Introduction

Tutorial 3
Owen Huyn

January 23, 2017/

What is version/source control?

From Wikipedia:
“The management of changes to documents, computer programs, large
web sites, and other collections of information.”

* Tracks and provides control over changes to source code
« Used to keep a history of code (versions)over a period of time

* Provides useful documentation of different aspects of the code submitted
over time

* Allows developersto work simultaneously (you won't see this in the
course)

Why use version/source control?

How would you see the progression of code as one develops on it?
Or if there was a bug and you did not know where it occurred?

How do you work with others concurrently on the same code base
without having conflicts?

With version control, this can all be solved

Code on version control would have a history associated to it allowing
one to go back to an older version

« Kind of like system restoring your code

An analogy would be like saving your video game every time you
reached a major milestone

Some popular version control tools

* Git
* SVN

 Mercurial
e TFS

Why is Git worth learning?

 lItis a popular version controltool

* Nearly every software development company uses a version controltool
» Once learned, switching between version control tools is a cinch

* Widely used by the open-source community (GitHub)

 Many large scale development projects use Git (in research and the
industry)

Companies & Projects Using Git

Google Microsoft Ewitter Linked[fl] RUISUEYY

'llﬁ' Ny,
" @ GNOME — 2B
andX0IdD

PostgreSQL

How do | learn Git?

* Thistutorialis only meant to teach can only teach you so much about Git
* There are greatvideos on YouTube and tutorials by simply Googling Git
« Many questions on Git are answered on StackOverflow, so look there
 The best way to learn is to practice, practice, practice!

* Itis almost a necessity to learn at least one version controltool for CS/SE
grads (extremely useful skill!)

Where do | start? - Ubuntu

On Ubuntu:
Run this command in your terminal.
apt-get install git

Let this run until itis finished.

Where do | start? - macOS/OS X
Two main options

Using the installer GUI:
Download from here and run through the instructions:

http://sourceforge.net/projects/git-osx-installer/

If you have Homebrew installed:

Thenrun: brew install git
You may need to sudo to install, eg) sudo brew install git

Where do | start? - Windows

Download from here:

https://git-scm.com/download/win

Run the file when the download is complete.

' Git 2.10.0 Setup —

Select Components f‘s

Which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

|:|Additiona| icons
[]On the Desktop
Windows Explorer integration
Git Bash Here
-~ []Git GUI Here
[] Associate .git* configuration files with the default text editor
[/] Associate .sh files to be run with Bash
[]Use a TrueType font in all console windows

Current selection requires at least 192.7 MB of disk space.

https://git-for-windows.github.io/

< Back Next > Cancel

Where do |
start? -
Windows

« Make sure these settings
are on

* Associate .sh files to be run
with Bash is completely up
to you to decide if you
want Git to handle Bash
files

* Press next when complete

Git 2.10.0 Setup —

Adjusting your PATH environment
How would you like to use Git from the command line?

(® Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

(O Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid cluttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

(O Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find" and "sort". Only
use this option if you understand the implications.

https: //git-for-windows.github.io/

< Back Next > Cancel

Where do |
start? -
Windows

Git Bash is a command line
interface that knows Bash
commands

Git Bash can also SSH into
Moore/Mills

| use this as my daily driver
for most of my Bash related
work

If you want to integrate Git
into the Windows
Command Prompt, you can
select the second option

] regommend the first
option

Git 2.10.0 Setup —

Configuring the line ending conversions
How should Git treat line endings in text files?

(® Checkout Windows-style, commit Unix-style line endings

Git will convert LF to CRLF when checking out text files. When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows (“core.autocrlf" is set to "true").

(O Checkout as-is, commit Unix-style line endings

Git will not perform any conversion when checking out text files. When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix (“core.autocrlf" is set to "input").

(O Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects ("core.autocrlf" is set to "false").

https://git-for-windows.github.io/

< Back Next > Cancel

Where do |
start? -
Wmdows

A problem with Windows is
that Unix line ending and
Windows line endings are
not the same character

* This results in change
conflicts even though the
code may look exactly the
same

* The first option s
preferred

Git 2.10.0 Setup —

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(® Use MinTTY (the default terminal of MSYS2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such

as interactive Python) must be launched via “winpty”™ to work in MinTTY.

(O Use Windows' default console window

Git will use the default console window of Windows ("cmd.exe"), which works well

with Win32 console programs such as interactive Python or node.js, but has a

very limited default scroll-back, needs to be configured to use a Unicode font in

order to display non-ASCII characters correctly, and prior to Windows 10 its

window was not freely resizable and it only allowed rectangular text selections.

https://git-for-windows.github.io/

< Back Next >

Cancel

Where do |
start? -
Windows

Use the first option

~ Where do |
' Git 2.10.0 Setup — X

Configuring extra options N Sta rt? .
- Windows

Which features would you like to enable?

* Check those two options

[Enable file system caching l and click Install

File system data will be read in bulk and cached in memory for certain
operations (“core.fscache" is set to "true"). This provides a significant
performance boost.

Enable Git Credential Manager

The Git Credential Manager for Windows provides secure Git credential storage
for Windows, most notably multi-factor authentication support for Visual Studio
Team Services and GitHub. (requires .NET framework v4.5.1 or or later)

https: //git-for-windows.github.io/

< Back Install Cancel

Great you've installed Git!

Now open it

Ubuntu/macOS
e Open your Terminal and type in Git, it should be installed

Windows
» Typein "Git Bash” in your application search bar and open the application

A bit into version control

There are two main types of version control out there:
1. Centralized version control

2. Distributed version control

Centralized version control
(not Git)

* People neededto collaborate with developers on other systems
« Centralized version control was created as a result

e A sinile server contains all the versioned files and all clients would
‘checkout’ files from this central server

« Clients would have a ‘snapshot’ of the current state of the server
repository

Centralized version control

(not Git)

Computer A

G-

Central VCS Server

Computer B

&

Version Database

Version 3

Version 2

Version 1

Centralized version control
(not Git)

This was the standard for many years
« Many still use this within the community, however this is slowly changing

Advantages:
« Everyone knows what everyone else is doing to a certain degree
« Administrators have fine tuned access to the server

« Easy to setup for each client
* Learningcurveis low

Centralized version control
(not Git)

Disadvantages:
 If server goes down, no one can collaborate their work or push changes
* |f the server goes down, everyone pretty much can't work!

 If the server gets corrupted and there are no effective backups, you lose
everything(code, history, all versioning)!
« This also means you have to backup every so often; a nuisance
 Limited to a specific workflow

Distributed version control (Git)

 Instead of getting a ‘snapshot’ of the current state of the repository from
the server, clients would clone the whole repository

* Every clone is practically a backup of the whole repository
« This allows a client to work locally ratherthan working off the server

Distributed
version

control (Git

Server Computer

Version Database

Version 3
I
Version 2
I
Version 1

Computer A

Version Database

Version 3
I
Version 2
I
Version 1

Computer B

Version Database

Version 3
I
Version 2
I
Version 1

Distributed version control (Git)

Advantages:

Flexible; no single workflow

* No reliance on the server

« Strong capabilities on developers concurrently working together

Ability to share code with other developers before submitting them onto
the main repository

Disadvantages:
« Steeperlearning curve (it's worth learning!)
* Poor handling over binary files

So how does Git exactly work?

This part is important, so pay attention.
Git uses the concept of ‘snapshots’ and not differences between files

The next two pictures will help exemplify this idea.

So how does Git exactly work?

This is an example on how a typical centralized version control system (not
Git) would view data/files:

Checkins Over Time

|

Change 1 Change 2
File A —» Al > A2
File B > Al — A2

File C —» Al — A2 > A3

So how does Git exactly work?

And this is how Git views it:

Checkins Over Time

Version 2 Version 3 Version 4 Version 5
File A1 File A2
File A Al A2
File B B Bl
File C C1 C2 C3

So how does Git exactly work?

« Gitdoes not view files as persistent changes from a base file

« Rather, it views different states of files as more check ins appear
« Thisisthe concept of ‘snapshotting’

* |t takes a snapshot of your current state of your program

 If afile has not changed, it will not store the file, rather it will link to a
previous identical file that has been stored

Some other concepts about Git

Nearly every operation in Git is local

« This providesincredible speed versus server side operations
« Remember, the working repository is cloned and not on the server

* Once enough changes are done, a developer can ‘push’ their changes
onto the server; a command done once in a while

» For example, you can do work on the bus or airplane and once you have Internet
connection, you can apply your changes onto the server

Git will track your changes
 ltisimpossible to change files without Git recognizing it

It uses a hash key to determine this (you can read more about this on the
Git documentation)

Three states of Git (worktlow)

Three main statesthat your files can reside in:

Committed

« Datais safely storedin your local database

Modified

* You have changed the file but have not committed it to your database yet
Staged

* You have marked a modified file in its current version to go into your next
commit snapshot

.git directory
(Repository)

Working

Directory

Checkout the project

Stage Fixes

End of Git concepts
Now time for a Demo

| encourage you to follow along if you have your computers and Git
installed.

If you don't have Gitinstalled on your computer yet, get some of your peers
to help you out after class.

We will go through basic Git commands.

Initializing/Cloning a Git repository

Initializing a Git repository (just for demo purposes):

git 1nit <your name for your repository goes here>
Cloning a Git repository (this is what you'll need for your repository):
git clone <your Git URL goes here>

S

sel2aad csZ2me3 o
Course material for SFWR ENG 2AA4 and COMP SCI 2ME3: Introduction to Software Development

Yr Star 65 Y Fork 6 HTTPS ¥ https://gitlab.cas.mcmaster.ca/ Iy & v + - A Global ~ Leave project

> OneDrive » McMaster > 2AA4 > v O Search 2AA4

N

[] Name Date modified Type

¢ demo2aad 2017-01-19 2:05 PM File folder
o se2aad_cs2me3 2017-01-16 1:30 PM File folder — The repo has

ﬂ Capture 2017-01-19 1:54 PM PNG File been Created
& Intro to Git 2017-01-19 1:56 PM Microsoft PowerPoint...

7] Intro to Version Control & Git! 2017-01-13 6:03 PM Microsoft PowerPoint...

MINGW64:/c/Users/huyno/onedrive/mcmaster/2aa4 O X

huyno@DESKTOP-75I1186 MINGW64

$ git init demo2aa4))]

In}t1a'l}zed empty Git repository in C:/Users/huyno/oOneDrive/McMaster/2AA4/demo2a
a4/.git

huyno@DESKTOP-75I1J86 MINGW64
$

Now after you initialized your Git repository, let’s try demoing how changes
appear to Git.

cd into your Git repository thatyou've created.

huyno@DESKTOP-75I1J86 MINGW64 (master)
$

Notice how ‘master’ appears, this is the main branch of the repository,
knowledge of branches are not needed for the scope of this course.

Now after you initialized your Git repository, let’s try demoing how changes
appear to Git.

Tracking a file

Let’s create a new file called “helloCountries.py”

huyno@DESKTOP-75II186 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aad4 (master)
$ echo >> helloCountries.py

Now let's do a’git status’ command

huyno@ESKTOP-75II]86 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aa4 (master)
$ git status
on branch master

Initial commit

Untracked files:
(use "git add <file>...

to include in what will be committed)

helloCountries.py

nothing added to commit but untracked files present (use "git add" to track)

glit status

 git status displays pathsthat have differences between the current
status of your repository and the current HEAD commit

« HEAD commit refersto the latest commit in the current branch right now

 In this case, the branch is ‘master’ and the commit is on its very first initial
commit right now (no files)

* Use this command often, it will help you determine what state your
files arein

Making your very first commit!

Going back to the previous diagram, we first need to stage our files before
we can commit them.

It captures a snapshot of the current state of the file. We will exemplify this
later in an example later in this tutorial. Just remember this.

To stage your file, you will need to do

git add <your relative path to your file>

huyno@DESKTOP-75II]J86 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aa4 (master)
$ git add helloCountries.py

warning: LF will be replaced by CRLF 1n helloCountries.py.

The file will have its original Tine endings in your working directory.

You have staged your file!

Congratulations, you have staged your file! Now do a git status to check on
the current state of your repository.

huyno@DESKTOP-75II386 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aad4 (master)
$ git status
on branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

new file: helloCountries.py

It is now ready to be committed.

Committing your file

To commit your file type in: git commit —m <“your message”>
Make sureit is an appropriate message explaining your changes so other
developers along with yourself can see what changes you've made.

huyno@DESKTOP-75IIJ86 MINGW64 (master)
$ git commit -m "Created my hello countries file!"
[master (root-commit) ca72202] Created my hello countries file!

committer: Owen Huyn <Owen Huyn>

Now that you've committed your changes, you can check your log history.

huyno@DESKTOP-75I1J86 MINGW64 (master)
$ git log

Author: Owen Huyn <Owen Huyn>
Date: Fri Jan 20 15:27:10 2017 -0500

Created my hello countries file!

Now, let's say we made changes

In the helloCountries.py, let’s add some code and save it (you can do this in
any text editor of your choice).

helloCountries.py ®

1 print "Hello Canada!"
2 print "Hello USA"|

3

Now, let's do a git status.

huyno@DESKTOP-75I13J86 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aa4 (master)

$ git status
Oon branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

L P

modified: helloCountries.py

no changes added to commit (use "git add" and/or "git commit -a")

Notice how Git recognizesthat the file is modified? Let’s do the same thing
as before and stage our changes.

huyno@DESKTOP-75II186 MINGW64 (master)
$ git add helloCountries.py

warning: LF will be replaced by CRLF in helloCountries.py.

The file will have its original Tline endings in your working directory.

huyno@DESKTOP-75I1186 MINGW64 (master)
$ git status
on branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

modified: helloCountries.py

What if we want to modity a file that has been staged?

helloCountries.py ®

1 print "Hello Canada!"

2 print "Hello USA"

3 # this stuff is after the initial staging
4 print "Hello Britain!"

huyno@DESKTOP-75IIJ86 MINGW64 ~/onedrive/mcmaster/2aa4/demo2aa4 (master)
$ git status
on branch master
Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

modified: helloCountries.py
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: helloCountries.py

Notice how it was staged and not staged? This goes back to what | said when
Git snapshots the file. Here is a picture to exemplify this idea:

helloCountries.py @

If you commit this
1 print "Hello Canada!" now. vou will onl
rint "Hello USA" Y Y
get the partthat is
staged (green)

2
3 # this stuff is after the initial staging
4

print "Hello Britain!"

OK, let’s say we decided we want both parts. We just need to restage the
new part as well.

huyno@DESKTOP-75I1J86 MINGW64 (master)
$ git add helloCountries.py

warning: LF will be replaced by CRLF 1n helloCountries.py.

The file will have 1ts original line endings in your working directory.

Similarly, let's commit these new changes into the repository

huyno@DESKTOP-75I1J86 MINGW64 (master)

$ git commit -m "Added some print statements for some countries.”
[master 79649c7] Added some print statements for some countries.
Ccommitter: Owen Huyn <Owen Huyn>

When you done enough commits for your assignments on your cloned
repository,you can apply the command: git push

This will push your commits/files onto the server where any users tied to
your repository will be able to see it.

(Note that this will not work for this demo repository since no online server
is currently tied to this repository. It will work for cloned online repos.)

Removing files

To remove files from the repository, you can't just delete the file in your
directory.

What you have to do is delete the file, stage the change and commit it.

OR

1. git rm <your relative file path>

2. Commit your change

End of basics to Git commits
Now onto syncing

The course materialis on GitLab, you should clone the course repository to
access the files.

To sync with the repository, enter the following command:
git pull

This will syncthe current branch that you are currently on with the one on
the server.

huyno@DESKTOP-75IIJ86 MINGW64 (master

)

$ git pull

remote: Counting objects: 68, done.

remote: Compressing objects: 100% (48/48), done.

remote: Total 68 (delta 24), reused 41 (delta 17)

Unpacking objects: 100% (68/68), done.

From https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3
8e50381..9413827 master -> origin/master

Updating 8e50381..9413827

Fast-forward

.gitignore _ _ 1+
Assignments/Assigl/Assigl.pdf Bin 96456 -> 96670 byt
es

Assignments/Assigl/Assigl.tex 16 +-
Assignments/Assig2/Assig2.pdf Bin 0 -> 87226 bytes
Assignments/Assig2/Assig2.tex 577 H4+H-HHHHHHHHHHH
.../IntroductionToModules.pdf Bin 0 -> 405617 bytes
.../IntroductionToModules. tex 607 ++++++++++++H++H++++
+

.../L7_ModuleIntroduction/SequentialCompletion.png | Bin 0 -> 105999 bytes
.../L8_MathematicsForMIS/MathematicsForMmIS.pdf Bin 0 -> 376366 bytes
.../L8_MathematicsForMIS/MathematicsForMIS. tex 645 +4++++HHHE
+++

Tutorials/T1l/slides/T1.tex | 2 +-

11 files changed, 1840 insertions(+), 8 deletions(-)

Dr. Smith
made some
changesto
the course
repo

Can't | just use a GUI for all this?

You could (and honestly, it comes down to personal preference) but I'll give
you some points against It:

* The GUI may not necessarily have all the commands you need

* Thereis more flexibility with the command line

* There are many different GUIs but there is only one command line
* You gain a deeper understanding and appreciation of Git

On occasion, | do use a GUI (out of scope):
« Resolving merge conflicts

 Visualizing branches

* Goingthrougha large commit history

Issue tracking

 Issues are used to keep track of tasks, enhancements and bugs on your
codebase

e They provide a forum where your team can contribute discussion

* Issues can be assignedto a specific person and it can also be assignedto
specific labels

Example in GitLab:
https://gitlab.cas.mcmaster.ca/smiths/se3xa3/tree/master/Labs/L03

Example of a popular issue tracking system on an open source project:
https://github.com/facebook/react/issues

Example of a bug issue in the same repository with discussion:
https://github.com/facebook/react/issues/6895

Great, you learned the basics to Git!

From here, you can do everythingin the course related to Git.
Unfortunately, this is only a basic tutorial on the tool.

Now you will probably have a lot of struggles and questions about Git (trust
me I've been there), but here are some resourcesyou should use:

1. Your peers (an invaluable resource)

2. StackOverflow/Google
« 99% of questions | had on Git was answered on the Internet

3. Your TAs and Avenue discussions

Great tutorials

Learn Gitin 20 minutes:
https://www.youtube.com/watch?v=Y?XZQO1n_7/c
The best tutorial website for Git:

https://www.atlassian.com/qgit

Official Git reference manual:

https://git-scm.com/doc

Advanced Git (the neat stuff)

If you would like to stay, we can go into the main features of Git that make it
a special version controltool (not necessary for this course):

1. Branches and forking

2. Merging

3. Pull requests and code reviews

Uncommon features of Git: rebasing

