
Testing for Trustworthiness in Scientific Software

Daniel Hook Diane Kelly
 Queen's University Royal Military College of Canada

 Kingston Ontario Kingston Ontario

Abstract

Two factors contribute to the difficulty of testing
scientific software. One is the lack of testing oracles –
a means of comparing software output to expected and
correct results. The second is the large number of tests
required when following any standard testing
technique described in the software engineering
literature. Due to the lack of oracles, scientists use
judgment based on experience to assess
trustworthiness, rather than correctness, of their
software. This is an approach well established for
assessing scientific models. However, the problem of
assessing software is more complex, exacerbated by
the problem of code faults. This highlights the need for
effective and efficient testing for code faults in
scientific software. Our current research suggests that
a small number of well chosen tests may reveal a high
percentage of code faults in scientific software and
allow scientists to increase their trust.

1. Introduction

In a 1982 paper, Elaine Weyuker [14] pointed out
that we routinely assume a software tester can
determine the correctness of the output of a test. The
basis of the assumption is that the tester has an oracle,
a means of comparing the software’s output to

expected – and correct – results. Weyuker notes that in
many cases, an oracle is pragmatically unattainable.
With scientific software, this is almost always the case.
Weyuker further comments that if the oracle is
unattainable, then “from the view of correctness testing
… there is nothing to be gained by performing the
test.” For scientific software, this is a depressing and
disturbing conclusion. However, there is instead a goal
of trustworthiness rather than correctness that can be
addressed by testing.

In this paper, we first outline a typical development
environment for scientific software, then briefly
discuss testing. This leads to a discussion of
correctness and trustworthiness from the view of the
scientist who develops and uses scientific software. We
then introduce new results from our analysis of
samples of scientific software using mutation testing.
We conclude with future directions for research.

2. An Environment for Scientific Software

Scientific software resides in a rich environment
that has several layers of complexity that affect how to
successfully test the software.

The computer language representation, or software,
is the culmination of a series of model refinements
each of which adds its own errors and/or

Figure 1: Contributors to Computer Output Error for Scientific Software

SECSE’09, May 23, 2009, Vancouver, Canada
978-1-4244-3737-5/09/$25.00 © 2009 Crown ICSE’09 Workshop59

approximations, as shown in Figure 1. The complexity
of the refinements is complicated by transitions from
one knowledge domain to another. For example, if we
were coding an application for aircraft design, we
could be using theory from physics, solution
techniques from computational fluid dynamics, and
algorithms and data structures from computer science.
Each of these knowledge domains contributes errors
and approximations to the models embedded in the
computer code. The final computer output is an
accumulation of all such errors and approximations.
Assessing correctness of the computer output becomes
as complex as analyzing the entire environment shown
in Figure 1.

3. Testing Scientific Software
Testing is usually couched in terms of verification

and validation. The software engineering definitions of
verification and validation, based on process [eg., 6],
provide no insight into suitable testing activities for
scientific software. To confound things further,
verification and validation are not consistently defined
across the computational science and engineering
communities [eg., 3, 7, 9, 10, 11, 13]. This lack of
consistency plus the complexity of the scientific
software environment contributes to the omission of a
major goal in testing, a goal that should be addressed
by what we call code scrutinization. We suggest that
for scientific software, there are three separate testing
goals that should be addressed, not two.

Validation for scientists primarily means checking
the computer output against a reliable source, a
benchmark that represents something in the real world.
In the literature, validation is described by scientists as
the comparison of computer output against various
targets such as measurements (of either real world or
bench test events), analytical solutions of mathematical
models, simplified calculations using the
computational models, or output from other computer
software. Whether that target is another computer
program, measurements taken in the field, or human
knowledge, the goal of validation is the same: is the
computer output a reasonable proximity to the real
world?

Verification is also described as a comparison of the
computer output to the output of other computer
software or to selected solutions of the computational
model. Roache succinctly calls verification "solving
the equations right" [11]. This includes checking that
expected values are returned and convergence happens
within reasonable times. The goal of verification is the
assessment of the suitability of the algorithms and the
integrity of the implementation of the mathematics.

A third goal of testing, that of searching specifically
for code faults, is almost universally missing in the
work practices of scientists [eg. 12]. Yet, Hatton and
Roberts [5] carried out a detailed study that
demonstrated that accuracy degradation due to
unnoticed code faults is a severe problem in scientific
software. Hatton reiterated this observation in 2007 [4],
commenting that problems with code faults in
scientific software have not gone away.

We have only come across one technique,
developed by Roache and colleagues [7, 10, 11], that
specifically addresses faults in scientific code. This
technique has been developed for software that solves
partial differential equations (pde). Called the Method
of Manufactured Solutions, the technique involves
manufacturing an exact analytical solution for the
computational model. The computer output can be
compared to the manufactured solution for accuracy
and convergence characteristics. The intent is that any
code faults affecting either of these will be detected.
The technique is used in niches like computational
fluid dynamics, but is limited in its applicability. Its
limitations are due to the difference in breadth between
analytical solutions and full computational solutions,
the need in some cases to alter the code to use the
technique, and the fact that pde solvers are only a small
fraction of the lines of code that make up the body of
computational software.

We suggest a new model for testing, as shown in
Figure 2.

Figure 2: Model of Testing for Scientific
Software

Figure 2 shows three circles, or cycles, that
represent testing activities whose goals are within the
realm of three different specialists.

60

The outer cycle of testing addresses the need to
assess the software against goals in the scientific
domain. The ultimate goal of the scientist is to use the
software to provide data and insight [13] for problems
in his/her domain. This testing addresses the capability
of the software as a tool for the scientist. We call this
testing activity scientific validation.

The next cycle of testing addresses the integrity and
suitability of the algorithms and other solution
techniques used to provide the scientific solution. This
is the domain of the numerical analyst. We introduce
the term algorithm verification and refine a definition
from Knupp and Salari [7]: "Algorithm verification is
the process by which one assesses the code
implementation of the mathematics underlying the
science".

The inner-most cycle of testing addresses code
faults that arise in the realization of models using a
computer language. We call this step in the scientist’s
testing activity, code scrutinization. This step
specifically looks for faults such as one-off errors,
incorrect array indices, and the like. The goal is to
ensure the integrity of the software code. This step is
not concerned with evaluating the choice of scientific
or mathematical models.

Ideally, the order that these testing activities are
carried out is from the inner cycle to the outer cycle. A
scientist finding problems with a scientific validation
test would be hard pressed to decide if the source of the
problem is the scientific model, the mathematical
model, or a code fault, if neither algorithm verification
nor code scrutinization have been carried out.

Code scrutinization is where testing techniques
from software engineering could potentially provide
benefit. We know of no testing techniques described in
software engineering literature that have been
specifically developed and/or validated for use with
computational software. The goal of our research is to
identify such a technique.

4. Correctness versus Trustworthiness
Weyuker states [14] that "[being] able to determine

whether or not [test] results obtained are correct ... is
the fundamental limitation that testers must face."
Correctness is essentially a Boolean decision, either
true or false. On the other hand, trust is on a graduated
scale, ultimately determined by judgment. The level of
trust can be different for every example of scientific
software, and possibly different for each individual
output data. When a scientist says that a computer
output is acceptable within forty percent of benchmark
data, he/she is talking about trust. Nothing can be said
about the Boolean concept of correctness.

If we consider the three cycles of testing in our
model, scientific validation testing is about trust: is the
software giving output that we believe? To gain trust,
we exercise the software in different ways and
compare the output to different benchmarks in the
scientific domain. As the output conforms to our
expectations, our trust increases.

Similarly for algorithm verification, all we can do is
exercise the implementation of our algorithms until our
trust is sufficiently high. It is well known that we
cannot do exhaustive testing. Scientists have developed
a number of approaches to judge trustworthiness of the
implementation of their mathematics. For example,
checking that quantities subject to the conservation
laws are in fact conserved or that the matrix solver
returns a message about ill-conditioning when
expected.

Only in the testing cycle of code scrutinization can
we possibly tackle the Boolean true/false of
correctness. For a specific code segment, we may have
an oracle that would allow us to determine correctness.
The impossibility of exhaustive testing still lingers
however. Practically, this means we make judicious
choices for our testing, and we fall back on the
sufficiency of trust.

5. Definition of Silent Fault
Trust means we use “judgment” to decide the

acceptability of output from an example of software.
Judgment unfortunately can miss evidence of a serious
software fault due to insufficient data and
misinterpretation. For scientists this is exacerbated by
the accumulation of approximations and scientific error
as the code is realized from the different models.

Under many different conditions, a code fault may
provide no obvious signal that something is wrong and
slip past the scientist’s judgment. This is what we term
a “silent fault”. More fully, we define silent faults as
those that cause a change in output but do not cause
any of (i) an error message, (ii) a system crash, (iii)
wildly improbable results, or, (iv) noticeably longer
execution time (in the extreme, an endless loop).

Silent faults are what Hatton and Roberts [5] found
when they compared the output of nine seismic data
processing packages. Code faults such as one-off errors
caused significant loss of accuracy. These faults went
unnoticed by the geoscientists because the output of
the code fell within the limits of plausible values. Yet,
as Hatton points out in [4], this output data is used to
site oil wells and the loss of accuracy effectively
randomized a multi-million dollar decision making
process.

61

It is these types of faults we are interested in
exposing. For this research, we are using a technique
called mutation testing.

6. Analysis of Software Behaviour Using
Mutation Testing

Mutation testing is a well defined technique [eg. 1,
2, 8] used to assess the adequacy of a set of tests for a
particular piece of software, P0.

The technique involves generating a number of new
source codes, called mutants, by making one small
change to the source code of P0 for each mutant, Pm.
The types of small changes are based on a set of
mutation operators that research has demonstrated [eg.
2] to be representative of code faults in general. Each
mutant then represents a single code fault that could
occur in the original code P0.

The adequacy of a set of tests for P0 is established
by running the set of tests on all the mutants that have
been generated. A mutant is said to be “killed” by any
one of the tests in the set if the output from the mutant
Pm differs from the output of the original program P0.
This is a simple binary decision. Adequacy of the set
of tests is judged by the ability of the tests to kill the
mutants.

For scientific software with floating point output,
and with the accumulation of the many errors and
approximations as shown in Figure 1, a binary decision
on equality is not useful. Instead, we compute a
sensitivity measure S between the output of the
mutated code and the output of the non-mutated code
for a particular test tx:

S(P0, Pm, tx) = | Pm (tx) – P0 (tx)| / |P0 (tx)|
The sensitivity measure S gives a relative difference

between the output for Pm and P0 when executing the
test tx. We do not use any tests where |P0 (tx)| = 0.

For our research, we generated a set of mutants for
various examples of scientific software. We then ran a
series of tests to examine the ability of the tests to
expose the mutants. In other words, we wanted to
determine which tests caused the output of the mutant
Pm to be most different from the output of P0, and
hence most visible. In other words, we are interested in
tests with maximum S for each mutant Pm.

At the moment, we are using examples of code
drawn from a library of MATLAB functions. The
codes are all relatively small, but are intended to be
part of a larger application. We feel the codes are
similar to small numerical code units typically used in
larger computational codes.

For each code example, we generated a set of
mutants and two sets of tests. The first set of tests was
generated randomly with values chosen from the range
of reasonable input values. The second set of tests was
specifically designed to exercise the valid limits of the
functions.

The results we are observing so far suggest that a
relatively small set of tests that “push” on the limits of
the coded computation can reveal a large proportion of
the code faults represented by the mutants.

Figures 4 and 5 illustrate our observations with an
example of code that performs an integration using
Simpson’s Rule. The x-axis gives the real number
range of values for each bar in the graph. The height of
the bar gives the number of mutants whose maximum
S fall in the associated real number range. The right
most bar is marked “err”. This is the count of mutants
that failed with an error condition for at least one test
tx.

We’ll call the source code implementing Simpson’s
Rule, Ps. For Ps, 167 mutants were generated using
MATLAB variants of the mutation operators described
in [1].

The first set of tests we created consisted of 200
random tests. For each test and for each mutant, we
calculated S(Ps,Pm,tx). Since we are interested in tests
that reveal a mutant, we recorded the maximum S for
each mutant. For the set of random tests, Figure 3
shows the counts of the number of mutants whose
max(S) falls in the given ranges.

If S(Ps,Pm,tx) = 0, then Ps and Pm are considered
equivalent for tx. There were 11 mutants where S was
zero for all tests in the set. For the purposes of our
discussions, the range of 0 < S < 1 was chosen as
representing silent faults. Faults whose output falls in
this range under particular test conditions might be
difficult for a scientist to detect. There were 50 mutants
whose maximum S was in this range. There were 47
mutants whose maximum S was above one. We
assumed this difference could be large enough to make
the fault visible. Another 59 mutants caused an error
condition, also very visible. If a test causes the
sensitivity measure for a mutant to fall either into the
range S>1 or into an error condition, then we say the
test strongly reveals the mutant. In summary, our first
set of tests strongly revealed 106 of the 156 non-
equivalent mutants, or 68% of the mutants.

62

Figure 3: Counts of mutants Pm with given
maximum S for a set of 200 random tests.

Figure 4: Counts of mutants Pm with given
maximum S for a set of 68 well-designed
tests.

A second set of tests were designed to exercise the
function by pushing on its boundaries. We designed
tests to exercise the function in ways that would be
immediately recognizable to scientists. For example,
the number of panels in the integration were chosen as
small (1 and 2) and large (1000); sections were chosen
to include intercepts, symmetries and non-symmetries.
By taking valid combinations of these inputs, we
generated 68 tests. Figure 4 shows the counts of
mutants with max(S) in the given ranges for this set of
tests.

We again observed 11 mutants in the range S=0 (in
other words, equivalent to Ps). However, the number of
mutants that either caused an error or whose value for
max(S) >1 is 144. In other words, 144 of the 156 non-
equivalent mutants, or 92%, were revealed by this
smaller set of tests.

On closer examination, one test alone (test #4)
strongly revealed 140 of the mutants. The addition of
one other test (test #1) resulted in all 144 mutants
being revealed. The success of test#4 may have
resulted from its un-mutated output being very close to
zero; it was easy to perturb the output by code changes.
Test #1 used the minimum value of one for the number
of panels in the integration and revealed errors that
tried to push the number of panels to illegal values.

For this particular example, a set of two well chosen
tests revealed 92% of code faults.

Our examination of other MATLAB examples of
scientific software has given similar results. In all cases
the number of mutants generated was comparable to
that for the Simpson’s Rule function. Overall, we
found for the examples we considered, that 2 to 5 well
designed tests strongly revealed a large percentage of
the mutants. The percentages ranged from 76 to 100
percent. The well designed tests were based on ideas
that would be immediately cognizant to scientists.

7. Conclusions
The difficulty of testing scientific software arises

from many factors including the lack of test oracles
and the difficulty of judging how much testing is
enough. A testing goal of correctness is impractical and
should be replaced by a goal of trustworthiness.
Scientists are already comfortable with testing their
software to increase trust in their science models and
their solution techniques. Scientists also need to test
the software to address code faults, with a cycle of
testing that we call code scrutinization. The practical
impossibility of finding all code faults is well
understood, which leaves the question of how much is
enough? This is of particular concern to scientists
where their time needs to be spent doing science, not

63

testing software. To make a particular testing approach
attractive to scientists, it must be time-efficient and
results-effective. Our research is showing that it may
be possible to characterize and define such an
approach. At this moment in our research, we are
making judicious choices for our testing with the help
of 20-20 hindsight. We need to move on to identifying
the commonality in these choices and provide scientists
with guidance on how to secure trust in their software.
Our aim is to identify a time-efficient and results-
effective testing approach for scientific software.

8. Acknowledgements
This work is funded by NSERC (Natural Sciences and
Engineering Research Council of Canada) and ARP
(Canadian Department of National Defense Academic
Research Program.)

9. References
[1] James H. Andrews, Lionel C. Briand, Yvan Labiche,
Akbar Siami Namin, “Using Mutation Analysis for
Assessing and Comparing Testing Coverage Criteria”, IEEE
Transactions on Software Engineering, Vol. 32, No. 8,
August 2006, pp. 608-624
[2] James H. Andrews, Lionel C. Briand, Yvan Labiche, “Is
Mutation an Appropriate Tool for Testing Experiments?”,
Proceedings 27th International Conference on Software
Engineering ICSE ’05, 2005, pp. 402-411
[3] CSA N286.7-99, Quality Assurance of Analytical,
Scientific, and Design Computer Programs for Nuclear
Power Plants, Canadian Standards Association, March 1999
[4] Les Hatton, “The chimera of software quality”,
Computer, 40(8):104, 2007, pp.102-103
[5] Les Hatton, Andy Roberts, “How accurate is scientific
software?”, IEEE Transactions on Software Engineering,
20:10, 1994, pp. 786-797
[6] IEEE Standard 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, 1999
[7] Patrick Knupp, Kambiz Salari, Verification of Computer
Codes in Computational Science and Engineering, Chapman
& Hall/CRC, USA, 2003
[8] A. Jefferson Offut, Roland H. Untch, Mutation 2000:
Uniting the orthogonal. Mutation testing for the new century,
Kluwer Academic Publishers, Norwell, MA, USA, 2001, pp.
34-44
[9] Douglass E. Post, Lawrence G. Votta, “Computational
Science Demands a New Paradigm”, Physics Today, January
2005, pp. 35-41
[10] Patrick J. Roache, "Building PDE Codes to be Verifiable
and Validatable", Computing in Science and Engineering,
September/October 2004, pp. 30-38
[11] Patrick J. Roache, Verification and Validation in
Computational Science and Engineering, Hermosa
publishing, USE, 1998
[12] Rebecca Sanders, Diane Kelly, “Scientific Software:
Where’s the Risk and how do Scientists Deal with it?”, IEEE
Software, July/August 2008, pp. 21-28

[13] D.E. Stevenson, “A Critical Look at Quality in Large-
Scale Simulations”, Computing in Science and Engineering,
May-June 1999, pp. 53-63
[14] Elaine Weyuker, "On Testing Non-testable Programs",
The Computer Journal, Vol. 25, No. 4, 1982, pp. 465-470

64

