CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

13 Modular Design

Dr. Spencer Smith
Faculty of Engineering, McMaster University

October 23, 2017

McMaster
University %ﬁ

Modular Design

@ Administrative details

Questions?

Feedback on SRS

Overview of design

Modular decomposition: advantagages, guidelines etc.
Module guide

Module guide example

Integration Testing

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 2/77

Administrative Details

@ GitHub issues

» When closing issues give the hash for the corresponding
commit

» Everyone should have an issue to review my comments
on their SRS or CA

@ For MG presentation, we'll try to use my laptop only
@ Grading scheme for VnV now available on Avenue
@ Template for MG updated in repo

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 3/77

Administrative Details: Deadlines

V&V Plan Week 07
MG Present Week 08
MG Week 09
MIS Present Week 10
MIS Week 11

Impl. Present Week 12
Final Documentation Week 13

Oct 25

Week of Oct 30
Nov 8

Week of Nov 13
Nov 22

Week of Nov 27
Dec 6

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

4/77

Administrative Details: Presentation Schedule

@ MG Present

» Tuesday: Xiaoye, Shusheng, Devi, Keshav, Alex P,
Paul

» Friday: Yuzhi, Jason, Geneva, Alex S, Isobel,
Steven

@ MIS Present
» Tuesday: Isobel, Keshav, Paul
» Friday: Shusheng, Xiaoye, Devi
@ Impl. Present

» Tuesday: Alexander S., Steven, Alexandre P.
» Friday: Jason, Geneva, Yuzhi

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 5/77

Questions?

@ Questions about Verification and Validation plan?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 6/77

Feedback on SRS

Overall well done!
Don't need padding (Watch for MG!)
» Don't make more complicated than it is
» Don’t add assumptions that the data will be in the
correct format, or of the correct type

@ For the characteristics of intended reader try to be more
specific about the education. What degree? What course
areas? What level?

@ If you have a reference by entry, then the referenced by
chunk (or its derivation) should actually reference the
chunk that has it as an entry.

e Functional requirements should reference the instance
models

@ Add more for nonfunctional requirements

@ Introduce type information when it will help clarify spec

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 7/77

LaTeX Related Feedback

@ The text is better for version control, and for reading in

other editors, if you use a hard-wrap at 80 characters
Use ‘ ‘quote’’ to get correct quotation marks
Spell check!

Check for extra and missing spaces

LaTeX often inserts two spaces after a period, use
Dr.\ Jeckyl or Dr."~Jeckyl

@ For ABCayerage in an equation use
$\mathit{ABC}_{\text{Average}}$ (ABCaverage)

@ Use BibTeX. You should mention the source of the
template [9, 10]

@ Cite all sources!

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

8/77

Review of our “Faked” Rational Design Process

Problem
Statement

Development Plan

Requirements Verification and Verification and
Specification Validation Plan Validation Report

Design
Specification

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 9/77

What is Design?

@ Your requirements document identifies “What,” now we
begin to look at “How"

@ Your system should meet both your functional and
nonfunctional requirements

@ There is no unique “optimal” design

v

Different goals will lead to different designs

There is a mix of art and science in design

Even with fully formal requirements specification there
does not yet exist a systematic way to obtain a design
Favour art in some areas and favour science in others

v

v

v

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 10/77

What is Design Continued?

@ Provides structure to any artifact

@ Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal
@ Design refers to
> Activity
> Bridge between requirements and implementation
» Structure to an artifact
» Result of the activity

» System decomposition into modules (module guide)
» Module interface specification (MIS)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 11/77

Why Decompose Into Modules?

@ Separation of concerns

@ Cannot understand all of the details

@ All engineering fields use decomposition
@ Modules will act as “work assignments”

@ Decomposition needs to follow a systematic procedure (as
for SRS)

@ Need to ensure that modules when fit together achieve
our global goals

@ Document in a Software Design Document (Module
Guide)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 12/77

Benefits of Modularity

@ This requires identifying the anticipated changes in the

Shorter development time
Improved verification
Reduced maintenance costs

Easier to understand

» Small modules
» An abstract interface

Modules can be developed independently
Modules can be tested independently
Modules can be reused

Software is easy to change, extend, maintain

design and in the requirements

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

13/77

Two Important Goals for Decomposition

@ Design for change (Parnas) [5, 6]
» Designers tend to concentrate on current needs
» Special effort needed to anticipate likely changes
» Changes can be in the design or in the requirements
» Too expensive to design for all changes, but should
design for likely changes
@ Product families (Parnas) [4, 7]
» Think of the current system under design as a member
of a program family
» Analogous to product lines in other engineering
disciplines
» Example product families include automobiles, cell
phones, etc.
» Design the whole family as one system, not each
individual family member separately

Use Design Principle of Information Hiding

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 14/77

Sample Likely Changes

What are some examples of likely changes for software?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 15/77

Sample Likely Changes [2]

@ Algorithms — like replacing inefficient sorting algorithm
with a more efficient one
@ Change of data representation
» From binary tree to threaded tree
» Array implementation to a pointer implementation
» Approx. 17% of maintenance costs attributed to data
representation changes (Lientz and Swanson, 1980)
@ Change of underlying abstract machine
» New release of operating system
» New optimizing compiler
> New version of DBMS
> etc.

@ Change of peripheral devices

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design

16/77

Binary Tree to Threaded Tree

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 17/77

Sample Likely Changes

@ Change of “social” environment

v

Corresponds to requirements changes
» New tax regime
» EURO versus national currency in EU
» New language for user interface
> y2k
@ Change due to development process (prototype
transformed into product)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 18/77

Components of a Module

@ A software modules has two components
1. An interface that enables the module’s clients to use the
service the module provides
2. An implementation of the interface that provides the
services offered by the module

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 19/77

The Module Interface

@ A module’s interface can be viewed in various ways
» As a set of services
» As a contract between the module and its clients
» As a language for using the module's services
@ The interface is exported by the module and imported by
the module’s clients

@ An interface describes the data and procedures that
provide access to the services of the module

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 20/77

The Module Implementation

@ A module’s implementation is an implementation of the
module's interface

@ The implementation is hidden from other modules

@ The interface data and procedures are implemented
together and may share data structures

@ The implementation may utilize the services offered by
other modules

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 21/77

Information Hiding

@ Made explicit by Parnas [5]

@ Basis for design (that is modular decomposition (Module
Guide))

@ Implementation secrets are hidden to clients
@ Secret can be changed freely if the change does not affect
the interface

@ Try to encapsulate changeable design decisions as
implementation secrets within module implementations

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

22/77

Examples of Modules [2]

@ Record
» Consists of only data
» Has state but no behaviour
@ Collection of related procedures (library)

» Has behaviour but no state
» Procedural abstractions
@ Abstract object
» Consists of data (fields) and procedures (methods)
» Consists of a collection of constructors, selectors, and
mutators
» Has state and behaviour

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design

23/77

Examples of Modules Continued
@ Abstract data type (ADT)

» Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

» Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

» Encapsulates the details of the implementation of the
type

@ Generic Modules

» A single abstract description for a family of abstract
objects or ADTs

» Parameterized by type

» Eliminates the need for writing similar specifications for
modules that only differ in their type information

» A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 24/77

Questions

@ What relationships are there between modules?

@ Are there desirable properties for these relations?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 25/77

Relationships Between Modules

@ Let S be a set of modules
5 — {Ml, Mz, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If M; and M; are in S, < M;, M; >€ r can be written as
M,-rMJ-

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 26/77

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr*M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M;rt M; A M;rtM;

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 27/77

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (Directed Acyclic Graph)

m, M,
a graph ‘/ \M\ ‘/J’\a
/IZ f a DAG /\ /
P S

\./ \./

a) b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 28/77

Desirable Properties

@ USES should be a hierarchy [6]
» Hierarchy makes software easier to understand
» We can proceed from the leaf nodes (nodes that do not
use other nodes) upwards
» They make software easier to build
» They make software easier to test

@ Low coupling
@ Fan-in is considered better than Fan-out: WHY?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 29/77

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 30/77

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 31/77

Hierarchy

@ Organizes the modular structure through levels of
abstraction

@ Each level defines an abstract (virtual) machine for the
next level
@ Level can be defined precisely

» M; has level 0 if no M; exists such that M;rM;
> Let k be the maximum level of all nodes M; such that
MirM;, then M; has level k + 1

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 32/77

Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromModl else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 33/77

Question about Association and DAG

Is the uses relation here a DAG?

TECHNICAL | 1 | PROJECT
_STAFF project member
1“*
manages
MANAGER

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

34/77

Module Decomposition (Parnas)

Conceptual | APP

modules
| |
H/W A S/w Behav.
hiding ecision hiding
l I |
L
Leaf modules
| | /contair\l |
71 codef] !

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

35/77

Module Decomposition (Parnas)

For the module decomposition on the previous slide:

@ Does it show a Uses relation?
o Is it a DAG?

@ Is it a tree?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design

36/77

IS COMPONENT _OF

@ The Parnas decomposition by secrets gives an
IS_.COMPONENT _OF relationship

@ Used to describe a higher level module as constituted by a
number of lower level modules

e A IS_.COMPONENT_OF B means B consists of several
modules of which one is A

e B COMPRISES A

o Ms; = {M]My € S A My 1S.COMPONENT_OF M;} we
say that Ms; IMPLEMENTS M;

@ How is IS.COMPONENT _OF represented in UML?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 37/77

A Graphical View
M_ M 5 My

W i s N,
\ l/ in\%

My
(IS_COMPONENT_OF) (COMPRISES)

They are a hierarchy

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 38/77

Module Guide [8]

@ Part of Parnas’ Rational Design Process (RDP)

@ When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

@ Helps future maintainers find appropriate module

e Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

@ Decomposition is usually three to five levels deep

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 39/77

Three Top Conceptual Modules in an RDP MG

What are the three groups of modules in a typical
information-hiding decomposition?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 40/77

Module Decomposition (Parnas)

Conceptual | APP

modules
| |
H/W A S/w Behav.
hiding ecision hiding
l I |
L
Leaf modules
| | /contair\l |
71 codef] !

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

41/77

RDP - MG

@ The MG consists of a table that documents each
module’s service and secret

@ Conceptual modules will have broader responsibilities and
secrets

@ Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

@ The leaf modules that represent code will contain much
more precise services and secrets

@ Only the leaf modules are actually implemented

@ The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 42/77

Module Details

@ For each module

@ Module name

@ Secret (informal description)

@ Service or responsibility (informal description)

@ For “leaf” modules add

» Associated requirement
» Anticipated change
» Module prefix (optional)

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 43/77

RDP - MG

@ Criteria for a good secret
» One module one secret, especially for leaf modules
(watch for “and”)
» Secrets should often be nouns (data structure,
algorithm, hardware, ...)
» Secrets are often phrased as “How to ...

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design

4477

Good Secret?

Is the following a good module secret: “The file format for the
map and the rules for validating that the map satisfies the
environmental constraints.”

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 45/77

Typical Modules [3]

@ What are the typical secrets for an input variable?
» You have an input in the environment, how to get it into
your system?
» What format is the input data?
@ What are the secrets for an output variable?
» How to get an output from inside the system to the
external environment?
» How will the output be determined?
» What format will the output have?
@ What are the secrets for a state variable?

» What rules are there governing the state transitions?
» What data structures or algorithms are needed?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 46/77

Typical Modules [3]

@ Input variables

» Machine-hiding from hardware or OS service
» Behaviour-hiding input format

@ Output variables
» Machine-hiding
» Behaviour-hiding output format
» Behaviour-hiding (calculation)

@ State variables

» Software decision hiding for data structure/algorithm
» Behaviour-hiding state-drive

@ Judgement is critical
@ Often combine variables into the same module

@ For non-embedded systems, machine hiding for
input-output is often combined

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 47/77

RDP - Views

@ As well as the MG, the modular decomposition should be
displayed using a variety of views

@ An obvious one is the Uses Hierarchy

@ The Uses Hierarchy is updated once the MIS for all
modules is complete

@ The Uses Hierarchy can be represented

» Graphically (if it isn't too large and complex)
» Using a binary matrix — What would the binary matrix
look like?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 48/77

MG Template

Table of contents

Introduction

Anticipated and unlikely changes

Module hierarchy

Connection between requirements and design

Module decomposition

» Hardware hiding modules
» Behaviour hiding modules
» Software decision hiding modules

Traceability matrices

Uses hierarchy between modules

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

49/77

Traceability Matrices

@ Traceability matrix help inspect the design
@ Check for completeness, look at from a different viewpoint

Req. Modules

R1 M1, M2, M3, M7
R2 M2, M3

AC Modules

AC1 M1

AC2 M2

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 50/77

Verification

@ Well formed (consistent format/structure)
» Follows template
» Follows rules (one secret per module, nouns etc.)
@ Feasible (implementable at reasonable cost)
» Difficult to assess
» Try sketches of MIS
o Flexible
» Again try sketches of MIS
» Thought experiment as if likely change has occurred
» Low coupling
Encapsulate repetitive tasks

v

@ May sometimes have to sacrifice information hiding

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 51/77

Object Oriented Design Versus Modular Desiogn

@ OO-design and OO-languages are different

@ OO-design

Classes and methods

Classes are like modules (state variables and access
functions (methods))

An object is an instance of a class

Polymorphism

» Inheritance - use carefully

v

v

v

v

@ Implementation of modules using an OO-lang is natural

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 52/77

Solar Water Heating System Example

@ https://github.com /smiths/swhs

@ Solve ODEs for temperature of water and PCM
@ Solve for energy in water and PCM

@ Generate plots

PCM

qp ——»»
Tank

Ac

e

Coll

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 53/77

https://github.com/smiths/swhs

Anticipated Changes?

What are some anticipated changes?

Hint: the software follows the Input — Calculate — Output
design pattern

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 54/77

Anticipated Changes

® 6 6 6 66 o o

(]
("]
("]
("]

The specific hardware on which the software is to run
The format of the initial input data

The format of the input parameters

The constraints on the input parameters

The format of the output data

The constraints on the output results

How the governing ODEs are defined using the input
parameters

How the energy equations are defined using the input
parameters

How the overall control of the calculations is orchestrated
The implementation of the sequence data structure

The algorithm used for the ODE solver

The implementation of plotting data

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design 55/77

Module Hierarchy by Secrets

Level 1 Level 2

Hardware-Hiding
Module

Input Format Module

Input Parameters Module
Behaviour-Hiding ~ Output Format Module
Module Temperature ODEs Module

Energy Equations Module

Control Module

Sequence Data Structure Module

ODE Solver Module
Plotting Module

Software Decision
Module

Table: Module Hierarchy

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design 56/77

Example Modules from SWHS
Hardware Hiding Modules

Secrets: The data structure and algorithm used to
implement the virtual hardware.

Services: Serves as a virtual hardware used by the rest of
the system. This module provides the interface
between the hardware and the software. So, the
system can use it to display outputs or to accept
inputs.

Implemented By: OS

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 57/77

Example Modules from SWHS

Input Verification Module

Secrets: The rules for the physical and software
constraints.

Services: Verifies that the input parameters comply with
physical and software constraints. Throws an
error if a parameter violates a physical constraint.
Throws a warning if a parameter violates a
software constraint.

Implemented By: SWHS

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 58/77

Example Modules from SWHS
ODE Solver Module
Secrets: The algorithm to solve a system of first order
ODEs.

Services: Provides solvers that take the governing equation,

initial conditions, and numerical parameters, and
solve them.

Implemented By: Matlab

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 59/77

SWHS Uses

Hierarchy

Control Module

ODE Solver
Module (M9)

Temperature
ODESs Module
(M5)

Energy Equations
Module (M6)

Plotting Module
(M10)

Input Format
Module (M2)

Output Format
Module (M4)

oy

Sequence Data
Structure Module
(M8)

Input Parameters
Module (M3)

Hardware Hiding

Module (M1)

Mesh Generator Example

v,
A A
y P Y
U
%Xi\ D ;\ rg 0\
NS, &) &2 (16) () i
3 6 9 12 N
N PN N Py -

\¢O, @ ® @ —
W, 2 5 8 11 —> Tx
SN D N /N /)

O ® @) (@) (—

1 4 7 10 SN
— (1) (5) (9) (13) (7) >
hof kof x
| |
| L |

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 61/77

Mesh Generator Complex Circular Geometry

T
ST
AT ReE Al

SN

Sriene i

R
ARk

s
S
.

N

62/77

ign

13 Modular Desi;

CAS 741, CES 741 Fall 2017

Dr. Smith

Mesh Generator Example: Design Goals

Independent and flexible representation for each mesh
entity

Complete separation of geometric data from the topology

The mesh generator should work with different coordinate
systems

A flexible data structure to store sets of vertices, edges
and triangles

Different mesh generation algorithms with a minimal
amount of local changes

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design 63/77

Example Mesh Gen Modular Decomposition
Link

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 64/77

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Lectures/L14_ModuleDecompositionContinued/DecompBySecretHierarchyExample.png

Another Mesh Generator Uses Hierarchy [1]

List
|

Topological_Operation

Triangle

Edge

I

Vertex

Geometric_Operation

Handle_Server

Geometric_Coordinate_system

Coordinate_system

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design

65/77

Module Testing

Is it possible to begin testing before all of the modules have
been implemented when there is a use relation between
modules?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 66/77

Module Testing [2]

@ Scaffolding needed to create the environment in which
the module should be tested

@ Stubs - a module used by the module under test

@ Driver - module activating the module under test

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 67/77

Testing a Functional Module [2]

PROCEDURE)
STUB - UNDER TEST - DRIVER
CALL CALL

ACCESS TO NONLOCAL VARIABLES

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 68/77

Integration Testing

@ Big-bang approach
» First test individual modules in isolation
» Then test integrated system

@ Incremental approach

» Modules are progressively integrated and tested
» Can proceed both top-down and bottom-up according to
the USES relation

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 69/77

Integration Testing and USES relation

@ If integration and test proceed bottom-up only need
drivers

@ Otherwise if we proceed top-down only stubs are needed

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 70/77

Example [2]

My Mo

Mo Mao

- - [

("] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M2’2}

@ In what order would you test these modules?

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 71/77

Example [2]

1 Mp

Maq1 Mo

- - 00

(*] Ml USES M2 and M2 IS_.COMPOSED_OF {M271, M272}
o Casel
» Test M; providing a stub for My and a driver for M;
» Then provide an implementation for M> 1 and a stub for
Mo »
o Case 2
» Implement M5 and test it by using a driver
» Implement M5 1 and test the combination of M, 1 and
M, (i.e. Mp) by using a driver
» Finally implement M; and test it with M, using a driver
for My

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 72/77

References |

[Ahmed H. EISheikh, W. Spencer Smith, and Samir E.

Chidiac.
Semi-formal design of reliable mesh generation systems.
Advances in Engineering Software, 35(12):827-841, 2004.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.

Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.

International Thomson Computer Press, New York, NY,
USA, 1995.

Dr. Smith

CAS 741, CES 741 Fall 2017: 13 Modular Design 73/77

References ||

[David Parnas.
On the design and development of program families.
IEEE Transactions on Software Engineering, SE-2(1):1-9,
1976.

[@ David L. Parnas.
On the criteria to be used in decomposing systems into

modules.
Comm. ACM, 15(2):1053-1058, December 1972.

[David L. Parnas.
On a 'buzzword’: Hierarchical structure.
In IFIP Congress 74, pages 336—339. North Holland
Publishing Company, 1974.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 74/77

References |1

[David L. Parnas.
Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages
128-138, March 1979.

[D.L. Parnas, P.C. Clement, and D. M. Weiss.
The modular structure of complex systems.
In International Conference on Software Engineering,
pages 408—419, 1984.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 75/77

References |V

W. Spencer Smith and Lei Lai.
A new requirements template for scientific computing.
In J. Ralyté, P. Agerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on
Situational Requirements Engineering Processes —
Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes,
SREP’05, pages 107-121, Paris, France, 2005. In
conjunction with 13th IEEE International Requirements
Engineering Conference.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 76/77

References V

[W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation: A
systematic approach for improving software reliability.
Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83-107, February 2007.

Dr. Smith CAS 741, CES 741 Fall 2017: 13 Modular Design 77/77

