.

The above code recognizes the type of characters of the current token, but it does not check the length of the
token. This is one of the things that is done after the loop; Figure 9.14 shows all the post-processing that is
done after the loop in sg_next. For tokens that are too long, the token type is set to TK_BADTOK. There is also
code to copy the value of the token to the val field of the parameter valtyp. Finally, there is code to restore
the state invariant, by skipping over intermediate blanks and advancing to the next token, if there is one.
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enum {START,INT,ID,ERR,END} state; /*lexical analyzer state*/
int tokstart,tokend,toklen;
int i;

tokstart = cur; /*needed later to save value of token*/
state = START;
while (state != END) {

switch (state) {

case START:

case ID:

if (bufl[cur] ==’ ?) {
state = END;
tokend = cur-1;
valtyp->typ = TK_ID;

} else if (isalnum(buf[cur]))
cur++;

else {
state = ERR;
cur++;

}

break;
case INT:

case ERR:

}

Figure 9.13 token module implementation—sg next

9.4.2 The absmach MI

In the introduction to this chapter, we mention that it is the responsibility of the programmer to show that
the MI is correct with respect to the MID. This task is greatly simplified if the MI closely resembles the MID.
It therefore pays to follow the MID as closely as possible, unless there are clear reasons not to do so (efficiency
might be one such reason). For example, by implementing the local function findsym, we were able to follow
the symtbl MID quite closely in the MI. The absmach MI provides a more striking example.

The concrete state for absmach consists of the integers acc and pe, and the array mem (see Figure 8.4). With this
concrete state, the implementation of all access routines, except for sg_exec, is trivial. The MIS for sg_exec
is shown in Figure 9.15. Since the abstract and concrete state for absmach are so similar, the specifications for
the access routines from the MIS are not duplicated in the MID. That is why we use the sg_exec specification
from the MIS instead of the MID. Since the Execution-phase Exception Table (Table 5.7) is non-trivial, it is
implemented as the local function execexc, which returns the exception identifier specified in the table, or
AM_NORMAL if no exception is specified. Figure 9.16 shows the execexc specification and implementation. Since
execexc is a local function in the MI but not in the MID, we include its specification as a C comment in front of
the implementation. For consistency, we do the same for all local functions, even if their specification appears
in the MI. This implementation closely follows Table 5.7, the SHAM Execution-phase Exception Table. To
increase the resemblance, the macros SY_OPO and SY_OPO, defined in system.h, are used to mimic the types
opQobjectT and oplobjectT from the RS. With the Execution-phase Exception Table, the implementation of
execexc is straightforward, which illustrates the value of a precise RS.

The remainder of sg_exec is also straightforward, and consists mainly of a case statement implementing the
SHAM Language Semantics Table (Table 5.6). As in the RS, the HALT and PRINT instructions are dealt
with separately.
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/*check maximum lengths*/
switch (valtyp->typ) {
case TK_ID:
if (tokend-tokstart+1 > TK_MAXIDLEN)
valtyp->typ = TK_BADTOK;
break;
case TK_INT:
if (tokend-tokstart+1 > TK_MAXINTLEN)
valtyp->typ = TK_BADTOK;
break;

}

/*copy token to valtyp*/

toklen = tokend-tokstart+1;

for (1 = 0; 1 < toklen; i++)
valtyp->val[i] = buf[tokstart+i];

valtyp->val[toklen] = ’\0’;

/*skip over blanks preceding next tokenx/
while (buflcur] ==’ ’)
cur++;

Figure 9.14 token module implementation—after the loop in sgnext

am_sg_exec:
transition-output:
(an error is specified in the Exec. Phase Exception Table =
out := the error identifier
| mem[pc] = SY_HALT = out := AM_HALT
| mem[pc] = SY_PRINT = out, pc := AM_PRINT, pc + 1
| true = out := AM_NORMAL
acc, pc, mem := values specified in the RS Language
Semantics Table)
exceptions: none

Figure 9.15 absmach module interface specification—sg_exec

9.4.3 The load M1

For modules with external interaction, such as load, the decisions on how this interaction is accomplished
are often already made in the MID. For load, load-time exception messages are printed to stdout with the
C function printf, and the concrete state of absmach is updated by calls to am_s_mem (Section 8.5.3). In
addition, load calls access routines from token to parse the lines of input.

To simplify the MI, load contains three local functions. The first function, getinstr, returns the SHAM
instruction represented by a character string. Specifically, the call getinstr(s,) returns true and sets 7 to the
instruction name represented by the string s if s represents a valid instruction, and it returns false otherwise.
The function excmsg prints the load-time exception message specified by Table 5.4 when an exception has
occurred. Finally, parse parses an input line using calls on token. If Table 5.4 specifies a load-time exception
for the current line, parse prints the appropriate exception message by calling excmsg. Otherwise, parse
returns the instruction name and its operand value, if there is an operand.

With these three local functions, the implementation for sg_load is straightforward, and it closely follows the
pseudocode shown in Figure 5.4.

9.4.4 Version control through conditional compilation

In the MIS for exec we decided that there was going to be a single exec MI, supporting both the batch
and interactive version of SHAM (Section 7.5.4). We could have created two versions, but this would mean
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/*out := (state invariant holds =>

* (an exception is specified in Execution-phase Exception Table of RS
* => the associated exception identifier

* | true => AM_NORMAL))

*/

static am_stat execexc()

{

sy_instr cmd;
int op;

if (SY_OPO(mem[pcl))
return(AM_NORMAL) ;
if (SY_OP1(mem[pcl)) {
cnd = (sy_instr)men[pc];
if (pc < AM_MEMSIZ-1) {
op = mem[pc+1];
if (cmd == SY_LOADCON)
return(AM_NORMAL) ;
/*we know that cmd != SY_LOADCON*/
if (op >= 0 && op <= AM_MEMSIZ-1) {
if (cmd == SY_ADD) {
if (acc+mem[op] <= AM_MAXINT)
return (AM_NORMAL) ;
else
return (AM_ARITHEXC) ;
} else if (cmd == SY_SUBTRACT) {
if (acc-mem[op] >= 0)
return(AM_NORMAL) ;
else
return (AM_ARITHEXC) ;
} else
return (AM_NORMAL) ;
¥
/*we know that op not in shamaddrT*/
return(AM_ADDREXC) ;
¥
/*we know that pc == AM_MEMSIZ-1x/
return (AM_NOOPEXC) ;
}
/*we know that mem[pc] not in objectT*/
return(AM_0OBJECTEXC) ;

Figure 9.16 absmach module implementation—execexc
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void ex_s_exec()
{

am_stat stat;
char buf[80];

am_s_acc(0);

am_s_pc(0);

stat = am_sg_exec();

while (stat == AM_NORMAL || stat == AM_PRINT) {
if (stat == AM_PRINT)

printf ("%d\n",am_g_acc());

stat = am_sg_exec();

¥

if (stat != AM_HALT) {
errmsg(stat,am_g_pc() ,buf);
printf ("%s\n",buf);

Figure 9.17 exec module implementation—s_exec

maintaining two versions with only small differences between them. By using the C preprocessor’s conditional
compilation features, we can maintain the two versions in a single file, and, more importantly, the two versions
can share much of the code. Similarly, there is only a single MI of the Coordinator module sham. We briefly
present an overview of the conditional compilation features of C that we use in SHAM; these features are
explained in detail in [75].

To compile either exec or sham, one of the two compile-time flags ISHAM or BSHAM must be defined. Depending
upon whether a compile-time flag is set or not, the C preprocessor can conditionally include or exclude code
fragments for compilation. For example, the code fragment

#ifdef BSHAM
stat = am_sg_exec();
#endif

contains the preprocessor commands #ifdef BSHAM and #endif, and one C statement. The C statement is
included in the code that is compiled if the compile-time flag BSHAM is defined, and it is excluded otherwise.
The other C preprocessor command we use in SHAM is

#ifdef FLAG
#else
#endif

where the statements between #else and #endif are compiled when the compile-time flag FLAG is not defined.

9.4.5 The exec MI

The BSHAM version of ezec interacts with the environment, by printing run-time exception messages to
stdout, and with another module, absmach. The local function excmsg returns, as a C string, the run-time
exception messages corresponding to an exception identifier. This is similar to the excmsg local function in
load, except that it returns the message as a string rather than printing it. With this design, the BSHAM
and ISHAM versions of exec can use the same excmsg function. Figure 9.17 shows the implementation of the
BSHAM version of s_exec. After initializing the absmach accumulator and program counter, it repeatedly calls
am_sg next to execute the next command, until either a run-time exception occurs or the HALT instruction
is reached. If a run-time exception occurs, it prints the message returned by excmsg as its last argument using
the C function printf.
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9.4.6 The sham MI

There are also two versions of the sham MI. Since sham is the Coordinator module, it defines the function main,
where execution begins when BSHAM is invoked. The BSHAM version of main first checks the command-line
argument, which should be the name of the file with the SHAM source code. It attempts to open this file
using the C function fopen; if fopen fails, sham prints an error message and exits. Otherwise, it initializes
absmach, token, exec, and load, and loads the program by calling 1d_sg_load. Finally, if there are no load-time
exceptions it executes the program by calling ex_s_exec. Note that most of the work is done by the other
modules, and that the sham MI is straightforward.

9.5 ISHAM Module Implementations

The ISHAM modules interact with the environment by reading characters from the keyboard and by providing
formatted screen output. Both these tasks are performed using the UNIX curses library.

9.5.1 The keybdin MI

The keybdin module provides access to the keyboard, one character at a time, and also controls the echoing of
these characters (Figure 7.8). The MT uses the following functions from the curses library.

e noecho: turns off keyboard echoing.

e cbreak: makes characters that are typed immediately available to the program. Normally, no output is
available until the return key is pressed.

e getch: reads a character from the keyboard.
e echo: turns keyboard echoing on.

e nocbreak: buffers characters and makes them available to the program after a NEWLINE or RETURN
is typed.

With these functions, the keybdin MI is straightforward.

9.5.2 The scngeom MI

sengeom provides run-time access to the screen geometry of ISHAM and has no state (Figure 7.9). The MI
defines the local function legfld; legfld(f) returns true if f is a legal field identifier and false otherwise.
The MI also defines the array £1dtbl, which contains the row, column, and length for each screen field. With
legfld and £1dtbl, the implementations of the access routines for scngeom are straightforward.

9.5.3 The scnsir M1

senstr provides buffered write access to the terminal screen. Fortunately, curses automatically buffers all the
updates to the screen until the curses function refresh is called. This greatly simplifies the scnstr MI. The
only remaining challenge is the code dealing with the highlighting of strings in s_hlt. With curses, a string is
highlighted by turning highlight mode on, writing the string, and turning highlight mode off. Thus, to highlight
a string currently displayed, that string’s value must first be retrieved. Figure 9.18 shows the implementation
of s hlt, where we have omitted the code that detects and signals exceptions. The local function instr
returns, as a C string, the sequence of 1 characters that is currently displayed starting at row r and column
c. To highlight this string (when £ is ¢rue), we turn on the curses highlighting by calling standout, move the
cursor to the appropriate position on the screen with move, display the string using addstr, and turn off the
highlighting with standend. To display the string without highlighting (£ is false), we first move the cursor,
and then copy the string while the curses highlighting is turned off (the default).

134



Chapter 9 MODULE IMPLEMENTATION 9.5. ISHAM MODULE IMPLEMENTATIONS

void ss_s_hlt(r,c,1,f)
int r,c,1,f;

{
char s[SS_NUMCOL+1];
if (1> 0) {
instr(r,c,1l,s);
if (£) {
standout ();
move(r,c);
addstr(s);
standend();
} else {
move(r,c);
addstr(s);
¥
¥
¥

Figure 9.18 scnstr module implementation—s_hlt

9.5.4 The scndr MI

The sendr module updates the terminal screen so that the values on the screen correspond to the ones stored
by absmach. Although the MI has to deal with some technical details, the underlying idea behind it is quite
simple:

1. For a field f, use scngeom to get the position on the screen of f.

2. For a fixed field, use secngeom to obtain its value; for a varying field, use absmach to obtain its current
value.

3. Use scnstr to display the value in the correct position.

To handle the details, the local function prtcon prints out the initial value for a fixed screen field, 1just
left-justifies a string field by padding it to the right with blanks, and rjust right-justifies a string. Finally, the
FLD macro, defined by

#define FLD(f,t,r,c) (f.nam = t, f.row = r, f.col = ¢)

simplifies the assignment of values to a screen field.

9.5.5 The exec MI

There are two versions of the ezec MI; the BSHAM version was discussed in Section 9.4.5. The major difference
between the two versions i1s the loop that controls the execution in s_exec. Figure 9.19 shows this loop
for the ISHAM version. This code closely follows the pseudocode in the execution FSM in the ISHAM RS
(Figure 5.11). Characters are read from the keyboard by calling ki_sg next, a single SHAM instruction is
executed by calling am_sg next, and screen fields are updated by calling access routines from sendr. To control
the highlighting of the current instruction, the memory location of the old instruction is saved in the variable
oldpc before am_sg next is called. After the successful execution of an instruction, sd_s_hlt is used to turn
off the highlighting of the old instruction and to turn on the highlighting for the new instruction.

9.5.6 The sham MI

There are also two versions of the MI of sham, the SHAM Coordinator module. The two versions are very
similar, except that the ISHAM version contains additional code to initialize and terminate curses and the
keyboard and screen handling modules. The only other difference is that the BSHAM version sets the file pointer
for exception messages to stdout, and the ISHAM version sets it to SY_EXCFIL, as discussed in Section 9.2.4.
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ch = ki_sg_next();
while (ch !'= EXIT) {
if (ch == STEP) {
oldpc = am_g_pc();
stat = am_sg_exec();
if (stat != AM_PRINT && stat '= AM_NORMAL &&
stat !'= AM_HALT) {
excmsg(stat,am_g_pc() ,buf);
sd_s_msg(buf);
} else if (stat == AM_HALT) {
sd_s_msg("HALT instruction reached");
} else {
/*update screenx/
sd_s_msg("");
if (stat == AM_PRINT)
sd_s_prt(am_g_acc());
sd_s_mem();
sd_s_acc();
sd_s_pcQ);
/*update highlighting of cursor*/
sd_s_hl1t (oldpc,0);
sd_s_hlt(am_g_pc(),1);
¥
} else
sd_s_msg("Illegal keyboard entry: type ’s’ or ’e’.");
ch = ki_sg_next();

Figure 9.19 ezec module implementation—loop for s_exec

9.6 Verification

9.6.1 Work product criteria

Figure 9.20 shows the inspection criteria for an MI. In Figure 9.20 and in the remainder of this section, we
assume that every module has an MID. If the MID is omitted, then we assume that the MIS plays the role of
the MID. Since the testing of an MI is the subject of the next chapter, we discuss only the verification of an MI
by inspection here. In Section 9.2, we discussed the Code Format Rules and the default exception handlers.
In this section, we focus on the correctness of the MI: how we verify that an MI satisfies an MID and how we
inspect for the absence of fatal run-time errors.

o Audience. Module implementor and tester.
e Prerequisites. An understanding of the MID and the implementation programming language.
o Purpose. Implement the module so that it satisfies the MID.

o Additional criteria.

1. Well formed. Satisfies the Code Format Rules shown in Appendix C. The MI includes a set of default
exception handlers, providing trivial exception reporting.

2. Comprehensible. The MI can be read and understood by the intended audience
3. Reliable. No fatal errors will occur at run time.

4. Testable. The module can be tested affordably—there are no unjustifiable controllability or observability
problems.

Figure 9.20 Module implementation criteria
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(a) Module Internal Design
ps_s_push(z):
transition: stack[siz],siz := z,siz+1
exceptions: exc:= (siz = PS_MAXSIZ = ps_full)

(b) Module Implementation

void ps_s_push(x)

int x;
{
if (siz == PS_MAXSIZ)
ps_full(Q);
return;

}

stack[siz++] = x;

Figure 9.21 stack—s_push internal design and implementation

9.6.2 MI satisfies module internal design

Verifying that an MI satisfies an MID is often simpler than verifying that an MID satisfies an MIS, because
the MI and the MID share the same concrete state.

To verify the correctness of an MI, we separate the verification of local functions from the verification of
access routines. As explained in Section 9.3, each local function has a specification. This specification is
used in the verification of the access routines, without reference to the implementation of the local function.
The correctness of the implementation of the local function with respect to its specification is then verified
separately. In Section 9.3.2, we illustrated this verification method with the local function findsym and the
access routine s_add of symitbl.

To verify the access routines, there are different procedures for set, get, and set-get access routines.

Set access routines

To verify the correctness of a set access routine, we must verify the correctness of the exceptions and the
transition. For the exceptions, we verify that the MI signals an exception e if and only if the MID specifies
the exception e. In addition, we check that when an exception is signaled there is no change in state. For the
transition, we verify that, if no exception is signaled, the MI changes the state according to the MID.

As an example, Figure 9.21 shows the MID and the MI of the stack access routine s_push. Clearly the MI
signals full if and only if the MID does. Also, the return immediately after the call to the exception handler
ensures that there is no change of state when full is signaled. The correctness argument for the transition is
also straightforward.

Get access routines

For a get access routine, we must verify the correctness of the exceptions and the output. For the exceptions,
we verify that the MI signals an exception e if and only if the MID specifies the exception e. We also verify
that the MI returns a value of the correct type when an exception is signaled. For the output, we verify that
the MI returns the value that is specified in the MID.

Figure 9.22 shows the MID and the MI of the stack access routine g_top. It is easy to verify that the exception
behavior is correct and that when the MI signals empty, it returns 0, a value of type int. The output specified
in the MID and the value returned in the MI are identical and so the output is also correct.
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(a) Module Internal Design

ps_g-top:
output: out := stack[siz — 1]
exceptions: exc:= (siz = 0 = ps_empty)

(b) Module Implementation

int ps_g_top()

{
if (siz == 0)
ps_empty();
return(0);
¥
return(stack[siz-1]);
¥

Figure 9.22 stack—g_top internal design and implementation

Set-get access routines

For a set-get access routine, we must verify the correctness of the exceptions, the transition, and the output.
For the exceptions, we verify that the MI signals the exceptions specified by the MID, that the MI does not
change the concrete state when an exception is signaled, and that it returns a value of the correct type. The
verification of the transition is the same as for a set access routine, and the verification of the output is the
same as for a get access routine.

9.6.3 Absence of fatal errors

There are several types of run-time errors that occur regularly and that have fatal consequences on the execution
of an MI. A well-known example is the divide-by-zero error, which occurs when the divisor in a division is zero.
The regular occurrence and the severe consequences of such errors warrant that we verify, on a line by line
basis, that these errors cannot occur. It is easy to verify that there is no division by zero in SHAM, since there
is no division at all. We discuss the type of errors that do need to be checked in SHAM, together with some
examples.

Subscript out of range. For an array of size n, every time the array is accessed, we verify that its subscript falls
between 0 and n — 1. For example, the array stack is accessed in the statement

stack[siz++] = x;

in the implementation of s_push of stack (Figure 9.1). We must verify that siz lies between 0 and PS_MAXSIZ—1.
The state invariant for stack,
siz € [0..PS MAXSIZ]

guarantees that siz falls between 0 and PS_MAXSIZ. Moreover, s_push signals an exception when siz =
PS_MAXSIZ, and the above statement is only executed when s_push does not signal an exception. Therefore
siz lies between 0 and PS_ MAXSIZ — 1 when the above statement is executed.

It is quite common that the state invariant plays a key role in showing the absence of run-time errors. This is
another reason why it pays to make the state invariant as strong as possible.

Illegal pointer use. Another common source of problems is when a pointer has gone astray (sometimes referred
to as a dangling pointer). An example of pointer use in SHAM is in the access routine sgnext in token. In
this case, the pointer valtyp is passed as a parameter to sg_next and used to return the output. In sg next,
we assume that space is allocated and that the pointer is set by the caller. That this is the case must then be
verified whenever sg next is called. In SHAM, sg_next is called twice from the local function parse in load.
Both times the address of a local variable is passed as a parameter; thus, the space 1s allocated and the pointer
is set correctly.
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Variable used before it 1s defined. It is typically straightforward to verify that every variable is defined before
it is used. For example, the variable i in the local function findsym in symtbl is set in the first part of the
for-statement, before it is used in the body.

Endless loop. Although it can be quite complicated in general to show that a loop terminates, the loops in
SHAM are so simple that they do not pose any problems. Consider the for-statement

for (i = 0; i < tblecnt; i++) {
if (!strcmp(sym,tbl[i].sym))
return(i);

}

in the local function findsym in symtbl. The value of i is incremented at the end of each iteration of the loop,
and neither the value of i nor the value of tblcnt is changed in the body of the loop. The state invariant for
symtbl (Figure 8.2) implies that tblent € [0..ST_MAXSYMS]. Since i starts out at 0, it must eventually equal
tblcnt, at which time i < tblent becomes false and the loop terminates.

9.7 Summary

The MI is a critically important work product because it is, after compilation, the primary product delivered
to the customer. However, the other work products greatly simplify the MI development. If the system is
carefully decomposed into modules, each of which is then precisely specified in an MIS and an MID, then we
can code fo specification in the MI.

Although the MI is an MSM, the format of the MI is restricted by the implementation language chosen and
we cannot follow the MSM format described in Section 3.8. However, a set of Code Format Rules is used to
ensure that a uniform coding style is followed throughout the system.

In some cases, it is straightforward to write a correct MI from the MID, by closely mimicking the specification
in our implementation. When it is not straightforward to implement a module, stepwise refinement can be used
to develop the MT through a sequence of refinement steps. Each refinement in the sequence represents a (par-
tially) completed implementation in which specification fragments are gradually replaced by implementation
fragments. The process terminates when the entire program is expressed in the implementation language.

To verify the correctness of an MI by inspection, we verify that an MI satisfies an MID and we inspect for
the absence of fatal run-time errors. To facilitate the verification and to support stepwise refinement, every
local function in the MI has an explicit specification. In the verification of an access routine that uses a local
function, the specification of the local function is used to determine its behavior. As a separate step, we verify
that the local function is implemented according to its specification.

9.8 Bibliographic Notes

The technique of stepwise refinement was first proposed by Wirth [63]; since then it has received considerable
attention in the literature [38, 59]. Parnas [64] provides a comparison between stepwise refinement and infor-
mation hiding. Fagan [37] introduced inspections as a method for verifying software. Our use of inspection for
the absence of fatal errors is inspired by Fagan’s inspection checklists. Russell [29] reports on the industrial
application of inspections. More formal approaches for showing the correctness of implementations have been
proposed by Hoare [76], Dijkstra [2], Gries [77], and, more recently, Morgan [78] and many others.
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Chapter 10

Testing

Redundancy s the essence of testing.

10.1 Introduction

At this point, we encourage the reader to review Section 2.4.

10.1.1 Systematic testing

It is common practice to ignore testing until after implementation, and to discard the tests shortly after
acceptance of the software. This ad hoc approach to testing is ineffective: because the testing is developed too
late to influence design decisions, the resulting software is often hard to test. This approach to testing is also
expensive, because the testing is not reused during maintenance.

A systematic approach to testing requires that the testing be

e planned: to permit design for testability,

e documented: so that the test cases can easily be understood and the adequacy of the test cases can be
evaluated, and

o maintained: so that the test cases can be executed after every change to the software.

To perform systematic testing, we maintain two work products for each module in SHAM: the Test Plan (TP)
describes the strategy for selecting and executing the tests, and the Test Implementation (TT) implements the
TP.

When designing test cases, it is important to keep in mind Dijkstra’s Law of testing (see Section 2.4): “program
testing can be used to show the presence of bugs, but never their absence” [30]. This means that the focus
of testing should be to detect program errors, not to show that the program is free of errors. Although this
difference is a subtle and mostly psychological one, its consequences are important. It means we should design
test cases so that they are likely to expose errors.

Despite the limitations of testing, it is important as an independent check on code that has been carefully
designed and inspected.

10.1.2 Testing tasks

We distinguish six testing tasks.

1. Build the test harness.
2. Generate the test inputs.

3. Determine the expected outputs for each of the test inputs.
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4. Execute the test cases, monitoring the behavior of the program.
5. Compare the actual outputs to the expected outputs.

6. Evaluate the test results and decide whether the program is ready to be put into production.

Note that the last three steps incur costs every test run. As a result, to reduce the overall cost of testing, it is
advantageous to automate these steps as much as possible.

10.1.3 Overview

In Section 10.2, we discuss the purpose and contents of a TP and a TI. This is followed by a discussion of the
distinction between system and module testing, and an explanation of why module testing is important. In
the next section, we describe our method for selecting test inputs, based on functional testing. Section 10.5
describes the PGMGEN testing tool and illustrates it with the TIs of stack and symibl. The design of a
system has a major influence on the ease with which the modules in the system can be tested, and design for
testability is the subject of Section 10.6. Sections 10.7 and 10.8 discuss the testing of the BSHAM and the
ISHAM modules. Although module testing is important, we cannot ignore system testing; the SHAM system
testing is discussed in Section 10.9. In Section 10.10, we review the work product criteria and the verification
procedures for a TP and a TI. While we discuss the testing of every SHAM module, we do not present every
TP and TI in full detail. The complete work products may be found in Appendix ?7.

10.2 Work Product Definition

10.2.1 Test plan

The TP for module M is intended for those considering running or modifying the testing of M. It serves as
a specification for the TI for M: it describes the strategy used for selecting test cases and for executing these
test cases.

A TP contains four required sections.

e assumptions: defines any assumptions, not contained in the MIS, on which the testing depends.
¢ test environment: describes the environment, such as test scaffolding, in which the testing is performed.
¢ test case selection strategy: describes how test cases are selected.

¢ test implementation strategy: describes the key aspects of the TI.

In addition, the considerations section is sometimes used for information that does not fit in any of the
required sections.

10.2.2 Test implementation

The TI for module M implements the TP for M as simply and inexpensively as possible. The TT includes the
test scaffolding, such as drivers and stubs, the test data files, and the procedures, both manual and automated,
required to execute the tests. The SHAM modules with a call-based interface contain at least an interactive
or a batch driver, and these modules often contain both. Typically, the interactive driver prompts the user
for an access routine name and parameter values, invokes the access routine and, for a get call, displays the
return value. The batch driver, on the other hand, typically contains a large number of test cases, and it is
automated so that it can easily be run after every change to the module.

Part of the interactive test driver for the stack module is shown in Figure 10.1. A constant is defined for each
access routine, and main contains a loop that repeatedly prompts the user to select an access routine using
the function nextcall. The case statement inside the loop prompts the user for the parameters, if any, of the
access routine, and invokes the access routine. For example, the function readint prompts the user for an
integer parameter. For a get call, the value returned by the call is printed. The interactive driver also provides
access to the routine g_dump, which is implemented for debugging purposes and displays the concrete module
state (see Section 9.2).
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#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
f#tdefine

main()

{

QUIT O
S_INIT 1
S_PUSH 2
S_POP 3
G_TOP 4
G_DEPTH 5
G_DUMP 6

int reply,i;

while ((reply=nextcall()) != QUIT) {

switch(reply) {

case S_INIT:
ps_s_init();
break;

case S_PUSH:

10.2. WORK PRODUCT DEFINITION

i = readint ("Enter element:");

ps_s_push(i);
break;

case S_POP:
ps_s_popQ);
break;

case G_TOP:
i=ps_g_top(O);

printf ("returns %d\n",i);

break;
case G_DEPTH:

i = ps_g_depth();
printf ("returns %d\n",i);

break;
case G_DUMP:
ps_g_dump() ;
break;
}
}
return(0);

Figure 10.1

stack interactive driver—main
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Table 10.1 Top-down testing of BSHAM

module i t2 t3 t4
sham MI MI MI MI
load stubs MI MI MI
exec stubs | stubs | stubs | MI
token stubs MI MI MI
absmach | stubs | stubs MI MI

The interactive test drivers are convenient for executing small numbers of test cases and for debugging, where
the behavior of one test case determines what other test cases are interesting. However, thorough and systematic
module testing requires that large numbers of test cases are executed after every change to the module.
Executing these with the interactive drivers would be a tedious and error-prone task, and automation is
desirable. We automate those aspects of testing that are most tedious and repetitive: the tedious aspects
because they are typically easiest to automate, and the repetitive tasks because the payoff of automation will
be highest for those tasks. We do not attempt to automate those steps where manual approaches are cost-
effective, or steps where it is unclear how we can automate. In particular, we do not automate the selection of
test inputs, but we do automate the execution of the test cases, and the comparison of actual with expected
behavior.

To automate the testing, most of the modules in SHAM contain a batch driver. For many of the modules,
we use the PGMGEN test-driver generation tool to generate the batch driver. For the other modules, we use
customized batch drivers.

10.3 Module and System Testing

Due to a lack of controllability and observability, it is hard to test a module M when it is installed in a
production system. M’s access routines are often not directly accessible. If M is a general-purpose module,
some of its access routines may not be called at all in a particular production system. For example, if SHAM
works as intended, none of the exception handlers will ever be called. Thus 1t is impossible to test the exception
handlers using the production code of SHAM. To test a module thoroughly, we need to test it in isolation from
its production environment.

While it is important to test each module in isolation, we also need to perform integration and system testing.
With integration testing, we test combinations of modules that can be tested as single subsystems. Finally, we
need to test the entire system. The extent of integration and system testing depends on the size of the system,
the reliability requirements, and the amount of module testing that has been performed.

10.3.1 Top-down testing

Integration testing can be performed top-down or bottom-up. In top-down testing, we start by testing a top-level
module using stubs, and gradually replace the stubs by production code. Although we can use stubs for some
access routines of a module and production code for others, typically we use stubs for all or none of the access
routines of a module. Therefore, in the following, when we refer to stubs for a module M| we mean stubs for
all the access routines of M.

An example of top-down testing of BSHAM is shown in Table 10.1, where the ts represent various stages in
the progression of testing. We start by testing the sham coordinator using stubs for the other modules. After
this we can proceed in several ways. In this case, we replace the stubs for load and token by their MIs. We
could have replaced only load by its MI, but it is hard to test load thoroughly using stubs for token. At the
next stage, we use the MI for absmach, and finally we replace the stubs for exzec by the MI.

10.3.2 Bottom-up testing

In bottom-up testing, we first test low-level modules using test drivers, and gradually we replace the drivers by
higher-level modules. An example of how we could test BSHAM with bottom-up testing is shown in Table 10.2.
In bottom-up testing, we first test low-level modules. We test token and absmach using drivers. Note that we
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Table 10.2 Bottom-up testing of BSHAM

module t1 t2 i3

sham not used | not used | MI
load not used MI MI
exec not used MI MI
token MI MI MI
absmach MI MI MI

can test these in either order, or even in parallel. We then test load and exec using drivers and the Mls for
token and absmach. Again, load and exec can be tested in either order or in parallel. Finally, we test the
sham Coordinator module using the Mls for all other modules.

10.3.3 Top-down versus bottom-up testing

One advantage of top-down testing is the early availability of an executable program for the end user, so that
he or she can give feedback as soon as testing is started. Another advantage is that integration testing occurs
early in the testing, so that flaws in the interface design can be detected as early as possible. The major
disadvantages of top-down testing are (1) that observability and controllability are typically poor when testing
the lower-level modules and (2) that the cost of developing and maintaining the stubs is high. Although simple
stubs are easy to generate, they provide very little support for thorough testing. More sophisticated stubs are
expensive to develop.

The advantage of bottom-up testing is that it provides better controllability and observability than top-down
testing. A disadvantage of bottom-up testing is the cost of developing and maintaining the test drivers. Another
disadvantage is that we cannot demonstrate an executable to the end user until we have implemented all the
lower-level modules.

In testing SHAM, we use a mixture of top-down and bottom-up testing. To improve controllability and
observability we test the standalone modules using test drivers. For the other modules, we use a mixture
of test scaffolding and production code, where the critical tradeoff is between the benefits realized through
isolation, and the cost of developing and maintaining the test scaffolding.

10.4 Test Case Selection

We describe two methods for selecting test cases: functional testing and structural testing. With functional
testing we base our tests primarily on the specification of the module. With structural testing we base our
tests on the internal structure of the code implementing the module. Finally, we describe our approach for
selecting test cases, which uses functional testing to select test cases and structural analysis as a cross-check
on their adequacy.

10.4.1 Functional testing

Functional testing provides us with a systematic approach for choosing special values for test cases. Consider
an access routine f(pi1,...,pn). For each p;, we choose a set S; of special values and test f on every tuple
in S; x ... x S,. The choice of special values is determined by the parameter types and, in some cases, the
implementation of the access routine. The special values include both normal-case and exceptional values for
each parameter. In some cases, there are dependencies between the sets. For example, a value for p; may be
special only for certain ps values.

In addition to choosing special values for each parameter of each access routine, we also choose special values
for the internal module state. However, we need to consider only normal-case values for the module state,
because the exception-detection code should prevent exceptional values.

To illustrate the choice of special values, we present two heuristics. The interval rule applies to an integer
parameter restricted to an interval [L..U]. For normal-case testing, at least three special values are chosen: the
boundary points L and U, and at least one value interior to [L..U]. For exception testing, special values are
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void tst(x)
int x;
{
if (x > 0)
pos = pos+1;
if (x % 2==0)
even = event+l;
return;

Figure 10.2 Implementation of tst

chosen on the boundary and interior points of (—oo..L — 1] and [U + 1..00). Thus, for an integer parameter
restricted to [1..100], we might choose the following special values: {—1000, 0, 1,50, 100, 101, 1000}. Sometimes
we can apply the interval rule indirectly. For example, for the stack module, the stack size is restricted to the
interval [0..PSMAXSIZ], and thus we test it for an empty stack, a stack of size PS_MAXSIZ, and a stack with
some, but less than PS_MAXSIZ, integers.

The second heuristic applies to a parameter with an enumerated type. If the number of elements in the
enumerated type is small, we test the parameter for every value in the enumerated type. For example, for the
token module, since there are only three types of tokens, we include test cases for all of these. If exhaustive
testing is too costly, we divide the elements into classes of “similar” ones and select at least one value from each
class. For example, for an ASCII-character parameter we might include one alphabetic character, one digit,
one punctuation mark, and one non-printable character. Similar heuristics can be applied to choose special
values for other parameter types.

Now that we know how to choose special values for individual parameters, let us see how to combine these to
come up with a set of test cases for access routines. Consider an access routine f(p1,psz) with two parameters.
Let us assume that p; is an integer restricted to the interval [1..100], and that p, belongs to the enumerated type
{red, green, blue}. A suitable set of normal-case values for p; is {1,50, 100}, and a suitable set of exceptional
values is {—1000,0,101,1000}. Since the enumerated type for p, contains only three values, we include all
of these. There are no exceptional values for ps, since we can use the compiler to ensure that f is always
called with a value belonging to the enumerated type. To test f, we use all combinations of special values for
both p; and py. Since p; has 3 + 4 = 7 special values and p; has 3 special values, we should test f for all 21
combinations of these.

Thus, ignoring special values for the module state, a simple access routine such as the one above requires 21
test cases. This is a characteristic of our approach to functional testing: it leads to a large number of test cases.
It thus appears that automated support is essential to perform this style of functional testing. Fortunately,
automation is feasible because the large number of test cases result from simple combinations.

10.4.2 Structural testing

With structural testing we select test cases based on the internal structure of the program. The motivation for
structural testing is that we want to exercise or “cover” as many parts of the program as possible. We select
our test cases so that a certain aspect of the source code is covered. We consider three types of coverage for
structural testing: statement, branch, and path coverage.

The simplest form of coverage is statement coverage, where we select test cases so that every statement in the
program is executed at least once. Consider the C function tst shown in Figure 10.2. To achieve statement
coverage for tst a single test case suffices; for example, tst(2) will do. In the following, we abbreviate a set of
test cases for tst by the set of parameter values. For example, the above test set is represented by the set {2}.

With branch coverage, we require that the set of test cases execute every branch in the program at least once.
That 1s, every decision in the program has to evaluate to true and false at least once. For tst, we need at
least two test cases to achieve branch coverage, for example, {—1,2}. For —1 both decisions in tst evaluate
to false, and for 2 both evaluate to true.

A path of control flow through a program is feasible if there exist values for the parameters of the program
that exercise that path. With path coverage, we require that the set of test cases execute every feasible path
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void tst(x)

int x;
{
if (x >= 0)
pos = pos+1;
return;
}

Figure 10.3 Faulty implementation of tst

through a program at least once. Since there are two decisions in tst, there are four paths of control flow
through it, all of which are feasible. The test set {—2, —1, 1,2} achieves path coverage.

Unfortunately, path coverage is rarely practical. In programs with loops, the number of feasible paths is often
infinite, and even when it is not, typically the number is so large that path coverage is impractical. Moreover,
it is in general undecidable whether or not a path through a program is feasible. In practice, most programs
contain many infeasible paths. To address these shortcomings, variations on path coverage have been proposed.
However, all forms of structural coverage, including these proposals, suffer from the following weaknesses:

e Structural coverage is not sufficient. Many simple faults are not detected even by path testing, the most
demanding coverage measure. For example, consider the faulty implementation of tst in Figure 10.3.
There are two faults in this program: the first condition should be x > 0, and the second if-statement
is omitted. Yet, the test set {—1,1} achieves path coverage, and the program behaves correctly for this
test set. This indicates two reasons why structural coverage alone is not sufficient: it is not suited for
detecting missing functionality such as the second if-statement, and it does not select special values that
should be tested, such as 0 in the case of tst.

o Insufficient automated support. Although tools exist for measuring structural coverage, typically they can
measure only statement and branch coverage. For example, the UNIX utility {cov measures statement
coverage. Building a tool for measuring path presents considerable problems. First, since the number of
paths is typically infinite or very large, there is the problem of presenting large volumes of data to the
tester. Second, since there is no general way of detecting which paths are feasible, many of the paths will
never be executed. Discovering which ones are feasible would have to be left to the tester. Third, there
is the problem of displaying, in an understandable manner, an arbitrary path through a program.

10.4.3 Our approach
In the preceding sections we explained that

1. functional testing provides a systematic approach to test case selection that can be partially automated,
and

2. structural testing provides little or no guidance with the selection of test cases, but statement coverage
can be measured easily for a given set of test cases.

Therefore, our approach to testing uses functional testing for the selection of test cases and statement coverage
analysis as a cross-check on their adequacy.

In particular, to select test cases for module M, we first consider M’s MIS. Based on the MIS, we use functional
testing to select special values for the access routine parameters and the module state. For the access routine
parameters, we select normal-case and exceptional values; for the module state we select only normal-case
values. We then consider M’s MID and MI to see if there are any other special values, not suggested by
the MIS, that we should test for. Finally, when executing the test cases, we use the UNIX utility fcov to
measure the statement coverage achieved by our test cases. The details of {cov are discussed in Section 10.10.
We require that our test cases achieve 100 percent statement coverage. We view this 100 percent statement
coverage as a necessary, but not a sufficient, condition for a test set. It is used as a simple check on the test
case selection strategy, not as a goal in itself.

To illustrate our approach to test case selection, consider the test case selection strategy for the stack module,
shown in Figure 10.4. Recall the stack MIS semantics from Figure 7.1. The contents of the stack are maintained
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test case selection strategy
special values
module state
interval rule on size of stack: [0..PSMAXSIZ]
access routine parameters
none
test cases
For each of the special module state values,
call ps_s_push, ps_s_pop, ps_g_top, ps_g_depth
check exception behavior
after set calls, check get call values

Figure 10.4 stack test plan—test case selection strategy

as a sequence of integers. Since there is no reason to believe any value will be treated differently from any
other value, there are no special values for the stack elements. We do apply the interval rule to the size of the
stack; we test the module for an empty, a partially full, and a full stack. The only access routine parameter
is to s_push, which is an integer. Again, it is reasonable to believe that all values will be treated the same,
so there are no special values for this parameter. For each special module state, we check both the exception
behavior and, using get calls, the normal-case behavior.

10.5 Test Driver Generation

Although implementing test drivers manually is straightforward, it is also time-consuming, repetitive, and error-
prone, and it produces code that is costly to maintain. As a result, test driver generation is a good candidate
for automated support. For most modules with a call-based interface, we use the testing tool PGMGEN to
generate batch test drivers from test scripts.

10.5.1 Test script language

A test case is described by providing a trace on a module and associating it with some aspect of the required
behavior of the module in response to that trace. We represent a test case as a five-tuple

(trace, experc, actval, expval, type)
with the following interpretation.

trace: a trace used to exercise the module.
ezpezc: the name of the exception that trace is expected to generate (or noexc if no exception is expected).

actval: an expression (typically a get call) to be evaluated after ¢{race and whose value is taken to be the “actual
value” of the trace.

expval: the value that actval is expected to have.

type: the data type of actval and expval.
Below are two test cases for the stack module.

<s_init().g_top(), empty, dc, dc, dc>
<s_init().s_push(10), noexc, g_top(), 10, int>

In test cases developed solely to do exception checking, the actval, expval, and type fields contain dc, for “don’t
care.” The first trace initializes the module and calls g_top, which should signal the exception empty. The
second trace pushes 10 onto the stack, and checks that g_top returns the correct value.

A complete test script for stack containing the above two test cases is shown in Figure 10.5. The module
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module
Ps_

accprogs
<s_init,s_push,s_pop,g_top,g_depth>

exceptions
<empty,full>

globcod

{4

#include "system.h"
#include "stack.h"
¥

cases
<s_init().g_top(), empty, dc, dc, dc>
<s_init () .s_push(10), noexc, g_top(), 10, int>

Figure 10.5 stack—small test script

section defines the module prefix, which PGMGEN places in front of every access routine and exception name.
The accprogs and exceptions sections define the list of access routines and the exceptions of the module.
The globcod section contains global C code, delimited by the symbols {% and %}. PGMGEN places this global
code at the top of the generated test driver. The test programmer can use the global code to define include
files, stubs, and other functions that are called from the test cases. Finally, the cases section contains the test
cases.

A test script may be viewed as a partial specification for a module, expressing its required behavior under
specific circumstances. The purpose of PGMGEN is to generate a driver that will automatically determine
whether an MI satisfies this partial specification.

10.5.2 Test program generation

The system flow for PGMGEN is shown in Figure 10.6—ovals indicate human-readable files and boxes indicate
executable programs. The test programmer prepares the script using a text editor. PGMGEN reads that
script and generates the C driver test.c, which is compiled and linked with the MI. For example, for stack,
the test script is stored in the file stack.script, the MI in stack.c, and the executable test program that is
generated is called stack_b. When stack.b is executed, it runs the test cases from stack.script and reports
any errors.

To generate the test driver, PGMGEN first generates code to record exception occurrences. Then, for each
test case of the form

(e1.- - .cn, expexc, actval, expval, type)

PGMGEN generates code that performs the steps outlined in Figure 10.7. Following the last case, code is
generated to print summary statistics.

10.5.3 The stack TP and TI1

The production TP for the stack module is shown in Figure 10.8. The test environment section describes the
test scaffolding used for testing stack. The test case selection strategy is explained in Section 10.4. The test
implementation strategy section defines the key aspects of the TI: the C function load(n) is used to load the
stack with the values 10,20,...,10 x n, and tcov (discussed in Section 10.10) is used to measure statement
coverage. Note that for the function load the values themselves are not important, but they should be unique
and easy to generate.

The globcod and cases sections of the test script are shown in Figure 10.9; the module, accprogs, and
exceptions sections are the same as in Figure 10.5. The globcod section defines the function load. Note that
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' test script '

PGMGEN

' test.c ' ( Implementation )

C compiler/linker

test program

Figure 10.6 PGMGEN system flowchart

invoke c1, - - -, ¢y, monitoring exception occurrences
compare the actual occurrences to expexc
if there are any differences
print a message
else
if actval # expval
print a message
if any exceptions have occurred since ¢, was invoked
print a message
update summary statistics

Figure 10.7 Steps performed for a PGMGEN test case
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assumptions
PS_MAXSIZ > 2

test environment
PGMGEN driver

no stubs

test case selection strategy
special values
module state
interval rule on size of stack: [0,PS MAXSIZ]
access routine parameters
none
test cases
for each of the special module state values,
call ps_s_push, ps_s_pop, ps_g_top, ps_g_depth
check exception behavior
after set calls, check get call values

test implementation strategy
load(n)
loads stack with 10,20,...,10 x n
statement coverage measured using the UNIX utility tcov

Figure 10.8 stack test plan

the globcod section is copied unchanged to the test driver by PGMGEN. This means that explicit module
prefixes are required for the access routine calls in this section, such as s_init and s_push in Figure 10.9. In
the cases section, we separate the cases for the three special module states. For each special module state,
we check the return values of g_top and g_depth in that state, and after calls to s_push and s_pop. However,
s_pop signals an exception for the empty stack, and s_push signals an exception for the full stack, and thus
we do not check the return values of the get calls for these cases. For the partially full stack, there are test
cases with a stack size of 3, and the expected behavior for these cases indicates that no exception should be
signaled. This happens only if PS_ MAXSIZ > 2, and hence the assumption in the TP.

The entire script for stack is 48 lines long and contains 16 test cases. The test driver generated by PGMGEN
from this script is 453 lines: almost 10 times the size of the script. When the driver is compiled and linked
with a correct MI, it produces the output shown in Figure 10.10.

10.5.4 Embedded C code

In developing PGMGEN, our goal was to provide a test language powerful enough to describe the test cases
we encountered in practice, but which was as cost-effective as possible. In particular, we wanted to minimize
the training time for the test programmer, the cost of implementing and maintaining PGMGEN, and the cost
of changing its target language and operating system. Therefore, we have allowed code written in C to be
embedded freely in test scripts. As a result, there is no need in the script language for functions, macros, or
iteration constructs—these are available in C and are presumably understood by the test programmer.

Besides the global C code in the globcod section, C code delimited by {% and %} may also be inserted in the
following places in the cases section: between test cases, as a call in the trace of a test case, as the actval

or ezxpval field of a test case, and as a parameter of any call. As for the global C code, this code is copied
unchanged to the test driver by PGMGEN.

Consider the stack test case
<s_init().s_push(10), noexc, g_top(), 10, int>

Suppose we want to test s_push and g_top not only for 10, but for all values in {10,20,...,100}. We can write
10 test cases, but we can also embed the test case inside a for-loop, as in
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globcod

{4

#include "system.h"
#include "stack.h"

static void load(n)
int n;
{

int i;

ps_s_init () ;
for (i = 0; 1 < n; i++)
ps_s_push((i+1)*10);

A
cases

/*empty stack*/

<load(0) .s_push(10), noexc, g_top(), 10, int>
<load(0).s_push(10), noexc, g_depth(), 1, int>
<load(0).s_pop(), empty, dc, dc, dc>
<load(0).g_top(), empty, dc, dc, dc>

<load(0), noexc, g_depth(), 0, int>

/*partially full stack*/

<load(2) .s_push(30), noexc, g_top(), 30, int>
<load(2).s_push(30), noexc, g_depth(), 3, int>
<load(2).s_pop(), noexc, g_top(), 10, int>
<load(2).s_pop(), noexc, g_depth(), 1, int>
<load(2), noexc, g_top(), 20, int>

<load(2), noexc, g_depth(), 2, int>

/*full stack*/

<load(PS_MAXSIZ).s_push(0), full, dc, dc, dc>

<load (PS_MAXSIZ).s_pop(), noexc, g_top(), (PS_MAXSIZ-1)*10, int>
<load (PS_MAXSIZ) .s_pop(), noexc, g_depth(), PS_MAXSIZ-1, int>
<load (PS_MAXSIZ), noexc, g_top(), PS_MAXSIZ*10, int>
<load(PS_MAXSIZ), noexc, g_depth(), PS_MAXSIZ, int>

Figure 10.9 stack test implementation

Statistics:
Number of test cases: 16
Number correct: 16
Percentage correct: 100.00
Number of exception errors: 0
Number of value errors: 0

Figure 10.10 stack—output produced by test script
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{% for (i = 1; i <= 10; i++) %}
<s_init().s_push(10%i), noexc, g_top(), 10*i, int>

The variable i is used both in the parameter to s_push and in the ezpwval field of the test case. For this, i
needs to be declared somewhere in the test script, for example, in the globcod section. The code generated by
a test case is a single C statement. Thus, to include two test cases inside a for-loop, we need to enclose them
by { and }, as in

{% for (i = 1; i <= 10; i++) { %}
<s_init().s_push(10*i), noexc, g_top(), 10*i, int>
<s_init().s_push(10*i), noexc, g_depth(), 1, int>

{0 %

10.5.5 The symtbl TP and TI

To illustrate the use of embedded code, we consider the testing for symtbl. Part of the symibl TP is shown
in Figure 10.11. The MIS semantics for symtbl are shown in Figure 7.3. The abstract state is a set of
symbol/location pairs. There are two characteristics of this state for which we choose special values: the size
of the table, and the length of the symbols in the table. For the table size, we apply the interval rule to
[0..ST_MAXSYMS]. In this case, we select two interior points, 1 and ST MAXSYMS/2, because we feel that a table
size of 1 is different enough from the other table sizes to include it as a special case. Note that this does not
violate the interval rule, which states that at least one point from the interior of an interval should be selected.
For the length of the symbols in the table, we apply the interval rule to [0..ST MAXSYMLEN]. Since there is only
one symbol of length 0, we test it separately; for the special module states we choose tables with short symbols
and symbols of length ST MAXSYMLEN. The special values for access routine parameters are overlength symbols
for s_add, and the empty string for the access routines that take a symbol as parameter. The test cases that
are executed for each module state have been divided into those test cases that should signal an exception and
the normal-case test cases. For simplicity, we have shown only the normal-case test cases in Figure 10.11.

To loop over the special module states, we define C functions that iterate over the sequence of special module
states using one of the sequence idioms discussed in Section 7.3. Although we are not designing a module
interface, the idioms are still helpful. In this case, the function t_init initializes the sequence, t next advances
to the next special module state, and t_end indicates if the end of the sequence has been reached. Each special
module state is characterized by n, the table size, and I, the length of the symbols in the table. There are also
several functions that return information about the current state in the sequence: t_siz returns n, t_sym(i)
the i-th symbol in the table, and t_1loc(7) the location value of the i-th symbol.

Symbol values and their locations are unimportant, as long as they are unique and easy to generate. To define
the symbol values, we use the function t_mksym(i,/), whose value is 7 in string form padded right with >*>
characters to length { (or zero **° characters if ¢ has [ or more digits). For a given n and [/, the special module
state is a table with the symbols t mksym(¢, [), for ¢ € [0..n — 1]. For the location in position i, we use the value
10 x 2.

We can now explain the assumption:
ST MAXSYMLEN > length of ST MAXSYMS — 1 in string form

The maximum number of elements stored in the table is ST MAXSYMS, and therefore the longest string stored in
the table will be ST MAXSYMS — 1 in string form, possibly padded with ’*°’ characters. Thus, if the assumption
was violated, one of the special module states would contain a string with more than ST MAXSYMLEN characters.
However, this string could not be added to the module state, because s_add would signal the exception maxlen
for it.

The normal-case test cases from the symtbl test script are shown in Figure 10.12. We have used indenting and
comments taken from the TP to make the test script more readable. The embedded code reduces the size of
the test script considerably: although the entire test script contains only 18 test cases, it produces a driver
that executes 868 test cases.

10.5.6 Comparing actual and expected value

Consider the test case
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assumptions

ST_MAXSYMLEN > length of ST MAXSYMS — 1 in string form
ST _MAXSYMS > 0

test case selection strategy
special values
module state
number of symbols in table: {0,1, ST MAXSYMS/2, ST MAXSYMS}
symbol length: short, ST MAXSYMLEN
access routine parameters
st_s_add: strings of length {0, ST MAXSYMLEN + 1, 2 x ST MAXSYMLEN}

st_s_add,st_s_loc,st_g_loc,st_g_exsym: empty string
test cases

exceptions

normal
check st_g_exsym for empty string in empty table
add the empty string, check and change its location
for each special module state
check table length
check that a very long symbol is not in table
for each 7 in [0..ST MAXSYMS — 1]
if 2in [0..tsiz — 1]
check t_sym(z) in table with correct location
check st_s_loc resets location
else

check t_sym(7) not in table

test implementation strategy
C functions to support iterating over the special module states,
viewed as a sequence:
void t_init: initialize to the first state
void tnext: load next state
int t_end: return true if no states remain
C functions to generate and check symbols in current state:
int t_siz: number of symbols in current state
char *t_sym(z): ¢-th symbol in current state
int t_loc(i): location of ¢-th symbol in current state
char *t_mksym(z,{): string consisting of ¢ converted to ASCII,
padded right with *’s to length [
statement coverage measured using the UNIX utility tcov

Figure 10.11 symtbl test plan—mnormal case test cases
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/*check g_exsym for empty string in empty tablex/
<s_init (), noexc, g_exsym(""), 0, bool>

/*add the empty string, check and change its location*/
<s_init().s_add("",10), noexc, g_exsym(""), 1, bool>

< , noexc, g_loc(""), 10, int>
<s_loc("",20), noexc, g_loc(""), 20, int>

%

t_initQ;
t_next();
while ('t_end()) {

A

%

¥

{4

¥

%

¥

/*check table length#*/
< , noexc, g_siz(), t_siz(), int>

/*check that a very long symbol is not in tablex/

< , noexc, g_exsym(t_mksym(0,2+*ST_MAXSYMLEN)), 0, bool>

for (i = 0; i < ST_MAXSYMS; i++) {
if (1 < t_=iz()) {

/*check t_sym(i) in table with correct location*/

< , noexc, g_exsym(t_sym(i)), 1, bool>

< , noexc, g_loc(t_sym(i)), t_loc(i), int>

/*check s_loc resets location*/

<s_loc(t_sym(i),t_loc(-i)), noexc,
g_loc(t_sym(i)), t_loc(-i), int>

} else {

}
t_next();

/*check t_sym(i) not in tablex*/
< , noexc, g_exsym(t_sym(i)), 0, bool>

Figure 10.12

symitbl test implementation—normal case test cases
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int cmp_bool(aval,eval)
int aval,eval;

{
if ((eval == 0) && (aval == 0)) return(il);
else if ((eval '= 0) && (aval !'= 0)) return(l);
else return(0);

¥

int prt_bool(aval,eval)
int aval,eval;
{
printf ("\tExpected value:%d. Actual value:%d\n",eval,aval);
¥

Figure 10.13 cmp_bool and prt_bool

(trace, expezc, actval, expuval, type).

As Figure 10.7 shows, after the calls in trace are executed, actval and ezpval are compared. To compare them,
PGMGEN generates a call to the boolean C function whose name is cmp_ followed by type. The arguments to
this function are actval and ezpval. For example, for the stack test case

<s_init().s_push(10), noexc, g_top(), 10, int>

PGMGEN generates the call cmp_int(ps_g-top(), 10) (note that PGMGEN places the prefix ps_ in front of
the call to g_top). This C function should return true when actval = ezpval, and false otherwise.

When the above function returns false, PGMGEN generates a call to the C function whose name is prt_
followed by type, again with actval and ezpwal as its arguments. The purpose of this function is to print a
message indicating that actval # ezpval and displaying both values.

PGMGEN provides the cmp_ and prt_ functions for the data types bool (boolean), char, float, int, and
string. For example, the implementation of cmp_bool and prt_bool are shown in Figure 10.13.

For other data types, the tester must define these functions, typically in the globcod section of the test script.
These functions can also be used to define customized comparison and printing functions for standard data
types. For example, the function cmp_float provided by PGMGEN uses an exact comparison to compare two
floating-point numbers. For certain applications, it is impossible to define the actual value of a floating-point
number with such accuracy. For these cases the tester could define the functions cmp_fuzz and prt_fuzz as
shown in Figure 10.14. cmp_fuzz considers two floating-point numbers equal if they are within epsilon of each
other. Note that prt_fuzz also prints out the value of epsilon. To use these functions in a test case, the type
field of the test case should be defined as fuzz.

10.6 Design for Testability

Both the module decomposition and the module interface design influence the testability of a module. To
make testing affordable and effective, we need to consider testability of a module at design time, before the
implementation is started. In this section, we review the key principles in design for testability: controllability
and observability. While controllability and observability are known to be important in hardware testing, they
are often ignored in software testing. Controllability and observability are critical when software interacts with
the environment, however, as is the case with most software systems. Poor controllability and observability
also make it difficult to automate the testing, which is necessary to make testing affordable.

A common example of poor controllability in software is the lack of explicit initialization. Consider the three
test cases

<s_init().s_push(10).s_push(20), noexc, g_top(), 20, int>

<s_init().s_push(10).s_push(20), noexc, g_depth(), 2, int>
<s_init().s_push(10).s_pop, noexc, g_depth(), 0, int>
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float epsilon = 0.00001;

int cmp_fuzz(aval,eval)
float aval,eval;

{
float diff;
diff = eval-aval;
if (diff > epsilon || diff < -epsilon) return(0);
else return(l);
}

int prt_fuzz(aval,eval)
float aval,eval;
{
printf("\texpval:%f. actval:%f. epsilon:%f\n",eval,aval,epsilon);
}

Figure 10.14 cmp_fuzz and prt_fuzz

for the stack module. Without the access routine s_init, these would have to be changed to

<s_push(10).s_push(20), noexc, g_top(), 20, int>
< , noexc, g_depth(), 2, int>
<s_pop.s_pop, noexc, g_depth(), 0, int>

where we rely on the fact that the stack is empty when the first test case is reached. Without s_init, a large
number of changes would have to be made to the stack test script shown in Figure 10.9. The need for explicit
initialization is recognized in hardware testing, where integrated circuits frequently contain reset circuitry.

A common example of poor observability in software is the undisciplined use of print statements. Exceptions
are often signaled by printing a message, which makes it hard to automate the testing of exceptions. For
example, it is not clear how we could use PGMGEN to test the stack module if exceptions were signaled by a
call to printf rather than a call to an exception handler.

Another cause for poor controllability or observability is external interaction. While the lack of explicit initial-
ization and the uncontrolled use of print statements can be avoided, external interaction cannot be completely
eliminated. Every system will have modules that interact with other modules. To improve the testability of
such a module, we isolate it where possible and affordable, and we limit the amount of interaction by careful
interface design. Most systems also interact with the environment, for example, by reading input from the
keyboard or by printing output to the screen. To improve the testability of SHAM modules, we have isolated
the interaction with the environment in a small number of modules, so that the other modules can be tested
without controllability and observability problems. Examples are discussed in the next two sections.

10.7 BSHAM Test Plans and Implementations

10.7.1 The token TP and TI

Since token does not have any controllability and observability problems we test it with PGMGEN. Recall
that the abstract state for token (Figure 7.4) is a sequence of tokens. In this case, the special module state
values we select are determined by the number of tokens in the sequence and their types. There is a minimum
but no maximum number of tokens defined, and we apply the interval rule to [0..00): we test for states with
0, 1, and 3 tokens. Since there are only three token types, we include test cases for all of these. Every token
type, except for TK_ BADTOK, has a maximum length associated with it, and we apply the interval rule to the
length of the tokens. For TK_BADTOK, we include test cases for tokens that are “almost” of some other type.
For example, we include a token consisting of TK MAXINTLEN + 1 digits, which would be an integer, except that
it is too long. The only access routine for which we include special parameter values is s_str; we apply the
interval rule to the length of the string and vary the number of blanks before and after tokens in the string.
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int cmp_valtyp(actvtp,expvtp)
tk_valtyp *actvtp,*expvtp;

{
if ('strcmp(actvtp->val,expvtp->val))
return(actvtp->typ == expvtp->typ);
else
return(0);
}

void prt_valtyp(actvtp,expvtp)
tk_valtyp *actvtp,*expvtp;
{
printf ("Expected value:<%s,%d>. Actual value:<%s,%d>\n",
expvtp->val,expvtp->typ,actvtp->val,actvtp->typ);

Figure 10.15 token test implementation—cmp_valtyp and prt_valtyp

test environment
sham Coordinator used as driver
stubs for absmach and ezec, production code for sham and token
input stored in files
output saved in files, checked with delta testing
directory structure:
load/
input/ - test cases stored one per file
exp/ - expected results of test case (same file name)
act/ - actual results of test case (same file name)

Figure 10.16 load test plan—test environment

The access routine sg_next returns a value of type tk_valtyp, a structure containing the value of the token
and its type. To compare expected and actual values of this type, we must define cmp_ and prt_ functions
as discussed in Section 10.5.6. We define the functions cmp_valtyp and prt_valtyp shown in Figure 10.15 in
the globcod section of the test script. Both functions take two pointers to tk_valtyp as their arguments. To
compare the two values, cmp_valtyp compares both the value of the token and its type. Similarly, prt_valtyp
prints out the values and types of both its parameters.

10.7.2 The absmach TP and TI

absmach is also tested using PGMGEN. The abstract state for absmach (Figure 7.5) consists of the accumu-
lator, the program counter, and the memory. The special module state values that we select are determined
by the effect of these three on the behavior of sg_exec. In particular, we include state values so that every
SHAM run-time exception occurs at least once and every SHAM instruction is executed at least once. For
each instruction, we check the effect it has on the accumulator and the program counter. For instructions that
also alter memory contents, we check that the change is made correctly. For the access routine parameters, we
apply the interval rule to the parameters of s_acc, s_pc, s_mem, and g_mem.

10.7.3 The load TP and TI

The load MIS semantics are shown in Figure 7.6. load interacts with both the environment and other modules.
It reads input, produces output, and calls access routines from token and absmach. Before we select test cases,
we must decide on the test environment we are going to use: how to provide input, how to check the output,
and whether to use stubs or production code for token and absmach.

The test environment section of the load TP is shown in Figure 10.16. Since load reads input from a file, it is
hard to test it with PGMGEN, which has no facility to deal with access routines that read input. Therefore we

158



Chapter 10 TESTING 10.7. BSHAM TEST PLANS AND IMPLEMENTATIONS

test case selection strategy
special values
module state
none
access routine parameters
input file for 1d_sg_load:
every load-time exception for every instruction
every SHAM instruction at least once
interval rule for instructions with an operand
completely fill up memory
test cases
load-time exceptions
ldexc1i: all load-time exceptions except NOMEMEXC
ldexc2: NOMEMEXC
normal case
instr: every SHAM instruction
£ill: completely fill up memory

Figure 10.17 load test plan—test case selection strategy

must either build a customized driver to test load, or use the sham Coordinator. We use the sham Coordinator,
because it is simple, it provides good controllability, and it saves us implementing a customized driver. Note
that although we use the sham Coordinator, we are not interested in testing it at this point.

load uses token to retrieve the tokens from the input. To test load thoroughly with stubs for token would
require stubs almost as complicated as the production code for token. In such a case, the production code
is the clear choice, since 1t avoids the need to maintain the complicated stubs. On the other hand, load uses
absmach to load the memory only, and the production code for absmach is non-trivial. We therefore use stubs
for absmach. Finally, because we use the production sham Coordinator, we must decide whether or not to use
stubs for exec. In this case the choice is easy: simple stubs suffice and the production code is complicated. In
summary, we use stubs for absmach and exec, and production code for sham and token.

Since we use the sham Coordinator as a test driver, we can store the test inputs in several files. For each input
file, we maintain a file that contains the expected output for that input. To organize the files, we use three
directories:

e input contains the input files.
e exp contains the expected output files, one for each input file.

e act is used to store the actual output files for a test run, again one for each input file.

The output produced by load is non-trivial to check. We automate the checking using delta testing, where
the expected output for a test run is the output from an earlier test run. If there are any differences between
the actual and the expected output, the tester must verify which of the two is the correct output, and modify
either the expected output or the program. A critical part of delta testing is the creation of the initial expected
output. This can be done manually or using the initial version of the production code. In the latter case, the
output should be checked carefully, because if it contains erroneous data, this may mask program errors in
future test runs.

The test case selection strategy of the TP for load is shown in Figure 10.17. Note that load has no internal
state, and the only access routine parameter is the file pointer passed to sg_load. The special values for this
parameter are determined by the contents of the file. We include test cases so that each load-time exception
is exercised at least once, and so that every instruction is loaded at least once. For instructions that take an
operand, we apply the interval rule to the operand (either an address or a SHAM integer). Finally, we include
a test case that completely fills up the available memory.

Test cases are stored in several files, with names chosen to distinguish files that should generate load-time
exceptions and those that should not. For example, Figure 10.18 contains the first three lines of the file instr,
which should not generate a load-time exception.

Part of the TI consists of the implementation of the stubs for absmach and exec. We use simple stubs that
store the values loaded into memory in an array and that print out the contents of this array after the load
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load 0O
load 50
load 99

Figure 10.18 load test implementation—part of test case

void am_s_mem(a,i)
int a,i;
{

mem[a] = 1i;

}

int am_g_mem(a)
int a;
{
return(mem[al);

}

Figure 10.19 load test implementation—stubs for am_s_mem and am_g_mem

phase is completed successfully. These stubs (1) provide adequate observability, and (2) can combine easily
the output checking for the stubs with the output checking for load. To implement this scheme, the stubs for
absmach maintain an array mem of AM_MEMSIZ characters. The stub for am_s_mem stores values in mem, and the
stub for am_g mem retrieves values from mem. Both stubs are shown in Figure 10.19. Note that the stubs are
much simpler than the production implementations because there is no need to perform exception checking.
Figure 10.20 shows the stub for ex_s_exec, which makes calls to the stub for am_g_mem to print out the memory
contents as a ten-by-ten array. For example, Figure 10.21 shows the output that is produced for the test file
instr. Note that the first six memory locations correspond to the object code for the first three lines of instr
shown in Figure 10.18.

The UNIX commands shown in Figure 10.22 are used to perform a test run. For each file f in the directory
input, BSHAM is run on f, output is redirected to act/f, and act/f is compared to exp/f with the UNIX
utility diff.

10.7.4 The exec TP and TI

Figure 7.7 shows the MIS semantics for exec. The BSHAM version of exec calls access routines from absmach.
The ISHAM version produces output and calls access routines from absmach, sendr, and keybdin. For both
versions, since it is hard to write a stub for am_s_exec that provides good controllability, we use the production
code of absmach. Similarly, for the ISHAM version, stubs for keybdin would provide poor controllability, and
stubs for sendr would provide poor observability. We therefore use the production code for both these modules.
To generate manually the sequence of calls that loads the memory in absmach would be quite tedious, so we

void ex_s_exec()

{
int 1i;
for (i = 0; 1 < AM_MEMSIZ; i++) {
printf ("%4d",am_g_mem(i));
if (1 % 10 == 9)
printf("\n");
¥
¥

Figure 10.20 load test implementation—stub for ex_s_exec
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0 0 0 50 0 99 1 0 1 50
1 99 2 0 2 50 2 99 3 0
3 50 3 99 4 0 4 50 4 99
5 0 5 50 5 99 6 0 6 50
6 99 7 0 7 500 7 999 8 9
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 o0 0 0 o0 0
0 0 0 0 0 O 0 0 O 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 o0 0 0 O 0

Figure 10.21 load test implementation—expected output

foreach £ (input/#)
echo input file: $f
bsham $f >act/$f
diff act/$f exp/$f
end

Figure 10.22 load test implementation—shell commands

use the production code for load and token to load the memory from a file. Finally, since we use the production
code for load and token, it becomes hard to use PGMGEN, and hence we use the sham Coordinator as a test
driver.

In summary, to test exec we prefer to use the production code for all of SHAM. We therefore incorporate the
testing of exec with the system testing; see Section 10.9. Note that this is not the only possibility, and that
this decision influences not only the testing of exec, but also the system testing. During system testing, we now
need to thoroughly exercise exzec. For example, we should achieve 100 percent statement coverage for exec. As
an alternative, we could provide separate testing for ezec, in which case the system testing would be simpler.

10.7.5 The sham TP and TI

Although we can test sham, the SHAM Coordinator module, as a separate module, sham is so simple that
testing it separately is not worthwhile. Therefore, just as for exzec, we incorporate the testing of sham with
the system testing.

10.8 ISHAM Test Plans and Implementations

10.8.1 The keybdin TP and TI

Figure 7.8 shows the MIS semantics for keybdin. Since keybdin reads input from the keyboard, it has control-
lability problems and cannot be tested with PGMGEN. To automate the testing requires a means for storing
and replaying keystroke sequences. Although tools exist that provide these services, we can adequately test
keybdin with a simple interactive driver. The interactive driver we use repeatedly waits for input. It displays
the characters that are entered on the screen, and terminates when the character ’q’ is entered.

Since there is no reason to believe keybdin treats any character differently from any other character, there are
no special values to test for. We therefore test keybdin for just a few characters. Since we have to select a few
characters, we use the fact that, in our case, the intended use for keybdin is to read the ISHAM commands from
the keyboard. Therefore we include at least both ISHAM commands and one character that is not an ISHAM
command in the test cases. Since we use an interactive driver to test keybdin, it is the tester’s responsibility
to run the test cases that are described in the TP. Similarly, it is the tester’s responsibility to check that the
behavior of the implementation is correct for those inputs.
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10.8.2 The scngeom TP and TI1

sengeom provides run-time access to the layout of the screen, and it has no abstract state (Figure 7.9). The
service provided by scngeom is straightforward. If there were any faults in the MI, these most likely would
either cause obvious errors, such as a missing or truncated screen field, or cause errors with minor impact,
such as a field that 1s not displayed in its correct position on the screen. Moreover, the normal-case behavior
of g row, g_col, glen, and g_val is easily and thoroughly tested in the testing of the sendr module; see
Section 10.8.4. The testing of scngeom therefore contains only test cases for the exceptions of g row, g_col,
glen, and g_val, and normal-case test cases for g_legfld, which cannot be tested from the scndr module.
Since the exception checking for g row, g_col, g_len, and g_val is the same, we further simplify the testing
by testing the exceptions for only g_row thoroughly. To test g_row, we choose exceptional parameter values
for all field names and for illegal row and column values determined by the interval rule. For g_col, g_len,
and g_val, we include one test case to ensure that the MI does at least some exception checking. To test the
normal-case behavior of g_legfld, we choose special parameter values for all field names and for both legal
and illegal row and column values.

10.8.3 The scnstr TP and TI

The scnstr MIS semantics are shown in Figures 7.10 and 7.11. secnstr provides access routines that write a
string to any screen position. Since the exception testing for scnstr does not pose any observability problems,
we perform the exception tests with a PGMGEN script. The normal-case testing, on the other hand, poses
observability problems because senstr updates the terminal screen. Automating the testing of senstr requires
access to the screen contents. To provide such access with software is a complex task, and instead we test
senstr with a customized driver and check the output manually. To simplify the checking of the output, the
customized driver displays patterns on the screen that are chosen to exercise special values and to be quickly
recognizable as correct or not.

To select special values, note that only the position where strings are displayed is important, not the actual
content of the string. We apply the interval rule to the row and column number for both the exception and
normal-case testing. For the normal-case testing, we use a unique string for each special position on the screen.

The implementation for the exception testing is straightforward. The driver for the normal-case testing displays
the unique strings in the special positions on the screen. To allow the tester time to verify the screen contents,
the driver then waits for the tester to press a key. Once the tester has verified the screen contents, he or she
can press any key, and the test driver terminates.

10.8.4 The scndr TP and TI

The sendr MIS semantics are shown in Figure 7.12. The purpose of scndr is to update the screen contents
according to the information stored in absmach. Since it updates the screen contents, it has observability
problems, and we test it with a customized driver.

sendr calls three other modules: sengeom, senstr, and absmach. Since we test the normal-case behavior of
sengeom while testing sendr (see Section 10.8.2), we must use the production code for sengeom. Thus, the
tester must check the position of each screen field as well as its value. We could verify this by checking that
the access routine ss_s_str of scnstr is called by sendr with the correct parameters. However, in this case,
verifying this visually is easy enough, and hence we use the production code for senstr.

To verify that scndr correctly displays the information in absmach, we provide stubs for am_g_mem, am_g_pc,
and am_g_acc, that return a unique value for each memory cell, the program counter, and the accumulator.
For example, the stub for am_g mem returns 10 x a as the content of memory address a.

After initializing various modules, the test driver calls sd_s_mem to update the screen contents according to the
values returned by the stubs for absmach. The driver then waits for the tester to press a key, so that he or she
can verify the screen contents.

10.9 System Testing

During system testing, we use production code for the entire system and, if possible, we test the system in its
production environment. The most important goal in system testing is to test whether or not a system satisfies
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its RS. This includes testing performance and storage requirements, if these are part of the RS. Depending
upon the size and complexity of the system, system testing may also include some or all of the following testing
techniques.

Volume and stress testing: to test whether the system can handle large volumes of data and heavy loads.

Reliability testing: to test how reliable a system is. For example, to test whether a system meets a certain
mean-time-to-failure requirement.

Recovery testing: to test how well the system can recover from errors such as hardware failures or data errors.

Acceptance testing: to test whether the system meets the needs of the end user. It is typically performed by
the end user.

In the following, we will only test whether BSHAM and ISHAM meet their respective RSs.

10.9.1 BSHAM

In system testing, it is important to focus the testing on the parts of the system that were not tested during
module testing. We have tested every SHAM module separately, except for exec and the sham Coordinator
module. Since sham is so simple, the test case selection for system testing is dominated by the need to exercise
the ezec module thoroughly.

The test environment and test case selection strategy sections for the system TP of BSHAM are shown
in Figure 10.23. In the testing of BSHAM, we distinguish test cases with command-line errors and test cases
that read input from a file. Since BSHAM produces output for all the test cases, we store this output in a
file so that we can use delta testing to automate the checking of the output. The expected output for the test
cases with command-line errors is stored in the file cmdlin.exp, and the actual output is stored in the file
cmdlin.act. For the other test cases, we use the same directory structure as for testing load: the directory
input contains the input files, exp the expected output files, and act stores the actual output files for a test
run.

Since the BSHAM system has no module state and no access routines, we cannot use these to select special
values for test cases. In BSHAM, the special values that we want to test are determined by the command-line
arguments and the contents of the input files. We test every command-line error once. For the other test
cases, we distinguish three types: test cases that produce load-time exceptions, those that produce run-time
exceptions, and those that do not produce any exceptions at all. For load-time exceptions, we note that we
have already tested the load module. However, recall that in testing load, we use stubs for some of the modules
in SHAM. We therefore include one test case with a load-time exception, to ensure that the replacement of
stubs by production code has not introduced any errors.

Since we have not tested exec yet, we must test every run-time exception at least once. However, we have
already tested that the access routine am_sg_exec from absmach signals the correct run-time exception, and so
we only need to test whether or not exzec prints the correct message for each exception. We therefore include
no more than one test case for every run-time exception. Note that for run-time exceptions we can store only
one test case per input file.

For the test cases that do not signal an exception, we also benefit from the previous testing of am_sg_exec.
We assume that it returns the correct value and correctly changes the memory contents and the value of the
accumulator and the program counter. We do need to test whether exec correctly deals with the return value
of am_sg_exec. For return values other than AM_HALT and AM_PRINT, this is tested by the test cases for the
run-time errors. For AM_HALT, we apply the interval rule to the value of the program counter in which the halt
instruction is executed, and we include three test cases. For AM_PRINT, we apply the interval rule to the value
of the accumulator. Finally, we include some non-trivial normal-case test cases as a “sanity check” of the whole
system. For this purpose, we use the two SHAM programs from the appendix of the RS.

The test implementation strategy section for the TP of BSHAM is shown in Figure 10.24. To run the
test cases with command-line errors, we invoke BSHAM with the incorrect command-line arguments. To run
the other test cases, we use the same UNIX commands as for load (see Section 10.7.3). After running the test
cases, we use the UNIX utility {cov to check the statement coverage of exec and sham. Since these modules
contain #ifdefs, the statements associated with ISHAM will not be executed. We do check that all statements
associated with BSHAM have been executed at least once.
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test environment
entire BSHAM system
input stored in files

output saved in files, checked with delta testing
directory structure:

sham/

input/ - test cases stored one per file
exp/ - expected results of test case (same file name)
act/ - actual results of test case (same file name)
sham/cmdlin.exp - expected results for command-line test cases
sham/cmdlin.act - actual results for command-line test cases
test case selection strategy
special values
command-line errors

each command-line error once
content of input file

one load-time exception
every run-time exception once
SHAM instructions

halt with pc = {0, SY_MEMSIZ/2, SY_MEMSIZ — 1}
print with interval rule on content accumulator
test cases
command-line errors

hard-coded in Makefile
load-time exceptions

ldexc: one load-time exception
run-time exceptions

addrexc: mem[pc] = ADD.object, mem[pc+ 1] = 100
arithexc: acc = 500 + 500

noopexc: pc = 99, mem[pc] = LOADCON .object
objectexc: mem[pc] = 10
normal-case

halt[1-3]: HALT instruction, check with PRINT instruction
print: print special values

two+two,sum: programs from Appendix of RS

Figure 10.23 BSHAM test plan—part 1

test implementation strategy
target runtestb in Makefile

test cases for command-line errors
for each file f in input/

bsham f >act/f

diff act/f exp/f

statement coverage for sham and exec measured using the UNIX utility tcov
100% coverage for statements not associated with ISHAM

Figure 10.24 BSHAM test plan—part 2
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10.9.2 ISHAM

Although BSHAM has some controllability and observability problems, these are far worse in ISHAM. Besides
reading the program from a file, ISHAM obtains input from the keyboard and prints information to the screen.
However, in testing ISHAM, we use the fact that the command-line arguments and large parts of exec and
sham are exercised in the BSHAM testing. Similarly, the keyboard input and screen output modules have
also been tested separately. Therefore we only need to test that exec and sham correctly respond to the user
commands entered at the keyboard. This requires only a few simple test cases, making it feasible to test
ISHAM interactively: we manually provide the keyboard commands and manually verify the behavior.

The programs we use for testing ISHAM are a subset of the test cases for BSHAM. There are four programs
we use to test ISHAM: one with a load-time exception, one with a run-time exception, and the two programs
from the appendix of the RS.
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For the module under test, M:

e Audience. Those considering running or modifying M’s testing.
e Prerequisites. A thorough understanding of M’s MIS and some understanding of M’s MID.

¢ Purpose. Serve as a planning tool for development and evaluation of the test case selection strategy. Document

the TI.

o Additional criteria.

1. Well formed. The TP follows the format described in Section 10.2.

2. Comprehensible. The TP can be read and understood by the intended audience. It is sufficient to estimate
the adequacy and the feasibility of the TT.

3. Adequate. Test cases are planned to exercise the module as thoroughly as is practical. Tests are planned to
invoke every access routine in normal and exceptional situations. 100% statement coverage is expected.

4. Feasible. The TP can be implemented affordably.

Figure 10.25 Test plan criteria

For the program with the load-time exception, ISHAM should terminate after the load phase. For the program
with the run-time exception, we step through the program until the exception occurs. We include only one
load-time and one run-time exception because all we are testing is that ISHAM correctly responds to these.
We have already tested that the exceptions are correctly signaled by am_sg_exec and that the correct exception
message is produced by ezec.

For each of the two programs from the appendix, we step though the entire program, checking that the screen
contents are correctly updated. We also need to test the ISHAM command FXIT. For this, we use the simpler
of the two programs of the appendix. We load the program three times, and execute the EXIT command
(1) right after the program is loaded, (2) after several instructions have been executed but before the halt
instruction is reached, and (3) when the halt instruction is reached.

After running the test cases, we use the UNIX utility Zcov to check the statement coverage of exec and sham.
This time, we check that every statement inside the #ifdefs for ISHAM has been executed at least once. All
other statements in these modules are executed at least once in the testing of BSHAM.

10.10 Verification

In this section, we discuss the verification procedures for the TP and the TI.

10.10.1 Test plan

Since a TP is not executable, we can verify it only by inspection. Figure 10.25 shows the criteria for a TP.
Since the test case selection is primarily based on the MIS, a thorough understanding of the MIS is required
to understand the TP.

While it is easy to verify that a TP is well formed, it is a lot harder to verify the last three “additional criteria”
for a TP. Dijkstra’s Law of testing tells us that we can never do enough testing to guarantee that there are no
more bugs remaining. We thus have to find a balance between the adequacy of the test inputs and the cost of
maintaining and running the test cases. This means that the TP must be comprehensible enough to be able to
estimate both the adequacy and the feasibility of the proposed testing. The adequacy and feasibility criteria
indicate where the balance should lie. On the one hand, test cases should at least exercise the normal and
exceptional behavior of every access routine, and typically 100 percent statement coverage is expected. On the
other hand, it should be possible to implement the testing affordably.

10.10.2 Test implementation

Recall that the TT includes the test scaffolding, the test data files, and the procedures—both manual and
automated—required to execute the tests. The verification criteria for a TI are shown in Figure 10.26. Since
a TT is executable, we verify it both by inspection and by testing.
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For the module under test, M:

e Audience. Those considering running or modifying M’s testing.
e Prerequisites. A thorough understanding of M’s MIS and some understanding of M’s MID.
o Purpose. Implement the TP as simply and inexpensively as possible.

o Additional criteria.

1. Well formed. The code in test scripts obeys the Code Format Rules shown in Appendix C. For each
standalone module M, a simple interactive tester is provided, giving keyboard access to all access routines
and displaying return values on the screen. In M.c, the testing access routine g_dump is implemented to
display the module state on the screen.

2. Comprehensible. The TI can be read and understood by the intended audience.

3. Correct. The TI follows the TP. The tests run to completion, with correct results and 100% statement
coverage.

Figure 10.26 Test implementation criteria

The only criterion that needs further explanation is the correctness criterion. Since the purpose of the TI is
to implement the TP, we verify that it follows the TP as closely as possible. For example, in a PGMGEN test
script, the order of the test cases should follow the order given in the TP. As shown in the symtbl test script
(Figure 10.12), the correspondence between the TP and the TT can be clarified by using comments in the test
script.

In addition, we verify that the tests run to completion, with correct results and 100 percent statement coverage.
We measure the statement coverage with the UNIX utility tcov, which instruments a program with additional
statements to keep track of how often every statement in the original program is executed. To measure
statement coverage for an MI, it is compiled with a special option. This creates an instrumented object file,
and a fcov data file. Each time the program is executed, coverage information is accumulated in the data file.
Finally, the program #cov is run on the data file, which produces a version of the MI in which each statement
is prefixed with the number of times it has been executed. To make them easy to find, statements that have
never been executed are prefixed with the string “#####.”

10.11 Summary

Controllability and observability dictate that we test many modules individually. We advocate the systematic
testing of modules in which the testing is planned, documented, and maintained. Systematic testing is per-
formed by maintaining two work products for each module tested: the TP serves as specification, outlining the
test case selection and execution strategies, and the TT implements the TP.

We emphasize three ways to make the testing of modules affordable and effective.

1. Select test cases most likely to expose errors. Two methods for selecting test cases are functional testing
and structural testing. With functional testing, test cases are based primarily on the specification of a
module. With structural testing, test cases are based on the internal structure of the code. In testing
SHAM, we use functional testing for test case selection: we base test cases on special values for access
routine parameters, module state, and combinations of these. We use structural coverage, in particular
statement coverage, as a check on the adequacy of the test cases.

2. Automate repetitive and tedious tasks. Where possible, automate the execution of test cases and the
comparison of actual and expected outputs, because these steps are performed every test run. The
execution of test cases is automated using the PGMGEN testing tool, customized test drivers, and UNIX
scripts. The comparison of outputs is automated using PGMGEN scripts and delta testing. Where
automation is not possible, limit testing to a few cases for which the output is easy to check.

3. Design for testability. The key considerations in design for testability are controllability and observability.
Typical problems with controllability and observability are caused by interaction with other modules and
the environment. Although this interaction cannot be eliminated completely, we can limit the problems
by isolating the module under test and by restricting the interaction with the environment to a few
modules.
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Although it is important to test each module in isolation, we also need to perform integration and system
testing. In a top-down approach to integration testing, we start by testing a top-level module using stubs,
and gradually replace the stubs by production code. In a bottom-up approach, we first test low-level modules
using drivers, and gradually replace the drivers by higher-level modules. In testing SHAM, we use a mixture
of top-down and bottom-up testing.

Dijkstra’s Law of testing tells us that testing cannot guarantee the absence of faults. This means that during
testing we have to find a balance between the adequacy of the test inputs and the cost of maintaining and
running the test cases. The hardest part of verifying a TP and the corresponding TT is to determine whether
the testing is both adequate and feasible.

10.12 Bibliographic Notes

Two general textbooks on software testing that cover most of the topics discussed in this chapter are [39] and
[79]. However, most of the testing research has focused on test case selection. Functional testing was first
proposed in [80] and discussed in detail in [40]. Structural testing techniques such as path testing are discussed
in [81]. Due to the infeasibility of path testing, other structural testing techniques such as dataflow testing [82],
mutation testing [83], and domain testing [84] have been proposed. Partition testing [85] mixes functional and
structural testing in that it considers both the specification and the implementation for defining test cases. A
recent text by Beizer [86] focuses on test case selection, and discusses many of the above, and other, test case
selection techniques.

For test case execution, several tools similar to PGMGEN have been proposed in the literature. Panzl [87]
reports on the regression testing of FORTRAN subroutines using an automated tool. The DAISTS system
[88] performs module testing and describes test cases using traces. Given a formal algebraic specification of
the module under test, DAISTS automatically determines the correct behavior for a given test and measures
the coverage of the specification and the implementation. Frankl [89] has developed a tool for object-oriented
testing using algebraic specifications. The Protest system [90] is similar to PGMGEN, except that test cases
are defined by a PROLOG program. Finally, the ACE tool [91] is an enhancement of PGMGEN that supports
the testing of Eiffel and C++ classes.

Although very little has been published about test documentation, the IEEE Standard for Software Test
Documentation is an excellent source of information on this topic [92]. The standard proposes a set of basic
test documents, which is substantially more elaborate than the TPs we use in SHAM. The standard also
contains an example of how these documents can be used in practice.
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Chapter 11

Conclusions

In this text we present an approach to software development based on well-defined phases and work products.
Below we summarize the most important concepts and discuss the difficulties commonly encountered when
applying this approach in practice.

11.1 Principles

As we have seen, basic principles play a key role in handling the difficult problems that arise in multi-
version/multi-person programming. Perhaps the most important principle in software engineering is separation
of concerns [2]. When facing a problem that is too complex to be solved directly, decompose the problem into
subproblems, recursively. In addition to the general principle of separation of concerns, we have emphasized
four broad themes.

1. The central role of documentation. We present a single set of documents supporting design, implementa-
tion, and maintenance. Precise system and module specifications play a key role, providing the foundation
for the important practice of implementation to specification.

2. Systematic verification. We use two complementary methods of verification. Inspections are applied to
all work products, and testing is applied to executable work products.

3. Effective use of mathematics. While we make frequent use of mathematical concepts and notations, our
approach is not highly formal. We use both formal notations and prose, choosing whichever seems clearer
and simpler. Our inspections are proof-based, in the sense that the reader’s job is to present a convincing
logical argument.

4. Reducing the cost of maintenance. Our design method is based on information hiding, whereby mainte-
nance costs are reduced by planning for likely changes to the system. Our testing is automated so that
the tests can be repeated after every change to the implementation.

11.2 Work Products

We illustrate the above principles with a software development approach based on the seven work products
shown in Figure 11.1. For each work product, we present standard formats, design techniques, and verification
procedures. Detailed examples serve to show how to use the approach in the development of non-trivial software
systems.

We emphasize specification and verification especially. While not highly formal, our specifications are precise
enough to support implementation to specification. The inspection procedures help find many errors long before
code execution begins, and the test suites provide highly automated checks on run-time behavior.
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1.

Requirements Specification

Specification of the required system behavior.

. Module Guide

Description of and motivation for the module decomposition.

. Module Interface Specification

Specification of the required behavior of each module.

. Module Internal Design

Specification of the module internal data structures.

. Module Implementation

Production source code.

. Test Plan

Strategy for selecting and executing tests.

. Test Implementation

Source code, data files, and manual procedures required for testing.

Figure 11.1 Work product summary

11.3 Practical Considerations

In practice, software development rarely follows the step-by-step approach outlined in Figure 11.1. Numerous
practical considerations interfere:

e The end user does not know what 1s needed. Tt is difficult for the user to envision the system before

it is developed and to communicate this vision to the software developers. Users frequently overlook
flaws in a proposed system when it is described solely by a Requirements Specification. Prototypes may
be developed to give the users a concrete, though incomplete, model of a future system. Even with
prototypes, serious flaws are often discovered after delivery.

Human errors occur. Typically, the number of details is overwhelming. There are many design alterna-
tives and no sure way of deciding which is best. Even with systematic verification procedures in place,
many errors are first detected in later development phases or after delivery.

Design decisions are invalidated by change. Large software development projects often take one or more
years to complete. During that time, changes in user needs and in the underlying platform are inevitable.
As a result, many work products that have been completed and verified must be changed and reverified.
Extensive changes may be required; some work products may have to be discarded.

Design freedom is constrained by existing software. There is a huge amount of software in existence.
While it is flawed in many ways, it cannot be thrown away; the replacement cost is too high. Thus, most
programmers spend their time making changes to existing systems with every change tightly constrained
by its effects on the rest of the system. Even new software must interact closely with existing software,
eliminating many otherwise desirable design alternatives.

Design methods are constrained by existing development practices. Recent surveys [93] have confirmed
what many software professionals have long believed: most developers use no explicit methodology.
Code inspection and testing are in widespread use. However, specifications are rarely precise enough
to be inspected effectively or to support implementation to specification. Almost no use is made of
mathematics in software development. Thus, industrial adoption of the methods in this text may require
substantial change in the work habits of some developers.

In summary, software development rarely follows the process outlined in Figure 11.1. However, documentation
that simulates this ideal process can still be produced, with significant benefits. Readers of the documentation
will be given a rational explanation of the system. Such a description is usually simpler, more comprehensible,
and more useful than the actual history of the development. Also, having a model of the ideal process helps
developers to come closer to it. Finally, in an organization with many projects, a standard process makes
measurement and review simpler and more effective.
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11.4 SHAM Development History

To illustrate the differences between the actual and ideal software development processes, we consider the
development of the SHAM system. The SHAM work products are presented in this text as though the devel-
opment proceeded smoothly through the six phases without backtracking. For three main reasons, this was not
the case. First, the software development schedule was driven by the text writing schedule. Chapters 2, 3, 7,
and 10—and the associated SHAM work products—were written first and submitted to various publishers for
review. Only then were the remaining chapters written and the associated work products developed. Second,
for most of the SHAM development, the authors were on different continents: North America and Australia.
With modern electronic communication, such distributed development is feasible, but it is still difficult. Finally,
before SHAM, five different systems were used as teaching examples. Many SHAM work products were de-
rived from these systems. For example, the screen handling decomposition—scnsir, scngeom, and scndr—was
developed earlier. All of the token and scnstr work products were taken from previous systems.

Due to the above constraints, the SHAM development did not follow the ideal chronology. Instead the devel-
opment order was as follows:

1. The SHAM language was designed. The instructions were chosen, the syntax determined, and the
semantics sketched. Several sample SHAM programs were coded.

2. The Module Guide was sketched.

3. All Interface Specifications, Test Plans, and Test Implementations were completed. Note that, with
precise specifications, it is feasible to develop thorough testing before implementation begins.

4. The BSHAM and ISHAM Module Internal Designs and Implementations were completed, requiring many
Interface Specification changes.

5. The BSHAM and ISHAM Requirements Specifications were written, a part at a time throughout de-
velopment. Many inconsistencies were discovered between these specifications and other work products.
Numerous changes to all work products were made to achieve consistency. It is now clear that developing
the Requirements Specifications first would have significantly reduced the rework. It is not clear whether
we could have done this without the understanding gained during design and implementation. As it was,
the Requirements Specifications were important products of the design and implementation effort.

6. The Module Guide was completed.

In summary, the SHAM development was far from ideal, due to numerous practical considerations. Still, we
present the work products rationally, because a chronological presentation would be extremely confusing. We
relied heavily on the work products—especially the Requirements and Interface Specifications—to maintain
control while the developers were separated by thousands of kilometers and an 18-hour time difference.

11.5 Object-Oriented Programming

11.5.1 OOP and BCOOP

Object-oriented programming (OOP) is based on encapsulation, inheritance, and polymorphism, as supplied
by languages such as SmallTalk and C++. FEncapsulation insulates parts of the system from changes in other
parts. Inheritance is a mechanism by which the services of one object can be extended or changed, without
having to reimplement the entire object. Polymorphism allows us to provide the same service for objects of
different types.

In this text we take a conservative approach to object-oriented programming by using base class object-oriented
programming (BCOOP). BCOOP uses only encapsulation and can be carried out using C, Pascal, and even
FORTRAN; the separate compilation facilities of these languages provide adequate support for encapsulation.
While inheritance and polymorphism are important concepts, there are significant advantages to BCOOP.
From a teaching perspective, it is critical to recognize the complexity of full OOP. An entire course can
easily be devoted to teaching just the required language features. Thus, we cannot teach full OOP without
sacrificing essential Software Engineering material. Of the three concepts—encapsulation, inheritance, and
polymorphism—encapsulation is certainly the most important concept and the one that should be taught first.
However, before leaving the SHAM system for good, we take a brief look at full OOP, as supplied by the C++
programming language.
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congt int N = 10;

class sset {
public:
sset();
void s_add(int); // mem, full
void s_del(int); // notmem
int g_mem(int);

protected:

int s[N];

int scnt;

int findpos(int);
};

Figure 11.2 sset class declaration

typedef enum {SET,SEQ} mod;

class iset : public sset {
public:
iset();
void s_mod(int);
void sg_next(int); // end

int g_end();
private:
mod m;

int iscnt;

Figure 11.3 iset class declaration

11.5.2 Classifying a set module

We begin our brief sojourn into C++ by converting a set module into a set class. The sset module is specified
in Table ?? and Figure ??. Figure 11.2 shows the declaration for the sset class. Based on this declaration,
any number of sset objects can be created. The constructor, sset, is called automatically at object creation.
The other access routines are as in the C version. The concrete state variables, s and scnt, appear in the class
declaration, as does the local function findpos.

The benefits of C++ are apparent even in this small example.

e The hidden and exported identifiers are specified explicitly. In C, static declarations and file scope can
only approximate this interface information.

e The constructor invocation is generated automatically. In C, we must rely on the module user to invoke
this routine.

e Objects of type sset can be created at will, at compile time, or run time. Only one instance of the sset
module can exist in a C program.

Inheritance allows a programmer to provide a new class by building on an existing class. Figure 11.3 shows
how an iterator can be added to the sset class. (See Table ?? and Figure 7?7 for a specification of the iset
module.) Objects of type iset provide the functions shown in Figures 11.2 and 11.3. When s_add is called,
the code provided by sset is executed; when s_mod is called, the new iset code is executed. Programmers
are frequently required to provide many variations on the same service. Inheritance provides a way to do this
while minimizing the amount of code to be written and maintained.

C++ provides another powerful mechanism for avoiding duplicate code. The sset class stores a set of integers.
Suppose that a set of strings was required. The sset code could be copied and quickly modified to produce
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congt int N = 10;

template <class Element>
class tset {
public:
tset();
void s_add(Element); // mem, full
void s_del(Element); // notmenm

int g_mem(Element) ;
protected:

Element s[N];

int scnt;

int findpos (Element);

};
Figure 11.4 tset class declaration

this new class. The same approach could be used to develop a variety of classes differing only in the type of
the set elements. The same result can be achieved with far less code by using C4++ templates. Figure 11.4
shows the class declaration for the tset class. The declaration is parameterized by Element, the data type of
the set elements. Element can be a built-in or user-defined type.

While C++ is considerably more complex than C, with practice substantial benefits are available from base
classes, inheritance, and templates, as well as the many features not mentioned here.

11.6 Parting Words

We have described a disciplined approach to multi-person/multi-version programming. We doubt that any
reader will use this approach exactly as presented. Rather we intend our approach as a starting point. We
expect that many of you are or will soon be working on large software projects and will face difficult problems.
We hope that you will find help among the techniques presented here.

175






Part 1V

Appendix






Appendix A

Requirements Specifications

A.1 BSHAM Requirements Specification

A.1.1 Overview
System overview

SHAM, the Strooper-Hoffman Abstract Machine, provides an interpreter for a toy assembly language. The
underlying machine has only two registers and performs arithmetic on unsigned decimal integers. Ten instruc-
tions are provided. SHAM operates in a load-and-go fashion; in response to a single user command, a file of
assembler instructions is translated to object code, loaded into main memory, and executed.

There are two versions of the SHAM system. BSHAM, the batch version, is specified in this document. ISHAM,
the interactive version, is specified separately.

Hardware and software environment

BSHAM runs on Sun/3 and Sun/4 workstations running SunOS. It is implemented in the C programming
language and requires the UNIX/C standard libraries [52].

Notation

All identifiers are shown in ztalics. The names of constants and abbreviations are all uppercase. The others
are all lowercase, except for types, whose names end in ‘7",

Document overview

The details of BSHAM operation are presented in the sections below. Section A.1.2 declares the environment
variables. Section A.1.3 describes how to invoke BSHAM from the UNIX shell and contains the finite state
machines (FSMs) that specify how BSHAM loads and executes source programs. Sections A.1.4-A.1.6 de-
clare a collection of constants, types, and functions used throughout this document. Section A.1.7 lists the
changes to BSHAM likely to be requested in the future. Section A.1.8 contains two sample BSHAM programs;
Section A.1.9 contains tables that specify the details of the BSHAM syntax, semantics, and exceptions.

A.1.2 Environment variables
Input variables

srcfil : string
The file name passed on the command line.
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Inputs
Fach input is a line from src¢fil, read in the order it appears in srcfil.
Outputs
Normal-case output and exception messages are written to stdout.
States
mem : sequence [0. MEMSIZ — 1] of shamintegerT
Initial state
Every element of mem is set to 0.
Transitions and outputs
For line L, with line number n:
if the Load-phase Exc. Table (Table A.3) specifies an exception then
write the specified message to stdout
else
if no previous line had an exception then
if there is room in mem then
load the object code form of L into mem
else

write ezemsg(NOMEMEXC, n,””) to stdout

Figure A.1 Load-phase FSM

Output variables

stdout : string
UNIX stdout.

A.1.3 State machine

BSHAM behavior is specified using two FSMs: one for each of the load and execution phases. The load-phase
FSM reads the source program a line at a time, and loads the object code version into BSHAM’s main memory.
Exception messages are issued as needed. If the load phase is exception-free, then the execution-phase FSM
begins running. It continues until a HALT instruction is reached, or an exception occurs.

Command-line invocation
BSHAM is invoked by typing
bsham srefil

on the command line. Input is read from src¢fil and output is written to stdout.

If the srcfil argument is not present, exemsg(NOFILEXC,0,"") is written to stdout. If srcfil is unreadable
(or does not exist)

exemsg(FILSYSEXC, 0, srcfil)

is written to stdout. If there are any command-line exceptions, BSHAM execution terminates.

Load phase

The instructions and their arguments are shown in Table A.1. The first column contains the instruction
mnemonic used in this document. Column two contains the string that must be used in source files read by
BSHAM. Column three contains the object-code form generated by BSHAM. The last column shows the type
of the instruction operand, if any. For an instruction with mnemonic I, I.source and I.object refer to I’s
source code string and object code integer, respectively.

At load time, the contents of srcfil are scanned a line at a time, converted to object code form, and loaded
into main memory. Each line in sre¢fil must contain exactly one BSHAM instruction. Input lines must not
exceed MAXLINLEN characters—BSHAM behavior is unpredictable on longer lines. On each input line,
tokens must be separated by one or more blanks. Object code instructions are loaded contiguously, beginning
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at address 0. Instructions without operands occupy a single memory location. Instructions with an operand
occupy two consecutive memory locations; the instruction code is in the first location and the operand in the
second. The load actions are described in detail in the FSM in Figure A.1. If there are any load exceptions,
BSHAM execution terminates at the end of the load phase.
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Inputs
None.
Outputs
Normal-case output and exception messages are written to stdout.
States
mem : sequence [0. MEMSIZ — 1] of shamintegerT
acc : shamintegerT
pc : shamaddrT
Initial state
mem, acc, pc := (the final value from the load phase FSM), 0,0
Transitions and outputs
for the instruction beginning at mem[pc]:
if the Execution-phase Exc. Table (Table A.4) specifies an exception then
write the specified message to stdout
terminate SHAM
else if mem[pc] = HALT.object then
terminate SHAM
else
if mem|[pc] = PRINT.object then
write to stdout : acc || newline
modify mem, acc, and pc as shown in the Language Semantics Table

Figure A.2 BSHAM execution-phase FSM

Execution phase

The execution phase is based on Table A.2; the BSHAM Language Semantics table. This table specifies
the effect of each exception-free BSHAM instruction on the values of mem, acc, and pe. The FSM itself is
straightforward (see Figure A.2). The execution phase consumes no input; all the required information has
already been loaded into mem, pc, and acc. The FSM executes the instructions in mem[pc] until an exception
occurs or mem|[pc] = HALT .object.

A.1.4 Constants

Name Value
MAXLINLEN 100
MAXINT 999
MEMSIZ 100

A.1.5 Types

shamaddrT = [0. MEMSIZ — 1]
shamintegerT = [0. MAXINT]

sourceT = {LOAD.source, STORE.source, ADD .source, SUBT RACT.source,
BRANCH .source, BRANCHZERO.source, BRANCH POS.source,
LOADCON .source, PRINT.source, HALT .source}

opOsourceT = {HALT.source, PRINT.source}

oplsourceT = sourceT — opO0sourceT

objectT = {LOAD.object, STORFE.object, ADD.object, SUBT RACT.object,
BRANCH.object, BRANCHZFERO.object, BRANCH POS.object,
LOADCON.object, PRINT.object, HALT .object}

opOobjectT = {HALT.object, PRINT.object}

oplobyectT = objectT — opOobjectT

excidl = {FILSYSEXC, NOFILEXC,

BLANKLINEXC MISSINGOPEXC, NOMEMEXC,
OPFMTEXC,SOURCEEXC,
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ADDREXC,ARITHEXC,NOOPEXC,0OBJECTEXC}

A.1.6 Functions

excmsg : excid] X integer X string — string

if id is | then ezcmsg(id, loc, tok) is

Command-line messages
FILSYSEXC Command line error. Cannot open file: tok
NOFILEXC Command line error. No file name specified

Load-phase messages
BLANKLINEXC Load exception at loc. Blank line illegal
MISSINGOPEXC | Load exception at loc. Operand missing

NOMEMEXC Load exception at loc. Program too large
OPFMTEXC Load exception at loc. Illegal operand: tok
SOURCEEXC Load exception at loc. Illegal instruction: tok
Execution-phase messages
ADDREXC Execution exception at loc. Illegal operand: tok
ARITHEXC Execution exception at loc. Arithmetic overflow
NOOPEXC Execution exception at loc. Operand not accessible
OBJECTEXC Execution exception at loc. Illegal instruction: tok

A.1.7 Expected changes

Input/output format
e Command-line parameters besides srcfil.
e Different input format: new tokens, delimiters, and instruction formats.
e Handle overlength lines robustly.
Abstract machine
e Change in word size, number of words in main memory.
o New or extended data types, especially signed integers.
o More registers, e.g., index registers.
e More or different SHAM instructions.
¢ More addressing modes.
e Symbolic data and branch addresses.
Platform
e Different operating system: other UNIX platforms or MS-DOS.
Exception handling
e Limits on the number of exceptions reported or instructions executed.
e Changes in the conditions defining exceptions and in the message text.

A.1.8 Sample programs
Calculate 2 + 2 and display the result
loadcon 2
store 8
add 8

print
halt

Calculate X?_,i and display the result

loadcon 5 initial value of n

store 40 location 40: value of n, decremented each iteration
loadcon 0

store 41 location 41: value of sum

loadcon 1

store 42 location 42: 1, used for decrementing

load 40
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brz 28 check if 0

add 41 add to the sum
store 41

load 40 subtract 1 from n
sub 42

store 40

br 14

load 41 print value of sum
print

halt
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A.1.9 Tables

Table A.1 Language syntax table

Mnemonic | I.source | I.object | Operand type
Memory access

LOAD load shamaddrT

STORE store 1 | shamaddrT

Arithmetic
ADD add 2 | shamaddrT
SUBTRACT sub 3 | shamaddrT
Branch

BRANCH br 4 | shamaddrT

BRANCHZERO | brz 5 | shamaddrT

BRANCHPOS brp 6 | shamaddrT

Miscellaneous

LOADCON loadcon 7 | shamaintegerT

PRINT print 8

HALT halt 9

Table A.2 TLanguage semantics table (op = mem[pc + 1])

Instruction at mem[pc| | Effect on mem, acc, and pc

Memory access

LOAD.object

acc, pc := mem[op],(pc + 2) mod MEMSIZ

STORE.object

mem[op], pc := acc, (pc + 2) mod MEMSIZ

Arithmetic

ADD.object acc, pc := acc + mem[op], (pc + 2) mod MEMSIZ
SUBTRACT.object acc, pc := acc — mem[op], (pc + 2) mod MEMSIZ
Branch

BRANCH .object pc = op

BRANCHZERO.object

pe = (acc=0= op
| acc > 0 = (pc+2) mod MEMSIZ)

BRANCHPOS.object

pe = (acc > 0= op
| acc =0 = (pc+ 2) mod MEMSIZ)

Miscellaneous

LOADCON .object

acc, pc := op, (pc + 2) mod MEMSIZ

PRINT.object

pc = (pc+ 1) mod MEMSIZ

HALT.object

no change to acc, pc, mem
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Table A.3 Load-phase exception table

Let L be the current line, with line number n (numbered one-relative).

Let Th,T5, ..., Tk be the tokens in L.
Condition Message
K =0 (L is blank) excemsg(BLANKLINEXC,n,"")
K>0

T1 € op0sourceT
T1 € oplsourceT
K=1
K>1
Ti = LOADCON .source
1> € shamantegerT
Ty & shamintegerT
Ty # LOADCON .source
T5 € shamaddrT
T, ¢ shamaddrT
Th & sourceT

Normal case

exemsg(MISSINGOPEXC,n,"")

Normal case
ezemsg(OPFMTEXC,n, T3)

Normal case
ezemsg(OPFMTEXC,n, T3)
excmsg(SOURCEEXC, n,T1)

Table A.4 Execution-phase exception table

Let 1 = mem[pc] and op = mem[pc + 1]

Condition

Message

1 € opOobjectT
1 € oplobjectT
pc € [0.MEMSIZ — 2]
1= LOADCON .object
1 # LOADCON .object
op € shamaddrT
1= ADD.object

acc + mem[op] € shamintegerT
acc + mem[op] € shamintegerT

1 = SUBTRACT .object

acc — mem[op] € shamintegerT
acc — mem[op] € shamintegerT

true
op & shamaddrT
pe=MEMSIZ — 1
1 & objectT

Normal case

Normal case

Normal case
exemsg(ARITHEXC, pc,"")

Normal case
ezemsg(ARITHEXC, pc,"")
Normal case
ezemsg(ADDREXC, pe, op)
ezemsg(NOOPEXC, pc,"")
ezemsg(OBJECTEXC, pc, 1)
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A.2 ISHAM Requirements Specification

A.2.1 Overview
System overview

This document specifies the behavior of ISHAM, the interactive version of SHAM. The ISHAM and BSHAM
load phases are identical, as are the language syntax and semantics, but the execution phases differ in two
ways. In ISHAM:

1. Object code execution is “single-stepped” under user control.
2. Output is through a formatted screen, with main memory and the registers displayed, and updated after
each instruction execution.

Hardware and software environment

The curses function library is required to perform output to the terminal screen.

Notation

Nothing is added to the BSHAM Requirements Specification.

Document overview

Because ISHAM and BSHAM have much in common, this document is written as an addendum to the BSHAM
Requirements Specification, describing only the differences between ISHAM and BSHAM. Section A.2.2 declares
the new environment variables: stdin to model keyboard input and scn to model the terminal screen. A
detailed format is provided to precisely describe screen updates. Section A.2.3 specifies the ISHAM execution-
phase FSM; the BSHAM load-phase FSM is unchanged. Sections A.2.4-A.2.6 declare the constants, types,
and functions used throughout this document. There are two new constants and no new types or functions.
Section A.2.7 lists the changes to ISHAM likely to be requested in the future.

A.2.2 Environment variables
Input variables

stdin : string
UNIX standard input

Output variables

sen : sequence [24][80] of char
scen[r][c] is the character at screen row r and column ¢,
with numbering zero-relative and beginning at the upper-left corner.
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012345678901234567890123456789012345678901234567890123456789012345678901
ek ko kR ok ok ok ok o ok K Ko ook o oK Ko o o ok K K o o ok sk ok ok oK o o s ok o ok Ko ok o o K K Kok ok ok o sk K

SHAM
0 1 2 3 4 5 6 7 8 9
Main 0 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

memory: 10 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
20 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
30 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
40 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
50 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
60 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
70 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
80 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM
90 MEM MEM MEM MEM MEM MEM MEM MEM MEM MEM

Program counter: PC
Accumulator: ACC
Last value printed: PRT

Enter command: ’s’ to single step; ’e’ to exit
Message: MSG----———————————————————— -
ko ok ok ok ok ok sk ok ok sk ok sk ok ok ook sk s ok ok sk ok ok o sk ok o ok o ok o sk o ko sk sk ko sk ok ook ok ok ook o ko ook ok ok o ko ok o

Figure A.3 Screen format

We divide sen, a 24-by-80 array, into parts, as shown in Figure A.3. The non-blank areas are divided into
screen fields, either fized or varying. The fixed fields are written when ISHAM execution begins and remain
unchanged while ISHAM is running. The varying fields may change repeatedly during ISHAM execution. Each
varying field has an identifier: MEM , PC, ACC, PRT, or MSG. The extent of each varying field on the screen
is the character positions occupied by the field identifier, and the trailing -s if present. When a MEM, PC,
ACC, or PRT value is shorter than the extent shown, it is right-justified and padded left with blanks; MSG
values are left-justified and padded right with blanks. Because the MFE M field occurs 100 times on the screen,
a particular ME M occurrence is indicated by row and column subscripts, numbered zero-relative, top-down,
and left-to-right. For example, MEM[9, 0] is the leftmost and lowest occurrence.

A.2.3 State machine

Command-line invocation

ISHAM is invoked by typing
isham srcfil

on the command line. Input is read from srcfil and stdin, and output is written to stdout and scn.

If the srefil argument is not present,
exemsg(NOFILEXC,0,"")
is written to stdout. If srcfil is unreadable (or does not exist),
exemsg(FILSYSEXC, 0, srcfil)

is written to stdout. If there are any command-line exceptions, ISHAM execution terminates.

Load phase

Same as in the BSHAM Requirements Specification.
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Inputs
Keystrokes from stdin.
Outputs
All outputs are to scn and its fields.
States
Same as for the load phase FSM.
Initial state
mem, acc,pc := (the final value from the load phase FSM), 0,0
Transitions and outputs
For each character, ¢, from stdin
if c = EXIT then
clear scn
halt ISHAM execution
else if c = STEP then
if the BSHAM Execution-phase Exception Table specifies
an exception for mem[pc] then
MSG = the specified message
else if mem[pc] = HALT.object then
MSG := HALTMSG
else
MSG ="
if mem|[pc] = PRINT.object then
PRT :=acc
modify mem, acc, pc, as per the BSHAM Language Semantics Table
else

MSG :=CMDERRMSG

Notes on screen updating:
e Initially and between transitions, ensure that:
1. The fixed fields shown in the ISHAM screen format are displayed.
2. MEM, PC, and ACC are such that
(Vr,c € [0.9])(MEM]r,c] = mem[10 x r + ¢]) A ACC = acc A PC = pc
3. MEM/[pc/10, pc mod 10] is displayed in inverse video.
o Initially the MSG and PRT fields are blank

Figure A.4 ISHAM execution-phase FSM

Execution phase

The ISHAM execution-phase behavior is defined by the FSM in Figure A.4.

A.2.4 Constants

Name Value

EXIT ‘e’

STEP ‘s’

CMDERRMSG | "Illegal keyboard entry: type ’s’ or ’e’"
HALTMSG "HALT instruction reached"

A.2.5 Types

Same as in the BSHAM Requirements Specification.

A.2.6 Functions

Same as in the BSHAM Requirements Specification.
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A.2.7 Expected changes

1. The field positions and the contents of the fixed fields will change.
2. MEMSIZ will exceed 100 and vertical scrolling will be supported.

3. Different forms of stepping through the instructions will be supported, such as executing a specified
number of instructions or executing until a specified instruction is reached.
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Module Guide

B.1 Module Summary

Each SHAM module has a unique long name and a short name, and may have a shorter module prefiz used to
avoid name conflicts in exported C identifiers.

format: long name (short name, prefix)

SHAM modules

Behavior hiding
Load (load, 14.)
Token (token, tk.)
Abstract Machine (absmach, am_)
Screen Driver (sendr, sd_)
Screen Geometry (sengeom, sg-)

Software decision hiding
SHAM Coordinator (sham)
Execute (ezec, ex.)

Machine hiding
Keyboard Input (keybdin, ki_)
Screen String (senstr, ss_)

UNIX modules
ctype, curses, stdio, string, strtod

B.2 Module Service and Secret

B.2.1 Behavior-hiding modules
The load module

e Service. Performs the load phase. Issues exception messages for incorrect input and, for correct input,
stores the resulting object code in the absmach module.

e Secret. The details of the load-phase user interface, including the source language concrete syntax and
the exception messages.

The token module

e Service. Extracts tokens from a string supplied by the user. Tokens are retrieved sequentially, in the
order they occur in the user’s string. The user is given access to the token value (a string) and the token
type (integer, identifier, or unknown).
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The

The

The

B.2

The

The

B.2.

The

The

Secret. The rules governing token types and token separators.

absmach module

Service. Implements the mem, ace, and pe state variables, as well as the Language Semantics Table
from the SHAM Requirements Specification. Following each instruction execution, the user is given a
status indicator and access to the state variables.

Secret. The SHAM language semantics, including the execution-phase exceptions.

scendr module

Service. Updates the terminal screen, using the values stored by absmach and according to the screen
format described in the ISHAM Requirements Specification.

Secret. The means used to accomplish screen updates.

sengeom module

Service. Provides the length, row, and column position for each screen field, as per the screen format
in the SHAM Requirements Specification.

Secret. Hides, until execution time, the length, row, and column values.

.2 Software decision—hiding modules

sham module

Service. Uses the other modules to provide the load-and-go assembler specified in the SHAM Require-
ments Specification.

Secret. The way in which the other modules are used and the handling of command-line parameters.

exec module

Service. Performs the execution phase, executing the program stored in absmach and managing the
run-time user interface, batch or interactive.

Secret. The way in which the other modules are used, and the format and content of the exception
messages.

3 Machine-hiding modules
keybdin module

Service. Provides keyboard input, one character at a time, without echoing or waiting for carriage
return.

Secret. The UNIX system services used to accomplish this task.

scnstr module

Service. Provides write access to the terminal screen. A string may be written to any position on
the screen, the cursor may be moved to any position on the screen, and any screen position may be
highlighted. To allow for efficient screen control, sensitr calls are buffered. An “apply changes to screen”
access routine is provided; senstr calls have no visible effect on the screen until the apply routine is
invoked.

Secret. The UNIX system services used to accomplish this task.
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Appendix C

Code Format Rules

C.1 Identifier names

1. Module prefix is used on all exported identifiers and on no others.
2. Naming is mnemonic and consistent.

3. Identifiers declared by #define are all uppercase. Other identifiers are all lowercase.

C.2 Coding style

1. Whitespace. Generally: minimize vertical and horizontal whitespace.

Exception—add a blank line:

e Following the last #include.

e Following the last global declaration.

e Between declarations and executable code in functions.
e Between each adjacent pair of functions.

e Between major blocks of code.
Exception—add a space:

e Around assignment, relational, and logical operators.

Following for, while, if, and switch.

Following ‘;’ in for loop headers.

e Before ‘{’ and following ‘}’.

2. Line breaks. Generally: one statement per line.
Specifically: ‘{’ on same line as if, else, switch, for, while, and do but on a new line for the start of
a function. In all cases, ‘}’ on the start of a new line.

3. Indenting. Generally: indenting with tabs only.
Indent one tab stop within functions, struct, if, else, switch, for, while, and do.

Place the ‘}’ at same level as the line containing the matching ‘{’.

4. Comments. Generally: only two forms: inline and block.
Inline: no space after /* or before */.

Block: /#* to start, column of *’s in column 1, and */ to end.

5. Local functions. Specification at top of function.

Defined and implemented before invocation, where possible.
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