
between programming errors, errors in modeling, and er-
rors in algorithms (see Figure 1). We’ve all sat in meetings
and discussed whether a peculiar wiggle in a graph repre-
sents an algorithm problem (such as neglecting to include a
possibly negligible term) or a modeling one (such as ignor-
ing a possibly important physical process). Usually it turns
out to be nothing so esoteric: we come back the next week
and learn that it was a bug.

Reliability is the principle benefit of reuse, not the saving
of coding time.1 Given that correctness is so important to
us, you would think that reusing existing, reliable compo-
nents would be the dominant behavior in our field, but this
is far from true. The reasons why are more technical than
social, but we can solve the problem. As we move into the
era of open-source science, however, we must not repeat our
poor history in this regard.

Learning from history: Libraries and context
Mathematical libraries are often thought of as a reuse suc-

cess story. Many people use commercial and government-

sponsored libraries such as NAG, IMSL, and Lapack. How-
ever, their market penetration is far below what it could
be—and not just because of cost or a design flaw.

For the first eight years of my career, I worked in a group
that was responsible for helping people with numerical
mathematics and statistics. We saw that even when the cen-
tral computing facility paid for the library, component reuse
was poor. People would come in for advice, and we would
find that they had copied an elementary algorithm from a
book, implemented it (not always well), and were startled
when it didn’t work on their problem.

If they knew about a library routine, they usually said they
found the large number and variety of arguments to be too
intimidating and that they didn’t know how to set some of
them. Having decided in frustration that what they wanted
couldn’t possibly be so complicated, they had set out to “roll
their own.” Even in the presence of their own failure, they
were inclined to believe that they had just overlooked one
simple thing and that a sophisticated library routine would
be overkill, so would we please just fix it?

Most of the reuse that does occur in our field is confined
to routines that are leaves in the call tree. We get the most
use out of the simplest components that represent the least
technical sophistication. We use components that represent
the most expertise—such as ordinary differential equation
(ODE) solvers, nonlinear optimization routines, and inte-
gration routines—much less frequently than simple matrix
solvers or special functions. This unfortunate fact is an

84 1521-9615/02/$17.00 © 2002 IEEE COMPUTING IN SCIENCE & ENGINEERING

DESIGNING SCIENTIFIC COMPONENTS
By Paul F. Dubois

CORRECTNESS IS MORE PRECIOUS TO

SCIENTIFIC PROGRAMMERS THAN IT IS

TO BUSINESS PROGRAMMERS BECAUSE OF

THE GREAT DIFFICULTY IN DISTINGUISHING

Editors: Paul F. Dubois, paul@pfdubois.com

David Beazley, beazley@cs.uchicago.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

Meeting

World Model Algorithm Code

def sun():
x = y * z

Figure 1. Scientific
programmers
have trouble
distinguishing the
source of an error
because of the
many stages of
approximation
between reality and
the simulation’s
output.

SEPTEMBER/OCTOBER 2002 85

evitable consequence of using first-generation languages. If
our answer to the cost and unavailability of commercial li-
braries is to create open-source libraries in the same lan-
guages, we will fail in the same way. I’m not implying that we
can’t use legacy code; rather, we must package it correctly.

To be sure, cost is an issue for some people, and the avail-
ability of products on odd hardware is an even greater prob-
lem. Even scientists at “wealthy” labs have collaborators in

the “poor” third-world arena of universities (not to mention
the real third world) and therefore have a great reluctance to
rely on commercial components. It would be a real boon if
we could create, as a community, an open-source series of li-
braries in mathematics and statistics.

Although I concentrate on mathematical software in this
article, the same principles apply to physics middleware. In
general terms, there is potential here because listing things

Dave’s Sideshow

Adventures in type systems
For the past year, I’ve found my-

self deeply buried in the land of
programming languages and type
theory. How did I get here? What
does this have to do with scientific
computing? Have I gone crazy?
Well, other than not being sure
about that last question, a strange
path has led to this odd place.

To pick up the trail, wander over
to the ongoing problem of “sys-
tems integration.” Maybe you
want to make your next application a mix of Fortran IV and
C++ templates. Or, perhaps you want to build a data analy-
sis system an Intercal interpreter can control. Or, perhaps
you want to be the first person to write a molecular dy-
namics code entirely in middleware (a bold feat of extreme
middleware-metaprogramming, perhaps). To solve these
kinds of problems, you would often turn to software devel-
opment tools such as code translators, wrapper generators,
component builders, and so forth. In fact, you might be in-
clined to write your own tool for the task. Write a small
parser, throw in some regular expressions, mix in some
files, add a bunch of print statements and voilà—you’ve
got yourself a new systems integration tool.

In my case, this scenario might describe the SWIG pro-
ject—a tool I created several years ago to build scripting in-
terfaces to C++. Although creating a tool that basically
worked was relatively easy, it also had many nasty corner
cases waiting to bite people who strayed too far from the
beaten path. Clearly, it would have been nice to fix these
problems, but I could never quite wrap my head around
them well enough to make a fix. Apparently the task of
writing a robust systems integration tool was much harder
than I thought.

Cutting to the chase, I recently sat in on a class about
type theory. Although it is difficult to see how type theory
might be immediately applicable to scientific computing, it
got me thinking about tools and what I had done with my

systems integration project. In
some sense, the whole problem of
systems integration is nothing
more than an issue of type systems
(hooking types together, type con-
version, type checking, and so on).
Therefore, the class succeeded in
changing my view of what I had
been doing, and it let me see how
to fix all those nasty corner cases.
In many respects, the solution had
been staring me in the face all
along—I just couldn’t see it. The
bottom line? It is never too late to
pick up new tricks from other areas
of computer science.

Systems for computational science
On the subject of computational science education, our

department recently updated its numerical computing
courses to have more of a software/systems component.
I’m currently scheduled to teach an experimental course on
systems programming for computational science—a mix of
topics that span operating systems, networking, and scien-
tific computing. To be honest, I’m not entirely sure what
this course will cover. For now, I’m just telling people that
the course is intended to give future computational scien-
tists enough systems background to be “dangerous.” I’d
love to hear your ideas about what should or should not be
covered in such a class. I’m just hoping that the subject
matter is still legal by next spring.

New and interesting
Pyrex is an extended version of Python that easily lets

you write C extensions and seamlessly mix them with
Python code (see www.cosc.canterbury.ac.nz/~greg/
python/Pyrex).

Maple 8 was just released (see www.maplesoft.com).
Paul tried Ximian Evolution (www.ximian.com), an open-

source tool similar to Microsoft Outlook. So far, he is de-
lighted. For some of us, the lack of an Outlook equivalent
has been Linux’s weak point. Evolution gives you not only
email but calendar, task, and contact management.

86 COMPUTING IN SCIENCE & ENGINEERING

that lots of people do in a given problem area is easy. For ex-
ample, for those doing time-dependent simulation of fields
using grids, we see a lot of

• Calculating time evolution by diffusion
• Integrating fields over regions
• Interpolating fields to nongrid points

Thus, I hope that what I suggest here is of use beyond the
mathematical context.2 The idea of these ideas being usable
in a variety of contexts is in fact a perfect metaphor for the
central problem of software reuse, the gist of which is that
every function has context. By context, I mean the collec-
tion of information that must be available to a function for
it to do its job. Thus

• For cos(x), the context of cos is x.
• In dy/dt = f(y, t), f might need access to a wide variety of

information needed to compute the rate equations, such
as material properties or external boundary conditions.

Fortran and C have two methods for supplying context to
a function: the function’s argument list and static data areas
(for example, common blocks in Fortran) of either function,
global, or file scope.

Using a static data area limits reusability and hinders main-
tenance. Routines to get and restore the calculation’s state
must be provided. However, an improvement to the algo-
rithm that changes the required state could change the signa-
ture of these get–set routines. Furthermore, the recursion on
the call might be hidden and thus a source of mystery when
someone tries to use it, not knowing that it is already in use.

Thus, static data areas are out of the question in most cases,
which leaves only the argument list. It is therefore no surprise,
and implies no criticism of their authors, that routines from li-
braries such as NAG and IMSL have many, many arguments.

Case study: Integrating functions of one
variable

At first glance, the design for a routine that integrates a
function of one variable seems simple:

real function integrate (f,a,b)

external f

real a, b

However, two problems exist here. One, where do we get
f ’s context? f is going to be called f (x). In Fortran or C, the

only possible context other than x is common. Even when
solvable, such problems represent inertial barriers to reuse.
Two, how do we control the algorithm and get results? Dif-
ferent algorithms have different requirements. For example,

• Algorithm 1: Fixed integrator, Gaussian 25-point method.
This algorithm always succeeds if the function can be
evaluated on (a, b). No controls on the algorithm or op-
tional outputs are available.

• Algorithm 2: Adaptive integrator. This algorithm needs
error-tolerance specifications as well as the amount of work
it’s expected to do before giving up. It returns optional in-
formation on the intervals used and error estimates but can
fail to get an answer to the tolerance requested.

Here is a call to an adaptive integrator in the NAG C library:

Nag_QuadProgress *progress;

NagError fail;

double a, b, ans, err, epa, epr;

Integer npts;

double (*f)(double);

...

d01ajc (f, a,b,epa, epr,npts, &ans, &err,

progress, &fail);

if (fail.code != NE_NOERROR){ error…}

The inertial barrier to using such a routine is substantial.
The optional information structure returned in progress
will be leaked memory if we call d01ajc again, so we must
add more coding for memory management. This routine
cannot pass any context for f.

Arguments plus types equals inertia
This example is typical of how programmers get context

to the function. They must add more arguments (or have
fewer arguments but have them be complex structures), of-
ten quite artificial in nature. If arrays must be returned, pro-
grammers have a choice of risking memory leaks if the called
routine allocates the memory or adding complexity to the
caller’s task and error checking to the callee if the caller al-
locates the memory.

All of this amounts to what I call inertia. By analogy with
the physics meaning of the term, inertia requires force to
overcome it—in this case, effort by the routine’s potential
user to learn how to supply all those arguments and to sup-
ply values for them. Initial values for algorithm control—
such as “initial step size” or “maximum number of inter-

S C I E N T I F I C P R O G R A M M I N G

SEPTEMBER/OCTOBER 2002 87

vals”—might be quite mysterious to a person not familiar
with the mathematics involved.

Methods have their context in the instance
Object-oriented programming offers a solution to the

context problem. If a method is in a class, and we’re using
true object-oriented programming without modifiable data
outside of class instances, then that method’s context is con-
tained in the argument list together with the data for the in-
stance on which the method is invoked.

Some C libraries attempt to provide context by providing
a user-defined argument to be passed through as a void
pointer. This structure is not really natural, and such an ap-
proach doesn’t deal with issues like optional outputs and
memory leaks.

Let’s do this example in C++ and the next one in Python;
focus on the technique, not the language.

For example, consider method f in class Aclass:

class Aclass {

float f (float x) const { …}

——

}

When we have an object a of class Aclass and we call a.f
(x), we can use the argument x plus any methods or data
available in a.

Make the integrator a class
The solution then is to make the integrator a class. We

start with an abstract base class that represents the general
concept of integrating the functions of one variable. (In an
actual C++ library, we would probably template this func-
tion on the type of argument so that we could reuse the cod-
ing for different types such as float and double. However,
for clarity, I omit that here.)

class Integrator {

virtual double integrate (T t, double (*T f)

(double), a, b) ;

//calls t.f (x) to calculate integral;

virtual ~Integral();

virtual bool error_occurred ();

}

The idea is that we will inherit from this class to specify a
particular algorithm. In C++, making the destructor virtual
is important, so we can specialize the release of workspaces

in the children:

class GaussianIntegrator: public Integrator {

// 25-point Gaussian integration

…implement integrate

bool error_occurred () { return false; }

}

class AdaptiveIntegrator: public Integrator {

// Adaptive integrator

… implement integrate, ~AdaptiveIntegrator

… add constructors, methods, to hold control

parameters

… add methods to return results

}

The adaptive algorithm’s control parameters would be
kept as private instance data with reasonable defaults sup-
plied, such as

double absolute_error = 1.e-6;

double relative_error = 1.e-5;

with public accessor methods. The methods for setting them
can check the supplied values for validity:

void set_error_criteria (double abs, double rel);

// checks that abs >= 0.0, rel > 0.0

Other methods to return optional output can also exist:

const vector<float> errors() const;

// returns error estimates on each interval

used

const vector< pair<float,float> > intervals()

const;

// returns intervals used

To use the integrator, we create it and apply it to a method
and its specific instance:

Aclass a;

AdaptiveIntegrator ai;

answer = ai.integrate (a, Aclass::f, 0., 1.);

if (ai.error_occurred()) { …}

// can examine ai.intervals(), etc.

88 COMPUTING IN SCIENCE & ENGINEERING

Note the reduction in inertia for new users. The integrator
class can supply defaults for things such as error control.
Complicated data structures can be returned as options on
demand, but beginners can ignore them (see the “Advanced
Design Considerations” sidebar).

Case study: Solving systems of ODEs
Let’s now consider the solution of an initial value prob-

lem dy/dt = f(y, t), with y = y0 at time 0. Using the method of
lines, we end up solving a system of ordinary differential
equations where y is a vector of length n.

Many algorithms for this problem exist, generally divided
into explicit and implicit methods. Implicit methods must
remember one or more past values of y. The solver can rep-
resent tens of man-years of work on algorithms and heuris-
tics, so making it reusable is imperative.

Here is the traditional approach:

• Write f(y, t) as a function.
• Call the solver subroutine with initial value, initial time

step, and f as arguments.
• Solver updates y and t.
• The user supplies extra arguments to hold state and con-

trol the algorithm, or the solver uses its own static data area.

The dialog required between the solver and the user is
substantial:

• Error control, reporting, and handling
• Interpolation of desired output values
• Control of step size, signal discontinuous changes in f, and

so on

The traditional approach
Consider a simple Runge-Kutta solver from the IMSL

Fortran library:

subroutine ivprk (ido, n, fcn, t, tend, tol,

param, y)

The argument ido is both input and output:

1 = initial entry

2 = normal reentry, return value after 1

3 = final call to release workspace

4, 5, 6 on output, error occurred.

Auxiliary routines can be used to supply our own work-

S C I E N T I F I C P R O G R A M M I N G

Advanced Design Considerations

Experienced C++ users might have questions about
the design of the classes shown in the integrator exam-
ple, such as

Why have a test for whether an error occurred; why not just
throw an exception?

This is a matter of philosophy. Some believe that we
shouldn’t use exceptions for “normal” processing.
Throwing an exception if an iteration failed to con-
verge, for example, is using exceptions rather than reg-
ular flow control. Using exceptions could have perfor-
mance implications.

Would it be better to have integrate be a routine that
does not return a value and then have a separate query in-
tegral() to return the answer if no error occurred?

That would be in line with Bertrand Meyer’s idea of
separating queries and commands.1 It allows clean de-
sign by contract. I didn’t do it here because less experi-
enced scientists would find it surprising and that would
divert attention from my main point.

Isn’t it a red flag in OO design when your class has a name
that is a verb?

Yes, and sometimes in designing these kinds of
mathematical classes, it is tempting to use names such
as Integrate or to have abstract classes that have other
red-flag properties such as only having one method. If
you think of these classes as representing an expertise,
then a name like Integrate or Integrator is short-hand
for some concept whose name is a noun, such as
IntegrationFacility or IntegrationExpert,
and their lack of methods at the top level reflects the
fact that only specific algorithms have specific control
and reporting facilities.

Another way to answer such questions is, “Sure. What-
ever.” There is no one right answer in OO design. Learn
a methodology you are comfortable with and use it con-
sistently so that your library users know what to expect.

Note also that the clumsiness with the integrand be-
ing passed in two separate parts (a and Aclass::f) is
just a C++ problem because there is no standard class for
a bound method. You could invent one if you wanted.

Reference

1. B. Meyer, Reusable Software, Prentice Hall, Upper Saddle River,

N.J., 1994.

SEPTEMBER/OCTOBER 2002 89

space and control the error norm used.
Variables t and y are output as well as
input.

The argument param (50) is a float-
ing-point array. The fact that the user
must initialize param (which is consid-
ered to be both input and output) re-
quires carefully reading the example.
Some of param is input, some is out-
put, and some is unused. The user
must hold on to y, param, t, tend, and
tol. There is no default value for tol.

The user must understand all of this
before first use on even the simplest
problem, which raises the inertial barrier
to using this routine.

ODE solvers as classes
An object-oriented design for an ab-

stract class ODESolver (this time in
Python) might resemble Figure 2. I omit all but one pair of ac-
cessor functions; the point is that the various controls live in the
instances and can be set on creation or changed later and that the
state between steps is kept in the instance.

The Runge-Kutta algorithm as a child of OODDEESSoollvveerr
To specialize to the RK algorithm in particular, we define

a class RungeKuttaSolver as a child of ODESolver. It then
implements the time advance that was left undefined in the
parent. Each child of ODESolver could have additional ar-
guments to its constructor, additional methods for access-
ing them, and additional methods for optional outputs.
However, all the state between calls to integrate is held in
the instance, and when the integrator is no longer needed
and is destroyed, all the state information goes with it. (Sen-
sible default values for controlling the algorithms are pro-
vided where possible.) The actual use of the solver becomes
much easier:

solver = RungeKuttaSolver (f, y, t0);

solver.set_tolerance (1.e-8);

solver.advance (tfinal);

print “Solution at”, solver.time, “is”,

solver.y

Wrapping good software
Does this mean I should write the RK algorithm myself?

No, that would be a bad idea—other people know more

about this than I do. As I mentioned earlier, the only real
problem is in the packaging. The solution is to implement
our class using others’ subroutines. As a result, we get a
working equivalent that can’t leak memory, is easier to use,
and is safer.

Someone still has to understand the original routine, but
now it is the RungeKuttaSolver class’s designer rather than
the end user, and that designer only has to do it once. When
the user comes back months later, he or she might see an ex-
ception trap for a failed step,

try:

solver.advance (tfinal)

except solver.error, explanation:

print explanation

but not the mysterious sort of thing he or she would have
seen with the IMSL routine:

if (ido .gt. 3) then …

Being able to make instances of the solver permits multi-
ple uses per code.

Avoiding Fortran++
In designing your new middleware, watch out for For-

tran++. Fortran programmers who have learned an object-
oriented language sometimes write something such as

Figure 2. Object-oriented design for ODESolver.

class ODESolver:

def __init__ (self, integrand,

start_time,

initial_value,

error_tolerance=1.0e-6,

):

self.integrand = integrand

self.time = start_time

self._error_tolerance = error_tolerance

self.y = initial_value[:]

def advance (self, tend):

“Integrate up to time tend.”

pass # left abstract here

def tolerance ():

“Return the present tolerance”

return self._error_tolerance

def set_tolerance (self, tolerance):

“Set the error tolerance to tolerance.”

assert tolerance > 0.0

self._error_tolerance = tolerance

….

90 COMPUTING IN SCIENCE & ENGINEERING

def takeStep (dt, A, B, C, D, E, F, G) :

AOLD = A[:]

BOLD = B[:]

…

GOLD = G[:]

A[:] = AOLD[:] + dt * …

Here A, B, C, … taken separately have no real meaning,
but in the aggregate, they are a description of a physics pack-
age’s state. It’s better to just admit it:

class HydroState:

has data members A, B, C, …, G

def clone (self):

(or in C++ the copy constructor)

embodies once and for all saving the old state

Each instance represents the state at a certain time. Here,
the rate equations for advancing the pieces are methods.

Algorithms without containers
Another way reuse is diminished is in the use of container

classes. Fortran programmers, think of it this way: if you pro-
gram a routine to handle double-precision arrays, you can’t
use it with single-precision arrays. The concept of an array
of a given precision is a container class. As people learn object-
oriented programming, they want to produce abstract con-
tainer classes that correctly express the concepts with which
they are working. But this means less mathematical software
is easily available to process these new kinds of containers.

The Standard Template Library in C++ has pioneered a
new paradigm of programming, by separating the contain-
ers from the algorithms.3 For example, using the STL, the
algorithm sort can sort all kinds of containers:

sort (vector<double> d);

sort (queue<tasks> t);

Through the wonder of C++, you don’t have to actually write
all possible versions of this such as sort<vector<double>
>(d). All that sort needs from T is that T have the interface
to supply sort with what it needs to do its job, so class T
must be able to

• Tell the size of the list to be sorted
• Access elements by index
• Compare elements
• Create a temporary to do a switch

We can copy this approach. The trick is to be able to doc-
ument exactly what interface a class must have to plug and
play with our algorithm. An application class that can do
what must be done, but that uses a different interface, can
be easily wrapped in an adaptor class.

(Geoff Furnish wrote a good article on this subject.4 An-
drew Lumsdaine’s article and the Matrix Template Library’s
Web page www.lsc.nd.edu/research/mtl also have an excel-
lent discussion of these ideas.5 The MTL is a library of
mathematical classes based on STL ideas.)

An essentially functional C++ version of Lapack is now
being replaced by a new linear algebra library based on a
template approach (http://gams.nist.gov/tnt).6 It is sched-
uled for release about the time that this article will appear,
so I have not had an opportunity to review it.

Ihave been an advocate of the open-source approach for sci-
ence, but I think there is no denying the danger of group

projects being driven to the lowest common denominator in
terms of design and implementation choices. Designing
proper middleware in mathematics, statistics, and science will
require experienced leadership, not just the consensus of the
mob in a mail list. If good computer scientists act alone, they
will produce nice interfaces to second-class contents. Only by
working together across disciplines can we achieve quality,
reusable components on which we all can rely. The EiffelMath
library (www.eiffel.com/products/math.html) has put into
practice the principles I discuss here.2

References
1. B. Meyer, Reusable Software, Prentice Hall, Upper Saddle River, N.J., 1994.

2. P.F. Dubois, Object Technology for Scientific Computing, Prentice Hall,
Upper Saddle River, N.J., 1997.

3. A. Stepanov and M. Lee, The Standard Template Library, tech. report
HPL-95-11, HP Laboratories, Menlo Park, Calif., 1995.

4. G. Furnish, “Container-Free Numerical Algorithms in C++,” Computers
in Physics, vol. 12, no. 3, May/June 1998, pp. 258–266;
www.aip.org/cip/source.htm.

5. J. Siek and A. Lumsdaine, “The Matrix Template Library: Generic Compo-
nents for High-Performance Scientific Computing,” Computing in Science
& Eng., vol. 1, no. 6, Nov./Dec. 1999, pp. 70–78; www.computer.org/
cise/cs1999/pdf/c6070.pdf.

6. J. Dongarra, R. Pozo, and D. Walker, “LAPACK++: A Design Overview of
Object-Oriented Extensions for High Performance Linear Algebra,” Proc.
Supercomputing93, IEEE CS Press, Los Alamitos, Calif., 1993, pp. 162–171.

Paul F. Dubois is a mathematician/computer scientist in the Advanced

Software Technologies Group at Lawrence Livermore National Labora-

tory. Contact him at the Ctr. for Applied Scientific Computing, Lawrence

Livermore Nat’l Lab., Livermore, CA 94566.

S C I E N T I F I C P R O G R A M M I N G

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

