
Introduction
Tutorial 3
Owen Huyn
January 23, 2017



What is version/source control?
From Wikipedia:

“The management of changes to documents, computer programs, large 
web sites, and other collections of information.”

• Tracks and provides control over changes to source code
• Used to keep a history of code (versions) over a period of time
• Provides useful documentation of different aspects of the code submitted 

over time
• Allows developers to work simultaneously (you won’t see this in the 

course)



Why use version/source control?
• How would you see the progression of code as one develops on it?
• Or if there was a bug and you did not know where it occurred?
• How do you work with others concurrently on the same code base 

without having conflicts?

With version control, this can all be solved
• Code on version control would have a history associated to it allowing 

one to go back to an older version
• Kind of like system restoring your code

• An analogy would be like saving your video game every time you 
reached a major milestone



Some popular version control tools
• Git
• SVN
• Mercurial
• TFS



Why is Git worth learning?
• It is a popular version control tool
• Nearly every software development company uses a version control tool

• Once learned, switching between version control tools is a cinch
• Widely used by the open-source community (GitHub)
• Many large scale development projects use Git (in research and the

industry)



How do I learn Git?
• This tutorial is only meant to teach can only teach you so much about Git
• There are great videos on YouTube and tutorials by simply Googling Git
• Many questions on Git are answered on StackOverflow, so look there
• The best way to learn is to practice, practice, practice!
• It is almost a necessity to learn at least one version control tool for CS/SE 

grads (extremely useful skill!)



Where do I start? – Ubuntu
On Ubuntu:
Run this command in your terminal.
apt-get install git

Let this run until it is finished.



Where do I start? – macOS/OS X
Two main options
Using the installer GUI:
Download from here and run through the instructions:
http://sourceforge.net/projects/git-osx-installer/

If you have Homebrew installed:
Then run: brew install git
You may need to sudo to install, eg) sudo brew install git



Where do I start? - Windows
Download from here:
https://git-scm.com/download/win
Run the file when the download is complete.



Where do I 
start? -
Windows
• Make sure these settings 

are on
• Associate .sh files to be run 

with Bash is completely up 
to you to decide if you 
want Git to handle Bash 
files

• Press next when complete



Where do I 
start? -
Windows
• Git Bash is a command line 

interface that knows Bash 
commands

• Git Bash can also SSH into 
Moore/Mills

• I use this as my daily driver 
for most of my Bash related 
work

• If you want to integrate Git 
into the Windows 
Command Prompt, you can 
select the second option

• I recommend the first 
option



Where do I 
start? -
Windows
• A problem with Windows is 

that Unix line ending and 
Windows line endings are 
not the same character

• This results in change 
conflicts even though the 
code may look exactly the 
same

• The first option is 
preferred



Where do I 
start? -
Windows
• Use the first option



Where do I 
start? -
Windows
• Check those two options 

and click Install



Great you’ve installed Git!
Now open it
Ubuntu/macOS
• Open your Terminal and type in Git, it should be installed

Windows
• Type in “Git Bash” in your application search bar and open the application



A bit into version control
There are two main types of version control out there:
1. Centralized version control
2. Distributed version control



Centralized version control
(not Git)
• People needed to collaborate with developers on other systems
• Centralized version control was created as a result
• A single server contains all the versioned files and all clients would 

‘checkout’ files from this central server
• Clients would have a ‘snapshot’ of the current state of the server 

repository



Centralized version control
(not Git)



Centralized version control
(not Git)
This was the standard for many years
• Many still use this within the community, however this is slowly changing

Advantages:
• Everyone knows what everyone else is doing to a certain degree
• Administrators have fine tuned access to the server
• Easy to setup for each client
• Learning curve is low



Centralized version control
(not Git)
Disadvantages:
• If server goes down, no one can collaborate their work or push changes

• If the server goes down, everyone pretty much can’t work!
• If the server gets corrupted and there are no effective backups, you lose 

everything (code, history, all versioning)!
• This also means you have to backup every so often; a nuisance

• Limited to a specific workflow



Distributed version control (Git)
• Instead of getting a ‘snapshot’ of the current state of the repository from 

the server, clients would clone the whole repository
• Every clone is practically a backup of the whole repository
• This allows a client to work locally rather than working off the server



Distributed 
version 
control (Git)



Distributed version control (Git) 
Advantages:
• Flexible; no single workflow
• No reliance on the server
• Strong capabilities on developers concurrently working together
• Ability to share code with other developers before submitting them onto 

the main repository

Disadvantages:
• Steeper learning curve (it’s worth learning!)
• Poor handling over binary files



So how does Git exactly work?
This part is important, so pay attention.
Git uses the concept of ‘snapshots’ and not differences between files
The next two pictures will help exemplify this idea.



So how does Git exactly work?
This is an example on how a typical centralized version control system (not 
Git) would view data/files:

Change 1 Change 2



So how does Git exactly work?
And this is how Git views it:

File A1 File A2



So how does Git exactly work?
• Git does not view files as persistent changes from a base file
• Rather, it views different states of files as more check ins appear
• This is the concept of ‘snapshotting’
• It takes a snapshot of your current state of your program
• If a file has not changed, it will not store the file, rather it will link to a 

previous identical file that has been stored



Some other concepts about Git
Nearly every operation in Git is local
• This provides incredible speed versus server side operations

• Remember, the working repository is cloned and not on the server
• Once enough changes are done, a developer can ‘push’ their changes 

onto the server; a command done once in a while
• For example, you can do work on the bus or airplane and once you have Internet 

connection, you can apply your changes onto the server
Git will track your changes
• It is impossible to change files without Git recognizing it
• It uses a hash key to determine this (you can read more about this on the 

Git documentation)



Three states of Git (workflow)
Three main states that your files can reside in: 
Committed
• Data is safely stored in your local database
Modified
• You have changed the file but have not committed it to your database yet
Staged
• You have marked a modified file in its current version to go into your next 

commit snapshot



Three states of Git (workflow)



End of Git concepts
Now time for a Demo
I encourage you to follow along if you have your computers and Git 
installed.
If you don’t have Git installed on your computer yet, get some of your peers 
to help you out after class.
We will go through basic Git commands.



Initializing/Cloning a Git repository
Initializing a Git repository (just for demo purposes):
git init <your name for your repository goes here>
Cloning a Git repository (this is what you’ll need for your repository):
git clone <your Git URL goes here>



The repo has 
been created



First time in the repository
Now after you initialized your Git repository, let’s try demoing how changes 
appear to Git.
cd into your Git repository that you’ve created.

Notice how ‘master’ appears, this is the main branch of the repository, 
knowledge of branches are not needed for the scope of this course.

Now after you initialized your Git repository, let’s try demoing how changes 
appear to Git.



Tracking a file
Let’s create a new file called “helloCountries.py”

Now let’s do a ‘git status’ command



git status
• git status displays paths that have differences between the current 

status of your repository and the current HEAD commit
• HEAD commit refers to the latest commit in the current branch right now
• In this case, the branch is ‘master’ and the commit is on its very first initial 

commit right now (no files)
• Use this command often, it will help you determine what state your 

files are in



Making your very first commit!
Going back to the previous diagram, we first need to stage our files before 
we can commit them.
It captures a snapshot of the current state of the file. We will exemplify this 
later in an example later in this tutorial. Just remember this.
To stage your file, you will need to do
git add <your relative path to your file>



You have staged your file!
Congratulations, you have staged your file! Now do a git status to check on 
the current state of your repository.

It is now ready to be committed.



Committing your file

Now that you’ve committed your changes, you can check your log history.

To commit your file type in: git commit –m <“your message”>
Make sure it is an appropriate message explaining your changes so other 
developers along with yourself can see what changes you’ve made.



Now, let’s say we made changes
In the helloCountries.py, let’s add some code and save it (you can do this in 
any text editor of your choice).

Now, let’s do a git status.



Notice how Git recognizes that the file is modified? Let’s do the same thing 
as before and stage our changes.

What if we want to modify a file that has been staged?



Notice how it was staged and not staged? This goes back to what I said when 
Git snapshots the file. Here is a picture to exemplify this idea:

If you commit this 
now, you will only 
get the part that is 
staged (green)



Similarly, let’s commit these new changes into the repository

OK, let’s say we decided we want both parts. We just need to restage the 
new part as well.

When you done enough commits for your assignments on your cloned 
repository, you can apply the command: git push
This will push your commits/files onto the server where any users tied to 
your repository will be able to see it.
(Note that this will not work for this demo repository since no online server 
is currently tied to this repository. It will work for cloned online repos.)



Removing files
To remove files from the repository, you can’t just delete the file in your 
directory.

What you have to do is delete the file, stage the change and commit it.

OR
1. git rm <your relative file path>

2. Commit your change



End of basics to Git commits
Now onto syncing
The course material is on GitLab, you should clone the course repository to 
access the files.
To sync with the repository, enter the following command:
git pull

This will sync the current branch that you are currently on with the one on 
the server.



Dr. Smith 
made some 
changes to 
the course 
repo



Can’t I just use a GUI for all this?
You could (and honestly, it comes down to personal preference) but I’ll give 
you some points against it:
• The GUI may not necessarily have all the commands you need
• There is more flexibility with the command line
• There are many different GUIs but there is only one command line
• You gain a deeper understanding and appreciation of Git

On occasion, I do use a GUI (out of scope):
• Resolving merge conflicts
• Visualizing branches
• Going through a large commit history



Issue tracking
• Issues are used to keep track of tasks, enhancements and bugs on your 

codebase
• They provide a forum where your team can contribute discussion
• Issues can be assigned to a specific person and it can also be assigned to 

specific labels

Example in GitLab: 
https://gitlab.cas.mcmaster.ca/smiths/se3xa3/tree/master/Labs/L03
Example of a popular issue tracking system on an open source project:
https://github.com/facebook/react/issues
Example of a bug issue in the same repository with discussion:
https://github.com/facebook/react/issues/6895



Great, you learned the basics to Git!
From here, you can do everything in the course related to Git.
Unfortunately, this is only a basic tutorial on the tool.
Now you will probably have a lot of struggles and questions about Git (trust 
me I’ve been there), but here are some resources you should use:
1. Your peers (an invaluable resource)
2. StackOverflow/Google
• 99% of questions I had on Git was answered on the Internet

3. Your TAs and Avenue discussions



Great tutorials
Learn Git in 20 minutes:
https://www.youtube.com/watch?v=Y9XZQO1n_7c
The best tutorial website for Git:
https://www.atlassian.com/git
Official Git reference manual:
https://git-scm.com/doc



Advanced Git (the neat stuff)
If you would like to stay, we can go into the main features of Git that make it 
a special version control tool (not necessary for this course):
1. Branches and forking
2. Merging
3. Pull requests and code reviews

Uncommon features of Git: rebasing


