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Abstract 

Two factors contribute to the difficulty of testing 
scientific software. One is the lack of testing oracles – 
a means of comparing software output to expected and 
correct results. The second is the large number of tests 
required when following any standard testing 
technique described in the software engineering 
literature. Due to the lack of oracles, scientists use 
judgment based on experience to assess 
trustworthiness, rather than correctness, of their 
software. This is an approach well established for 
assessing scientific models. However, the problem of 
assessing software is more complex, exacerbated by 
the problem of code faults. This highlights the need for 
effective and efficient testing for code faults in 
scientific software. Our current research suggests that 
a small number of well chosen tests may reveal a high 
percentage of code faults in scientific software and 
allow scientists to increase their trust.  
 
 
1. Introduction 

In a 1982 paper, Elaine Weyuker [14] pointed out 
that we routinely assume a software tester can 
determine the correctness of the output of a test. The 
basis of the assumption is that the tester has an oracle, 
a means of comparing the software’s output to 

expected – and correct – results. Weyuker notes that in 
many cases, an oracle is pragmatically unattainable. 
With scientific software, this is almost always the case. 
Weyuker further comments that if the oracle is 
unattainable, then “from the view of correctness testing 
… there is nothing to be gained by performing the 
test.” For scientific software, this is a depressing and 
disturbing conclusion. However, there is instead a goal 
of trustworthiness rather than correctness that can be 
addressed by testing. 

In this paper, we first outline a typical development 
environment for scientific software, then briefly 
discuss testing. This leads to a discussion of 
correctness and trustworthiness from the view of the 
scientist who develops and uses scientific software. We 
then introduce new results from our analysis of 
samples of scientific software using mutation testing. 
We conclude with future directions for research. 
 
2. An Environment for Scientific Software 

Scientific software resides in a rich environment 
that has several layers of complexity that affect how to 
successfully test the software. 

The computer language representation, or software, 
is the culmination of a series of model refinements 
each of which adds its own errors and/or 

Figure 1: Contributors to Computer Output Error for Scientific Software 
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approximations, as shown in Figure 1. The complexity 
of the refinements is complicated by transitions from 
one knowledge domain to another. For example, if we 
were coding an application for aircraft design, we 
could be using theory from physics, solution 
techniques from computational fluid dynamics, and 
algorithms and data structures from computer science. 
Each of these knowledge domains contributes errors 
and approximations to the models embedded in the 
computer code. The final computer output is an 
accumulation of all such errors and approximations. 
Assessing correctness of the computer output becomes 
as complex as analyzing the entire environment shown 
in Figure 1. 

 

3. Testing Scientific Software 
Testing is usually couched in terms of verification 

and validation. The software engineering definitions of 
verification and validation, based on process [eg., 6], 
provide no insight into suitable testing activities for 
scientific software. To confound things further, 
verification and validation are not consistently defined 
across the computational science and engineering 
communities [eg., 3, 7, 9, 10, 11, 13]. This lack of 
consistency plus the complexity of the scientific 
software environment contributes to the omission of a 
major goal in testing, a goal that should be addressed 
by what we call code scrutinization. We suggest that 
for scientific software, there are three separate testing 
goals that should be addressed, not two. 

Validation for scientists primarily means checking 
the computer output against a reliable source, a 
benchmark that represents something in the real world. 
In the literature, validation is described by scientists as 
the comparison of computer output against various 
targets such as measurements (of either real world or 
bench test events), analytical solutions of mathematical 
models, simplified calculations using the 
computational models, or output from other computer 
software. Whether that target is another computer 
program, measurements taken in the field, or human 
knowledge, the goal of validation is the same: is the 
computer output a reasonable proximity to the real 
world? 

Verification is also described as a comparison of the 
computer output to the output of other computer 
software or to selected solutions of the computational 
model. Roache succinctly calls verification "solving 
the equations right" [11]. This includes checking that 
expected values are returned and convergence happens 
within reasonable times. The goal of verification is the 
assessment of the suitability of the algorithms and the 
integrity of the implementation of the mathematics.  

A third goal of testing, that of searching specifically 
for code faults, is almost universally missing in the 
work practices of scientists [eg. 12]. Yet, Hatton and 
Roberts [5] carried out a detailed study that 
demonstrated that accuracy degradation due to 
unnoticed code faults is a severe problem in scientific 
software. Hatton reiterated this observation in 2007 [4], 
commenting that problems with code faults in 
scientific software have not gone away. 

We have only come across one technique, 
developed by Roache and colleagues [7, 10, 11], that 
specifically addresses faults in scientific code. This 
technique has been developed for software that solves 
partial differential equations (pde). Called the Method 
of Manufactured Solutions, the technique involves 
manufacturing an exact analytical solution for the 
computational model. The computer output can be 
compared to the manufactured solution for accuracy 
and convergence characteristics. The intent is that any 
code faults affecting either of these will be detected. 
The technique is used in niches like computational 
fluid dynamics, but is limited in its applicability. Its 
limitations are due to the difference in breadth between 
analytical solutions and full computational solutions, 
the need in some cases to alter the code to use the 
technique, and the fact that pde solvers are only a small 
fraction of the lines of code that make up the body of 
computational software. 

We suggest a new model for testing, as shown in 
Figure 2. 

 
Figure 2: Model of Testing for Scientific 
Software 
 

Figure 2 shows three circles, or cycles, that 
represent testing activities whose goals are within the 
realm of three different specialists.  
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The outer cycle of testing addresses the need to 
assess the software against goals in the scientific 
domain. The ultimate goal of the scientist is to use the 
software to provide data and insight [13] for problems 
in his/her domain. This testing addresses the capability 
of the software as a tool for the scientist. We call this 
testing activity scientific validation. 

The next cycle of testing addresses the integrity and 
suitability of the algorithms and other solution 
techniques used to provide the scientific solution. This 
is the domain of the numerical analyst. We introduce 
the term algorithm verification and refine a definition 
from Knupp and Salari [7]: "Algorithm verification is 
the process by which one assesses the code 
implementation of the mathematics underlying the 
science". 

The inner-most cycle of testing addresses code 
faults that arise in the realization of models using a 
computer language. We call this step in the scientist’s 
testing activity, code scrutinization. This step 
specifically looks for faults such as one-off errors, 
incorrect array indices, and the like. The goal is to 
ensure the integrity of the software code. This step is 
not concerned with evaluating the choice of scientific 
or mathematical models. 

Ideally, the order that these testing activities are 
carried out is from the inner cycle to the outer cycle. A 
scientist finding problems with a scientific validation 
test would be hard pressed to decide if the source of the 
problem is the scientific model, the mathematical 
model, or a code fault, if neither algorithm verification 
nor code scrutinization have been carried out. 

Code scrutinization is where testing techniques 
from software engineering could potentially provide 
benefit. We know of no testing techniques described in 
software engineering literature that have been 
specifically developed and/or validated for use with 
computational software. The goal of our research is to 
identify such a technique. 

 

4. Correctness versus Trustworthiness 
Weyuker states [14] that "[being] able to determine 

whether or not [test] results obtained are correct ... is 
the fundamental limitation that testers must face." 
Correctness is essentially a Boolean decision, either 
true or false. On the other hand, trust is on a graduated 
scale, ultimately determined by judgment.  The level of 
trust can be different for every example of scientific 
software, and possibly different for each individual 
output data. When a scientist says that a computer 
output is acceptable within forty percent of benchmark 
data, he/she is talking about trust. Nothing can be said 
about the Boolean concept of correctness. 

If we consider the three cycles of testing in our 
model, scientific validation testing is about trust: is the 
software giving output that we believe? To gain trust, 
we exercise the software in different ways and 
compare the output to different benchmarks in the 
scientific domain. As the output conforms to our 
expectations, our trust increases. 

Similarly for algorithm verification, all we can do is 
exercise the implementation of our algorithms until our 
trust is sufficiently high. It is well known that we 
cannot do exhaustive testing. Scientists have developed 
a number of approaches to judge trustworthiness of the 
implementation of their mathematics. For example, 
checking that quantities subject to the conservation 
laws are in fact conserved or that the matrix solver 
returns a message about ill-conditioning when 
expected.  

Only in the testing cycle of code scrutinization can 
we possibly tackle the Boolean true/false of 
correctness. For a specific code segment, we may have 
an oracle that would allow us to determine correctness. 
The impossibility of exhaustive testing still lingers 
however. Practically, this means we make judicious 
choices for our testing, and we fall back on the 
sufficiency of trust. 

 

5. Definition of Silent Fault 
Trust means we use  “judgment” to decide the 

acceptability of output from an example of software. 
Judgment unfortunately can miss evidence of a serious 
software fault due to insufficient data and 
misinterpretation. For scientists this is exacerbated by 
the accumulation of approximations and scientific error 
as the code is realized from the different models. 

Under many different conditions, a code fault may 
provide no obvious signal that something is wrong and 
slip past the scientist’s judgment. This is what we term 
a “silent fault”. More fully, we define silent faults as 
those that cause a change in output but do not cause 
any of (i) an error message, (ii) a system crash, (iii) 
wildly improbable results, or, (iv) noticeably longer 
execution time (in the extreme, an endless loop). 

Silent faults are what Hatton and Roberts [5] found 
when they compared the output of nine seismic data 
processing packages. Code faults such as one-off errors 
caused significant loss of accuracy. These faults went 
unnoticed by the geoscientists because the output of 
the code fell within the limits of plausible values. Yet, 
as Hatton points out in [4], this output data is used to 
site oil wells and the loss of accuracy effectively 
randomized a multi-million dollar decision making 
process. 
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It is these types of faults we are interested in 
exposing. For this research, we are using a technique 
called mutation testing. 

 

6. Analysis of Software Behaviour Using 
Mutation Testing 

Mutation testing is a well defined technique [eg. 1, 
2, 8] used to assess the adequacy of a set of tests for a 
particular piece of software, P0. 

The technique involves generating a number of new 
source codes, called mutants, by making one small 
change to the source code of P0 for each mutant, Pm. 
The types of small changes are based on a set of 
mutation operators that research has demonstrated [eg. 
2] to be representative of code faults in general. Each 
mutant then represents a single code fault that could 
occur in the original code P0. 

The adequacy of a set of tests for P0 is established 
by running the set of tests on all the mutants that have 
been generated. A mutant is said to be “killed” by any 
one of the tests in the set if the output from the mutant 
Pm differs from the output of the original program P0. 
This is a simple binary decision. Adequacy of the set 
of tests is judged by the ability of the tests to kill the 
mutants.  

For scientific software with floating point output, 
and with the accumulation of the many errors and 
approximations as shown in Figure 1, a binary decision 
on equality is not useful.  Instead, we compute a 
sensitivity measure S between the output of the 
mutated code and the output of the non-mutated code 
for a particular test tx: 

S(P0, Pm, tx) = | Pm (tx) – P0 (tx)| / |P0 (tx)| 
The sensitivity measure S gives a relative difference 

between the output for Pm and P0 when executing the 
test tx. We do not use any tests where |P0 (tx)| = 0. 

For our research, we generated a set of mutants for 
various examples of scientific software. We then ran a 
series of tests to examine the ability of the tests to 
expose the mutants. In other words, we wanted to 
determine which tests caused the output of the mutant 
Pm to be most different from the output of P0, and 
hence most visible. In other words, we are interested in 
tests with maximum S for each mutant Pm. 

At the moment, we are using examples of code 
drawn from a library of MATLAB functions. The 
codes are all relatively small, but are intended to be 
part of a larger application. We feel the codes are 
similar to small numerical code units typically used in 
larger computational codes. 

For each code example, we generated a set of 
mutants and two sets of tests. The first set of tests was 
generated randomly with values chosen from the range 
of reasonable input values. The second set of tests was 
specifically designed to exercise the valid limits of the 
functions. 

The results we are observing so far suggest that a 
relatively small set of tests that “push” on the limits of 
the coded computation can reveal a large proportion of 
the code faults represented by the mutants. 

Figures 4 and 5 illustrate our observations with an 
example of code that performs an integration using 
Simpson’s Rule. The x-axis gives the real number 
range of values for each bar in the graph. The height of 
the bar gives the number of mutants whose maximum 
S fall in the associated real number range. The right 
most bar is marked “err”. This is the count of mutants 
that failed with an error condition for at least one test 
tx. 

We’ll call the source code implementing Simpson’s 
Rule, Ps. For Ps, 167 mutants were generated using 
MATLAB variants of the mutation operators described 
in [1]. 

The first set of tests we created consisted of 200 
random tests. For each test and for each mutant, we 
calculated S(Ps,Pm,tx). Since we are interested in tests 
that reveal a mutant, we recorded the maximum S for 
each mutant. For the set of random tests, Figure 3 
shows the counts of the number of mutants whose 
max(S) falls in the given ranges. 

If S(Ps,Pm,tx) = 0, then Ps and Pm are considered 
equivalent for tx. There were 11 mutants where S was 
zero for all tests in the set. For the purposes of our 
discussions, the range of 0 < S < 1 was chosen as 
representing silent faults. Faults whose output falls in 
this range under particular test conditions might be 
difficult for a scientist to detect. There were 50 mutants 
whose maximum S was in this range. There were 47 
mutants whose maximum S was above one. We 
assumed this difference could be large enough to make 
the fault visible. Another 59 mutants caused an error 
condition, also very visible. If a test causes the 
sensitivity measure for a mutant to fall either into the 
range S>1 or into an error condition, then we say the 
test strongly reveals the mutant. In summary, our first 
set of tests strongly revealed 106 of the 156 non-
equivalent mutants, or 68% of the mutants. 
 

62



 
Figure 3: Counts of mutants Pm with given 
maximum S for a set of 200 random tests.  

 
Figure 4: Counts of mutants Pm with given 
maximum S for a set of 68 well-designed 
tests.  
 

A second set of tests were designed to exercise the 
function by pushing on its boundaries. We designed 
tests to exercise the function in ways that would be 
immediately recognizable to scientists. For example, 
the number of panels in the integration were chosen as 
small (1 and 2) and large (1000); sections were chosen 
to include intercepts, symmetries and non-symmetries. 
By taking valid combinations of these inputs, we 
generated 68 tests. Figure 4 shows the counts of 
mutants with max(S) in the given ranges for this set of 
tests. 

We again observed 11 mutants in the range S=0 (in 
other words, equivalent to Ps). However, the number of 
mutants that either caused an error or whose value for 
max(S) >1 is 144. In other words, 144 of the 156 non-
equivalent mutants, or 92%, were revealed by this 
smaller set of tests. 

On closer examination, one test alone (test #4) 
strongly revealed 140 of the mutants. The addition of 
one other test (test #1) resulted in all 144 mutants 
being revealed. The success of test#4 may have 
resulted from its un-mutated output being very close to 
zero; it was easy to perturb the output by code changes. 
Test #1 used the minimum value of one for the number 
of panels in the integration and revealed errors that 
tried to push the number of panels to illegal values. 

For this particular example, a set of two well chosen 
tests revealed 92% of code faults. 

Our examination of other MATLAB examples of 
scientific software has given similar results. In all cases 
the number of mutants generated was comparable to 
that for the Simpson’s Rule function. Overall, we 
found for the examples we considered, that 2 to 5 well 
designed tests strongly revealed a large percentage of 
the mutants. The percentages ranged from 76 to 100 
percent. The well designed tests were based on ideas 
that would be immediately cognizant to scientists. 

 

7. Conclusions 
The difficulty of testing scientific software arises 

from many factors including the lack of test oracles 
and the difficulty of judging how much testing is 
enough. A testing goal of correctness is impractical and 
should be replaced by a goal of trustworthiness. 
Scientists are already comfortable with testing their 
software to increase trust in their science models and 
their solution techniques. Scientists also need to test 
the software to address code faults, with a cycle of 
testing that we call code scrutinization. The practical 
impossibility of finding all code faults is well 
understood, which leaves the question of how much is 
enough? This is of particular concern to scientists 
where their time needs to be spent doing science, not 
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testing software. To make a particular testing approach 
attractive to scientists, it must be time-efficient and 
results-effective. Our research is showing that it may 
be possible to characterize and define such an 
approach. At this moment in our research, we are 
making judicious choices for our testing with the help 
of 20-20 hindsight. We need to move on to identifying 
the commonality in these choices and provide scientists 
with guidance on how to secure trust in their software. 
Our aim is to identify a time-efficient and results-
effective testing approach for scientific software. 
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