
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

13 Modular Design

Dr. Spencer Smith

Faculty of Engineering, McMaster University

October 23, 2017

Modular Design

Administrative details

Questions?

Feedback on SRS

Overview of design

Modular decomposition: advantagages, guidelines etc.

Module guide

Module guide example

Integration Testing

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 2/77

Administrative Details

GitHub issues
I When closing issues give the hash for the corresponding

commit
I Everyone should have an issue to review my comments

on their SRS or CA

For MG presentation, we’ll try to use my laptop only

Grading scheme for VnV now available on Avenue

Template for MG updated in repo

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 3/77

Administrative Details: Deadlines

V&V Plan Week 07 Oct 25
MG Present Week 08 Week of Oct 30
MG Week 09 Nov 8
MIS Present Week 10 Week of Nov 13
MIS Week 11 Nov 22
Impl. Present Week 12 Week of Nov 27
Final Documentation Week 13 Dec 6

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 4/77

Administrative Details: Presentation Schedule

MG Present
I Tuesday: Xiaoye, Shusheng, Devi, Keshav, Alex P,

Paul
I Friday: Yuzhi, Jason, Geneva, Alex S, Isobel,

Steven

MIS Present
I Tuesday: Isobel, Keshav, Paul
I Friday: Shusheng, Xiaoye, Devi

Impl. Present
I Tuesday: Alexander S., Steven, Alexandre P.
I Friday: Jason, Geneva, Yuzhi

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 5/77

Questions?

Questions about Verification and Validation plan?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 6/77

Feedback on SRS

Overall well done!
Don’t need padding (Watch for MG!)

I Don’t make more complicated than it is
I Don’t add assumptions that the data will be in the

correct format, or of the correct type

For the characteristics of intended reader try to be more
specific about the education. What degree? What course
areas? What level?

If you have a reference by entry, then the referenced by
chunk (or its derivation) should actually reference the
chunk that has it as an entry.

Functional requirements should reference the instance
models

Add more for nonfunctional requirements

Introduce type information when it will help clarify spec
Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 7/77

LaTeX Related Feedback

The text is better for version control, and for reading in
other editors, if you use a hard-wrap at 80 characters

Use ‘‘quote’’ to get correct quotation marks

Spell check!

Check for extra and missing spaces

LaTeX often inserts two spaces after a period, use
Dr.\ Jeckyl or Dr.~Jeckyl

For ABCAverage in an equation use
$\mathit{ABC}_{\text{Average}}$ (ABCAverage)

Use BibTeX. You should mention the source of the
template [9, 10]

Cite all sources!

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 8/77

Review of our “Faked” Rational Design Process

Development Plan

Requirements
Specification

Design
Specification

Code

Verification and
Validation Report

Problem
Statement

Verification and
Validation Plan

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 9/77

What is Design?

Your requirements document identifies “What,” now we
begin to look at “How”

Your system should meet both your functional and
nonfunctional requirements

There is no unique “optimal” design
I Different goals will lead to different designs
I There is a mix of art and science in design
I Even with fully formal requirements specification there

does not yet exist a systematic way to obtain a design
I Favour art in some areas and favour science in others

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 10/77

What is Design Continued?

Provides structure to any artifact

Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal

Design refers to
I Activity

I Bridge between requirements and implementation
I Structure to an artifact

I Result of the activity
I System decomposition into modules (module guide)
I Module interface specification (MIS)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 11/77

Why Decompose Into Modules?

Separation of concerns

Cannot understand all of the details

All engineering fields use decomposition

Modules will act as “work assignments”

Decomposition needs to follow a systematic procedure (as
for SRS)

Need to ensure that modules when fit together achieve
our global goals

Document in a Software Design Document (Module
Guide)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 12/77

Benefits of Modularity

Shorter development time

Improved verification

Reduced maintenance costs

Easier to understand
I Small modules
I An abstract interface

Modules can be developed independently

Modules can be tested independently

Modules can be reused

Software is easy to change, extend, maintain

This requires identifying the anticipated changes in the
design and in the requirements

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 13/77

Two Important Goals for Decomposition

Design for change (Parnas) [5, 6]
I Designers tend to concentrate on current needs
I Special effort needed to anticipate likely changes
I Changes can be in the design or in the requirements
I Too expensive to design for all changes, but should

design for likely changes

Product families (Parnas) [4, 7]
I Think of the current system under design as a member

of a program family
I Analogous to product lines in other engineering

disciplines
I Example product families include automobiles, cell

phones, etc.
I Design the whole family as one system, not each

individual family member separately

Use Design Principle of Information Hiding
Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 14/77

Sample Likely Changes

What are some examples of likely changes for software?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 15/77

Sample Likely Changes [2]

Algorithms – like replacing inefficient sorting algorithm
with a more efficient one

Change of data representation
I From binary tree to threaded tree
I Array implementation to a pointer implementation
I Approx. 17% of maintenance costs attributed to data

representation changes (Lientz and Swanson, 1980)

Change of underlying abstract machine
I New release of operating system
I New optimizing compiler
I New version of DBMS
I etc.

Change of peripheral devices

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 16/77

Binary Tree to Threaded Tree

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 17/77

Sample Likely Changes

Change of “social” environment
I Corresponds to requirements changes
I New tax regime
I EURO versus national currency in EU
I New language for user interface
I y2k

Change due to development process (prototype
transformed into product)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 18/77

Components of a Module

A software modules has two components

1. An interface that enables the module’s clients to use the
service the module provides

2. An implementation of the interface that provides the
services offered by the module

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 19/77

The Module Interface

A module’s interface can be viewed in various ways
I As a set of services
I As a contract between the module and its clients
I As a language for using the module’s services

The interface is exported by the module and imported by
the module’s clients

An interface describes the data and procedures that
provide access to the services of the module

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 20/77

The Module Implementation

A module’s implementation is an implementation of the
module’s interface

The implementation is hidden from other modules

The interface data and procedures are implemented
together and may share data structures

The implementation may utilize the services offered by
other modules

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 21/77

Information Hiding

Made explicit by Parnas [5]

Basis for design (that is modular decomposition (Module
Guide))

Implementation secrets are hidden to clients

Secret can be changed freely if the change does not affect
the interface

Try to encapsulate changeable design decisions as
implementation secrets within module implementations

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 22/77

Examples of Modules [2]

Record
I Consists of only data
I Has state but no behaviour

Collection of related procedures (library)
I Has behaviour but no state
I Procedural abstractions

Abstract object
I Consists of data (fields) and procedures (methods)
I Consists of a collection of constructors, selectors, and

mutators
I Has state and behaviour

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 23/77

Examples of Modules Continued

Abstract data type (ADT)
I Consists of a collection of abstract objects and a

collection of procedures that can be applied to them
I Defines the set of possible values for the type and the

associated procedures that manipulate instances of the
type

I Encapsulates the details of the implementation of the
type

Generic Modules
I A single abstract description for a family of abstract

objects or ADTs
I Parameterized by type
I Eliminates the need for writing similar specifications for

modules that only differ in their type information
I A generic module facilitates specification of a stack of

integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 24/77

Questions

What relationships are there between modules?

Are there desirable properties for these relations?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 25/77

Relationships Between Modules

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 26/77

Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 27/77

Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (Directed Acyclic Graph)

Why do we prefer the uses relation to be a DAG?
Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 28/77

Desirable Properties

USES should be a hierarchy [6]
I Hierarchy makes software easier to understand
I We can proceed from the leaf nodes (nodes that do not

use other nodes) upwards
I They make software easier to build
I They make software easier to test

Low coupling

Fan-in is considered better than Fan-out: WHY?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 29/77

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 30/77

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 31/77

Hierarchy

Organizes the modular structure through levels of
abstraction

Each level defines an abstract (virtual) machine for the
next level

Level can be defined precisely
I Mi has level 0 if no Mj exists such that Mi rMj

I Let k be the maximum level of all nodes Mj such that
Mi rMj , then Mi has level k + 1

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 32/77

Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromMod1 else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 33/77

Question about Association and DAG

Is the uses relation here a DAG?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 34/77

Module Decomposition (Parnas)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 35/77

Module Decomposition (Parnas)

For the module decomposition on the previous slide:

Does it show a Uses relation?

Is it a DAG?

Is it a tree?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 36/77

IS COMPONENT OF

The Parnas decomposition by secrets gives an
IS COMPONENT OF relationship

Used to describe a higher level module as constituted by a
number of lower level modules

A IS COMPONENT OF B means B consists of several
modules of which one is A

B COMPRISES A

MS,i = {Mk |Mk ∈ S ∧Mk IS COMPONENT OF Mi} we
say that MS ,i IMPLEMENTS Mi

How is IS COMPONENT OF represented in UML?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 37/77

A Graphical View

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 38/77

Module Guide [8]

Part of Parnas’ Rational Design Process (RDP)

When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

Helps future maintainers find appropriate module

Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

Decomposition is usually three to five levels deep

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 39/77

Three Top Conceptual Modules in an RDP MG

What are the three groups of modules in a typical
information-hiding decomposition?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 40/77

Module Decomposition (Parnas)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 41/77

RDP - MG

The MG consists of a table that documents each
module’s service and secret

Conceptual modules will have broader responsibilities and
secrets

Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

The leaf modules that represent code will contain much
more precise services and secrets

Only the leaf modules are actually implemented

The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 42/77

Module Details

For each module

Module name

Secret (informal description)

Service or responsibility (informal description)

For “leaf” modules add
I Associated requirement
I Anticipated change
I Module prefix (optional)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 43/77

RDP - MG

Criteria for a good secret
I One module one secret, especially for leaf modules

(watch for “and”)
I Secrets should often be nouns (data structure,

algorithm, hardware, ...)
I Secrets are often phrased as “How to ... ”

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 44/77

Good Secret?

Is the following a good module secret: “The file format for the
map and the rules for validating that the map satisfies the
environmental constraints.”

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 45/77

Typical Modules [3]

What are the typical secrets for an input variable?
I You have an input in the environment, how to get it into

your system?
I What format is the input data?

What are the secrets for an output variable?
I How to get an output from inside the system to the

external environment?
I How will the output be determined?
I What format will the output have?

What are the secrets for a state variable?
I What rules are there governing the state transitions?
I What data structures or algorithms are needed?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 46/77

Typical Modules [3]

Input variables
I Machine-hiding from hardware or OS service
I Behaviour-hiding input format

Output variables
I Machine-hiding
I Behaviour-hiding output format
I Behaviour-hiding (calculation)

State variables
I Software decision hiding for data structure/algorithm
I Behaviour-hiding state-drive

Judgement is critical

Often combine variables into the same module

For non-embedded systems, machine hiding for
input-output is often combined

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 47/77

RDP - Views

As well as the MG, the modular decomposition should be
displayed using a variety of views

An obvious one is the Uses Hierarchy

The Uses Hierarchy is updated once the MIS for all
modules is complete

The Uses Hierarchy can be represented
I Graphically (if it isn’t too large and complex)
I Using a binary matrix – What would the binary matrix

look like?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 48/77

MG Template

Table of contents

Introduction

Anticipated and unlikely changes

Module hierarchy

Connection between requirements and design

Module decomposition
I Hardware hiding modules
I Behaviour hiding modules
I Software decision hiding modules

Traceability matrices

Uses hierarchy between modules

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 49/77

Traceability Matrices

Traceability matrix help inspect the design

Check for completeness, look at from a different viewpoint

Req. Modules

R1 M1, M2, M3, M7
R2 M2, M3
... ...

AC Modules

AC1 M1
AC2 M2
... ...

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 50/77

Verification

Well formed (consistent format/structure)
I Follows template
I Follows rules (one secret per module, nouns etc.)

Feasible (implementable at reasonable cost)
I Difficult to assess
I Try sketches of MIS

Flexible
I Again try sketches of MIS
I Thought experiment as if likely change has occurred
I Low coupling
I Encapsulate repetitive tasks

May sometimes have to sacrifice information hiding

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 51/77

Object Oriented Design Versus Modular Desiogn

OO-design and OO-languages are different

OO-design
I Classes and methods
I Classes are like modules (state variables and access

functions (methods))
I An object is an instance of a class
I Polymorphism
I Inheritance - use carefully

Implementation of modules using an OO-lang is natural

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 52/77

Solar Water Heating System Example

https://github.com/smiths/swhs
Solve ODEs for temperature of water and PCM
Solve for energy in water and PCM
Generate plots

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 53/77

https://github.com/smiths/swhs

Anticipated Changes?

What are some anticipated changes?

Hint: the software follows the Input → Calculate → Output
design pattern

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 54/77

Anticipated Changes

The specific hardware on which the software is to run

The format of the initial input data

The format of the input parameters

The constraints on the input parameters

The format of the output data

The constraints on the output results

How the governing ODEs are defined using the input
parameters

How the energy equations are defined using the input
parameters

How the overall control of the calculations is orchestrated

The implementation of the sequence data structure

The algorithm used for the ODE solver

The implementation of plotting data

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 55/77

Module Hierarchy by Secrets

Level 1 Level 2

Hardware-Hiding
Module

Behaviour-Hiding
Module

Input Format Module
Input Parameters Module
Output Format Module
Temperature ODEs Module
Energy Equations Module
Control Module

Software Decision
Module

Sequence Data Structure Module
ODE Solver Module
Plotting Module

Table: Module Hierarchy

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 56/77

Example Modules from SWHS

Hardware Hiding Modules

Secrets: The data structure and algorithm used to
implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of
the system. This module provides the interface
between the hardware and the software. So, the
system can use it to display outputs or to accept
inputs.

Implemented By: OS

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 57/77

Example Modules from SWHS

Input Verification Module

Secrets: The rules for the physical and software
constraints.

Services: Verifies that the input parameters comply with
physical and software constraints. Throws an
error if a parameter violates a physical constraint.
Throws a warning if a parameter violates a
software constraint.

Implemented By: SWHS

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 58/77

Example Modules from SWHS

ODE Solver Module

Secrets: The algorithm to solve a system of first order
ODEs.

Services: Provides solvers that take the governing equation,
initial conditions, and numerical parameters, and
solve them.

Implemented By: Matlab

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 59/77

SWHS Uses Hierarchy

Control Module
(M7)

Input Format
Module (M2)

Temperature
ODEs Module

(M5)
Energy Equations

Module (M6)
ODE Solver
Module (M9)

Plotting Module
(M10)

Output Format
Module (M4)

Input Parameters
Module (M3)

Sequence Data
Structure Module

(M8)

Hardware Hiding
Module (M1)

Mesh Generator Example

x

vi

yy

1

20

2

3

4

1

i

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6

7

8

9

10

11

12

W

L

ui

y

x

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 61/77

Mesh Generator Complex Circular Geometry

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 62/77

Mesh Generator Example: Design Goals

Independent and flexible representation for each mesh
entity

Complete separation of geometric data from the topology

The mesh generator should work with different coordinate
systems

A flexible data structure to store sets of vertices, edges
and triangles

Different mesh generation algorithms with a minimal
amount of local changes

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 63/77

Example Mesh Gen Modular Decomposition

Link

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 64/77

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L14_ModuleDecompositionContinued/DecompBySecretHierarchyExample.png

Another Mesh Generator Uses Hierarchy [1]

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 65/77

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 66/77

Module Testing [2]

Scaffolding needed to create the environment in which
the module should be tested

Stubs - a module used by the module under test

Driver - module activating the module under test

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 67/77

Testing a Functional Module [2]

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 68/77

Integration Testing

Big-bang approach
I First test individual modules in isolation
I Then test integrated system

Incremental approach
I Modules are progressively integrated and tested
I Can proceed both top-down and bottom-up according to

the USES relation

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 69/77

Integration Testing and USES relation

If integration and test proceed bottom-up only need
drivers

Otherwise if we proceed top-down only stubs are needed

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 70/77

Example [2]

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
In what order would you test these modules?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 71/77

Example [2]

M1 USES M2 and M2 IS COMPOSED OF {M2,1, M2,2}
Case 1

I Test M1 providing a stub for M2 and a driver for M1

I Then provide an implementation for M2,1 and a stub for
M2,2

Case 2
I Implement M2,2 and test it by using a driver
I Implement M2,1 and test the combination of M2,1 and

M2,2 (i.e. M2) by using a driver
I Finally implement M1 and test it with M2 using a driver

for M1

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 72/77

References I

Ahmed H. ElSheikh, W. Spencer Smith, and Samir E.
Chidiac.
Semi-formal design of reliable mesh generation systems.
Advances in Engineering Software, 35(12):827–841, 2004.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.
International Thomson Computer Press, New York, NY,
USA, 1995.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 73/77

References II

David Parnas.
On the design and development of program families.
IEEE Transactions on Software Engineering, SE-2(1):1–9,
1976.

David L. Parnas.
On the criteria to be used in decomposing systems into
modules.
Comm. ACM, 15(2):1053–1058, December 1972.

David L. Parnas.
On a ’buzzword’: Hierarchical structure.
In IFIP Congress 74, pages 336–339. North Holland
Publishing Company, 1974.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 74/77

References III

David L. Parnas.
Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages
128–138, March 1979.

D.L. Parnas, P.C. Clement, and D. M. Weiss.
The modular structure of complex systems.
In International Conference on Software Engineering,
pages 408–419, 1984.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 75/77

References IV

W. Spencer Smith and Lei Lai.
A new requirements template for scientific computing.
In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on
Situational Requirements Engineering Processes –
Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes,
SREP’05, pages 107–121, Paris, France, 2005. In
conjunction with 13th IEEE International Requirements
Engineering Conference.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 76/77

References V

W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation: A
systematic approach for improving software reliability.
Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83–107, February 2007.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 77/77

