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Abstract 
An ethnographic study is used to explore 

activities carried out by industrial scientists to 
successfully develop their software. The extremely 
rich data set that resulted helps paint a picture of 
their development context. Apparent are the 
mismatches between software development 
methods commonly described by the software 
engineering community and the practices 
successfully used by the industrial scientists. 
Instead of following any type of prescribed method, 
the scientists follow what has been described as an 
amethodical approach to software development. 
Acceptance of the validity of this approach could 
provide an important alternative to how we 
currently view software development. 

 

1  Introduction  
Scientists have been writing software for a very 

long time (eg., [8]). About eight years ago, software 
engineers started looking at what scientists were 
doing and publishing what they were doing wrong 
(eg. [24]). Generally, scientists seemed to be 
ignorant of good software engineering practices. 

In earlier work [18], we interviewed academic 
scientists who wrote software for their research. 
Several were well aware of practices recommended 
by the software engineering community. Others 
were soliciting help for their problems and it was 
not immediately obvious what could be done for 
them. It also wasn’t clear if there were differences 
between working practices of academic scientists 
and those of industrial scientists. 

To explore these questions, a series of 
interviews of Canadian industrial scientists was 
carried out. Instead of purposely looking for “what 
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they do wrong”, the interviews sought to find out 
what practices worked for them. To eliminate pre-
conceived biases, the exact interview questions 
were not determined ahead. The interviewer only 
had a list of broad areas of discussion. The 
scientists were interviewed in their own 
environments and were encouraged to tell stories 
and take control of the interview and its direction. 
They were only given gentle nudges if they were 
wandering too far in their narrative. The result was 
an extremely rich set of ethnographic data.  

From this data, a general picture emerged of the 
software development environment of these 
scientists. Immediately apparent is the bad fit of 
standard software engineering development 
methods to how scientists work and how they 
should develop software. 

Section II offers a set of factors intended to 
define and differentiate different groups of 
scientific software. Section III describes in more 
detail the interviews of the industrial scientists. 
Sections IV, V and VI discuss findings from the 
interviews in terms of existing software 
development and acquisition models. Section VII 
lists activities described by the scientists in the 
interviews that were key to successful development 
of their software. Section VIII concludes. 

2  Defining and Differentiating 
Scientific Environments 
In describing research related to scientific 

software and software engineering, difficulties arise 
in describing ideas and terminology across cultural 
divides. The most basic difficulty here is the 
definition of scientific software. The variation in 
size, use, applications, and personnel involved is 
enormous. We offer a definition of the specific type 
of scientific software involved in our research. We 
also offer a set of “factors” that define a continuum 
on which to place most scientific software, and we 
place software that we deal with in our research on 



that continuum. The aim is to precisely define the 
environment of the developers involved in the 
interviews described in this paper and to make more 
evident the reasons for the development choices 
they make. 

The definition we use for the term scientific 
software is application software that provides data 
to directly support scientific decisions. Most 
frequently, this is modeling software that allows the 
scientist to examine a situation computationally, 
particularly in cases where experiments and real-
world observation are inappropriate. 

Our suggested factors to define a continuum to 
place types of scientific software are the following: 

 
- the level of risk tolerance in the application 

domain 
- expected lifetime of the software 
- expected duration of commitment of the 

developer 
- distance of the developer from specific scientific 

questions 
- breadth of expected knowledge 
 

Risk tolerance is an important differentiator for 
scientific software. Conversations with other 
researchers have described groups such as financial 
mathematicians, where the application domain 
implies risk-taking and the developers treat their 
software accordingly, doing very little testing to 
check for trustworthiness. Instead, the scientists 
involved in the interviews described in this paper, 
are highly risk averse. Their application domains 
include such as medical radiation treatments, 
operating nuclear power stations, and identifying 
structural faults in mine shafts. All the scientists in 
our interviews reiterated that the software must not 
lie to them. The data they glean from the software 
to support their scientific or engineering decisions 
must be correct. Therefore, there can be no 
compromise on quality of the software, where 
quality is trustworthiness. An additional observation 
can be made regarding the effects of risk aversion. 
In the academic environment, the social process of 
accepting the correctness of a result happens at the 
time of publication or presentation of a graduate 
thesis. In a highly risk averse scientific or 
engineering environment, the social process 
happens well before “publication” of a report. This 
leads to scientists having conversations and 
information exchange about their software and its 
output continually during development. 

Expected lifetime of the software described in 
the interviews is decades. This is often a feature of 
scientific software [5]. The implications are that 
long-term maintainability is important. Given that 
most of the software described in the interviews 
was already decades old, and was accompanied by 
well established and successful development 
practices, new technologies and methodologies that 
imply sweeping changes and that would likely be 
superceded by other technologies within a short 
timeframe, are not considered useful. 

Unlike the volatile employment environment 
currently found in the IT industry (eg., see [6]), 
scientific development groups interviewed expected 
new-hires to commit to at least five years. 
Developers interviewed talked of long-term 
commitments where they expect to be responsible 
for their software ten years down the road. This 
impacts how a developer thinks about their work 
and what sort of mechanisms they put in place to 
ensure comprehension of their software at some 
undetermined point in the future. This is in direct 
opposition to environments where developers are on 
short-term contracts or academic environments 
where graduate students end their commitment to 
the software they write after their theses are 
finished. 

Distance of the developer from a specific 
scientific question distinguishes software, on one 
extreme, that is written with no interaction with a 
specific user, that addresses a general class of well-
understood questions, and that is written for the 
purposes of commercial enterprise. On the opposite 
spectrum is software written to address a novel 
question and is used solely by the developer and/or 
colleagues. The software described in the 
interviews was close to this latter category, but with 
important differences. The software is written by 
the application domain scientist or groups of 
scientists, and user groups are composed of 
scientists in similar disciplines, varying in size from 
three or four individuals to hundreds.  In all cases, 
however, the developers and the users are closely 
linked, often physically co-located, and the 
developers take an active role in answering specific 
novel scientific questions. In all cases, the software 
is seen as a means to an end, never the end in itself. 

The expected breadth of knowledge for the 
developer groups interviewed covers five 
knowledge domains (see Table 1), ie., operational 
knowledge of the software (how to use the 
software), real world knowledge (the physical 
world that the software is a part of or simulates), 



theoretical knowledge (generally, the mathematical 
models embedded in the software), software 
knowledge (how to successfully express the 
computational model in a software language), and 
execution knowledge (the hardware environment 
the software is executed on). Many of the 
interviewees insisted that this breadth of knowledge 
is essential for successfully developing and making 
changes to the code. 

3  Description of Interviews 
In 2008, Sanders and Kelly carried out a series 

of interviews of academic scientists working at two 
educational institutions [18]. Their work supported 
the findings of others (eg., [20]) that there is a 
mismatch in the thinking of scientists who develop 
software for their scientific pursuits and the 
recommendations from the software engineering 
community. In 2012, Kelly extended this research 
to Canadian industrial scientists and engineers who 
develop software as a major part of their industry 
work. 

Industry scientists were interviewed from four 
different disciplines: non-medical nuclear research 
(5), clinical medical physics (1), seismic analysis 
(2), and flow analysis (5). The interviews were open 
ended and encouraged story-telling. Aside from 
gathering identification type of information (such as 
size of software, size of user group, age of software, 
etc.) the interview used questions and prompts that 
encouraged the interviewees to elaborate on their 
experiences. General discussion areas covered at 
least the following topics: 

- What typical user requests do you receive? 
What was most challenging? What helped you to 
resolve it? 

- What was the most challenging coding issue 
you’ve faced? What helped resolve it? 

- What do you like most/least about the design 
of the software you work on? 

- What are the best resources for obtaining 
information about your software? 

- How do you convince yourself or someone 
else that your answers are trustworthy? What do 
you do by habit to convince yourself the code is 
giving trustworthy answers? 

- What parts of the software are volatile? stable? 
- What one activity would you recommend to 

someone new to be convinced their code is right? 
- What do you do about user training to address 

risk factors in the use of the software? 

- Describe the management issues, eg. regulator, 
internal management, handling users, trade-off 
between quality and time, that has the most impact 
on your work? 

 
Most of the interviewees were long-term 

employees (over ten years) and most held either 
Masters or PhD degrees in engineering or physical 
science disciplines. All were eager to tell their 
stories and brought to the table additional issues 
that were relevant and insightful. 

Over fourteen hours of interviews were recorded 
digitally and the interviews were transcribed into 
nearly fifty type-written pages of major points. 
From this, a set of themes was identified and 
transcribed points were associated with the themes. 

The following themes were identified: 
- characteristics of users 
- impact of outside regulators 
-differences between academic settings and 

industrial settings 
- software requirements 
- focus on science when developing the software 
- software tools 
- code reviews and discussions 
- mismatches between software engineering and 

scientists who write software 
- code design issues 
- software development management issues 
- advice to students 
- testing scientific software 
 
This paper focuses on one aspect of 

“mismatches between software engineering and 
scientists who write software”, that of software 
development methodologies and their application to 
the work of scientists writing scientific application 
software. 

 

4  Ubiquitous Software 
Development Methods  and 
Management Wisdom 
Software development methodologies, as 

described in the software engineering literature, are 
roughly split into two camps: document driven and 
agile. Royce [17] first described a heavily 
document-driven software development method in 
1970. By example, Royce said that a five million 
dollar project (in 1970) should have a fifteen 



hundred page design document. Royce’s 
methodology is often called the waterfall method 
(eg. [23]) because of its cascade of process phases, 
one dependent on the previous being fully 
completed. It has been long known that the 
waterfall method, at its purest, is impractical 
because no one has the omniscient view to be able 
to decide a full set of requirements or complete 
design for a software system before any of it is ever 
built. Despite this, software development standards 
such as ISO 9000-3 essentially follow the waterfall 
method. It is easy to find consulting companies 
advertising on the web exhorting the values of the 
waterfall method, that by following it, projects will 
be completed on schedule and on budget. 

In answer to the document driven method, agile 
methodologies have proliferated [2]. Examples of 
these methods replace communication via 
documentation with face-to-face communication 
facilitated by such practices as on-site customers, a 
simple shared story instead of requirements, stand-
up meetings, pair programming, and constant 
refactoring where anyone can change any piece of 
code anywhere. Boehm and Turner [4] suggest that 
software projects can use a mix of document driven 
and agile methods. 

Beck, in his book on Extreme Programming [3], 
applies a common extension to the Iron Triangle of 
Project Management. To the constraints of scope, 
cost, and time he adds quality as a fourth constraint. 
In project management, it is understood that a 
change in one of the constraints impacts the others 
and a fixed constraint is achieved by managing the 
other constraints. If a project is conceived where all 
the constraints are considered fixed, then the project 
is unmanageable. 

Aside from the requirement of omniscience, the 
waterfall methodology fails the Iron Triangle test. If 
the project is expected to be on budget (cost) and on 
schedule (time), that leaves only scope and quality 
to manage. However, scope is set by the extensive 
requirements documentation that is expected to be 
fulfilled, and quality is determined by the 
proscribed activities of verification and validation. 
By management wisdom, all projects following the 
waterfall methodology are doomed to fail. 

The Agile methodologies such as Scrum and 
Extreme Programming aim to address this failure 
by fixing the cost and schedule of the project and 
managing scope. The project’s functionality is 
divided into small pieces and implemented in short 
time periods. At the end of each time period, a 
working piece of software is delivered. If there is 

sufficient time and funding, another piece of 
functionality is tackled. Quality is also a variable, 
since it is determined by the customer, assuming 
customer satisfaction will change as time and 
money runs out. 

Since the scientists interviewed were close to 
the specific scientific question being answered, their 
use of the software is always to answer novel 
questions. The approach to a new question is 
investigative and not completely predetermined. 
Because of this, a waterfall approach is a poor fit. 
Paths will be followed, changes will be made based 
on current observations, and new paths chosen. One 
scientist commented that he could spend a month 
staring at specifications or equations on pieces of 
paper and they won’t tell him what he needs to 
know – he has to write the code and observe. 

Several case studies describe applying Agile 
methodologies to the development of scientific 
software (eg. [1, 15]). However, considering the 
Iron Triangle for managing a project to develop a 
piece of scientific software, methodologies such as 
Extreme Programming and Scrum are also a poor fit 
for the scientists interviewed. Both these Agile 
methods make two assumptions that are not true for 
the scientific software described in the interviews. 
First, that the software is the deliverable, and 
second, that cost and schedule are more important 
than quality and scope. If the scientific question 
cannot be answered to the required precision, then 
the software, no matter how quickly or cost 
effectively it is developed, is of no use. 

 

5  Other Development Models and 
Software Acquisition Modes 

5.1 Open Source Development Model 
The open source development model was 

examined by Raymond [16] to explain why it 
seemed to be so successful. One of its advantages is 
to allow “lots of eyes” on the code, which results in 
mistakes being spotted. The other advantage is to 
allow users to scrutinize and understand the 
software and make changes applicable to their 
specific situation. 

Our series of interviews of academic scientists 
in 2008 revealed a pastiche of opinions about the 
use of open source in their scientific endeavours. 
One scientist opined that you get what you pay for 
and never used open source application software in 



his particular field of engineering. Others belonged 
to a large user community using specific open 
source software for their scientific modeling. The 
open source software allowed them to make 
whatever changes were needed for the scientific 
question being investigated and the large 
community afforded discussion groups, online help, 
data, and sample output. 

The industrial scientists interviewed had two 
main reasons for not using open source software or 
offering up their systems as open source. 

One is the issue of intellectual property. Before 
1980, the author’s experience was that scientific 
software was shared widely in the associated 
industries [14]. This afforded the same advantages 
as open source since a large number of interested 
and capable people were sifting through the 
software and quickly flagged anything that looked 
wrong. As the 1990s arrived, the limited open 
source model in industry mostly went away. The 
term proprietary was replaced by the term 
intellectual property, where some commercial 
enterprises viewed the source code as a trade secret 
and a source of revenue. The software described by 
the industrial scientists interviewed in 2012 is 
considered part of intellectual property and open 
source is not considered. 

The second reason is related to professional 
concerns, particularly in risk-averse industries. The 
software used to provide data for decisions has to 
be controlled in a number of ways. Both its contents 
and use have to be deemed trustworthy. This is a 
long and pain-staking process and the scientists are 
opposed to a situation where a “free-wheeling” user 
or developer can readily make changes outside that 
control.  

 

5.2 Commercial Software 
Commercial suppliers of application scientific 

software have a very different goal from the 
scientists using the software. For the commercial 
suppliers, the software is the deliverable and their 
goal is financial. The functionality of the software 
has been chosen based on known and common 
tasks. This is to maximize their potential user base. 
This puts the commercial suppliers at the opposite 
end of the distance from specific scientific question 
spectrum from the scientists in both our 2008 and 
2012 interviews. The academic scientists 
interviewed in 2008 pointed out serious mismatches 

between their needs and the management of 
commercial software. 

First, scientists pursue new lines of thought and 
soon find the commercial software lacks the 
functionality and models needed. Turn-around time 
for major changes to commercial software was as 
much as two years, leaving graduate students 
without a project. 

Second, commercial software did not guarantee 
backwards compatibility with older versions as new 
releases were issued. This left scientists with older 
versions, data, and results that could not be 
replicated with the new versions. This is out of step 
with the long lifetime expected for scientific 
software described in the interviews. Commercial 
software suppliers work in a much shorter time 
frame. 

Third, the reputation of academic scientists is 
based on the trustworthiness of their research, and 
hence the trustworthiness of the software they use. 
Transparency is needed to track intermediate 
calculated values, solution techniques and models 
used in the software, as well as details of the code 
itself. The commercial supplier worried about 
intellectual property may not reveal details beyond 
what’s published in research papers. One of the 
industrial scientists commented that in some cases, 
implementing something as it is described in 
publications will “blow up on you”: you have to 
“inject a pile of engineering” to get the code to 
work. In other words, this “pile of engineering” 
does not appear in any publications. 

The industrial scientists interviewed described 
their concerns with commercial software. In some 
cases, their managers had decided to replace home-
grown software with commercially available 
software based on appealing selling factors. The 
commercial software was “developed by 
professionals”, it was “developed according to 
software development standards”, and it was 
“approved by a regulator”. 

The reality is that the industrial scientists found 
the software to be very buggy and they didn’t have 
the source code to fix it. Since the Canadian market 
is very small compared to that of the international 
software suppliers, response to bug fixes and 
requests for changes are slow or non-existent. More 
disturbingly, the commercial suppliers take no 
responsibility for problems that occur with the 
software in use. The installed environment and the 
needs for the software are highly variable. In one 
case, when the scientists could not get the attention 
of the supplier to provide fixes, the commercial 



software was shelved and replaced by the old in-
house software. One problem is the commercial 
suppliers do not see themselves as active 
participants in the specific scientific question that 
needs to be answered. 

 

5.3 End-User Development Model 
Segal has characterized scientists as 

“professional” end-user developers [21]. These are 
people who work in highly technical, knowledge-
rich environments, They are proficient with formal 
languages and abstraction, and as such, they have 
few problems with coding and learning software 
languages. 

Segal documented a case study where 
laboratory space scientists and software engineers 
were teamed to develop a new piece of software 
[20]. The mismatch in their approaches to managing 
the development stemmed largely from the 
scientists’ exploratory approach to determining the 
details of the software and the insistence of the 
software engineers for up-front requirements so 
they could fulfill their contract of software 
development. It was a conflict between software 
engineers applying the waterfall methodology and 
scientists applying something that looked like Agile 
because of the iterations involved, but wasn’t. The 
scientists were close to the scientific question that 
needed to be answered, and the software engineers 
did not see themselves in that same space. 

Fischer has described an end-user development 
model [10] but his examples illustrating its use do 
not include the development of scientific software. 
Fischer classifies end-users as everything from 
retail employees designing a kitchcn cabinet layout 
to people who are “techno-sophisticated” and 
comfortable with computer technologies. He further 
describes his “prosumers” (as opposed to 
consumers) as people who “have little fear of 
hacking, modifying, and evolving artifacts to their 
own requirements. They do not wait for someone 
else to anticipate their needs, and they can decide 
what is important for them. They participate in 
learning and discovery and engage in 
experimenting, exploring, building, tinkering, 
framing, solving, and reflecting.” This sounds very 
close to the environment of the scientific software 
developer in our interviews, except lacking the 
risk-aversion factor. 

Fischer offers a model of software development 
for his end-user communities. He describes a Seed-

Evolve-Reseed (SER) model of software design that 
“creates open systems at design time that can be 
modified by their users acting as co-designers, 
requiring and supporting more complex interactions 
at use time. SER is grounded in the basic 
assumption that future uses and problems cannot be 
completely anticipated at design time, when a 
system is developed. At use time, users will 
invariably discover mismatches between their needs 
and the support that an existing system can provide 
for them.”  

Fischer does not give details on how his SER 
approach will be implemented, but asks, “How we 
can support skilled domain workers who are neither 
novices nor naive users, but who are interested in 
their work and who see the computer as a means 
rather than as an end? How we can create co-
adaptive environments, in which users change 
because they learn, and in which systems change 
because users become co-developers and active 
contributors?” Again, this appears to be 
philosophically in line with what scientists need. 

As part of the interviews in 2012, an SER 
approach to software development was discussed 
with the scientists and engineers. The SER 
approach was described as creating a central core of 
highly flexible software for users to readily modify 
as required (Seed), observe what the users do with 
the software (Evolve), and issue a new version to 
better support user development efforts (Reseed). 

For most cases, it was not readily apparent how 
the SER approach would work with current 
software, its uses, environment, and community. 
Fischer explains how his approach “reduces the gap 
in the world of computing between a population of 
elite high-tech scribes who can act as designers and 
a much larger population of intellectually 
disenfranchised knowledge workers who are forced 
into consumer roles.” The most apparent problem 
was that of scale. When the user community is not 
much larger than the development community, and 
when the two are overlapping significantly, as is 
often the case with scientific software, then the SER 
model is unwieldy. 

Only one software system described during the 
2012 interviews fit the SER model. Due to 
regulatory requirements in the application domain 
of this software, the space of time between new 
software releases is very long (as much as two 
years). The regulator has imposed a waterfall style 
software development standard that requires 
extensive documentation, several phases of 
verification and validation, and a plethora of plans. 



To mitigate the impact of long release times on 
users, the developers of this software have pushed 
as much of the choices made in the modeling 
software out to the user in the form of data input. 
The software is about a half million lines of 
FORTRAN code and allows the user immense 
flexibility in what models they can build and how. 
The scientists interviewed described the unexpected 
creativity of their users and the broad range of 
questions they are addressing. There is a large well-
connected user community, extensive user 
documentation, and courses given by the 
development group. The draw-back is complexity. 
Building a model and successfully running it 
requires a great deal of domain knowledge. One of 
the developers said it took years for a new user to 
become independently proficient with the software. 
There is a trade-off. Using an SER-like model for 
the design of this piece of software increases the 
complexity of its use substantially. Card and Glass 
[7] noted that there is an inherent complexity in any 
problem and the solution can push that complexity 
around, or make it worse, but not get rid of it. 

6  Amethodical Software 
development 
One of the scientists interviewed worked in a 

regulated industry under the auspices of a software 
quality standard that was based on the waterfall 
model. The scientist had been tasked with “backing 
out” requirements and design documents for a 
software system that had been in production for 
fifteen years. If the documentation was not 
completed, the system had to be taken out of 
service. 

The scientist researched the literature on 
software design to determine the computing 
industry’s recommendations. After her research, she 
concluded, “In the software engineering literature, 
software design is in a state of upheaval.” This is a 
telling observation from a capable and informed 
outsider of how software engineering presents 
itself. Instead, this scientist pointed out a paper by 
Truex et al [22] that deconstructed the word 
“method” and offered a different view of software 
development methodologies. Truex et al offer the 
following quote: “We have conflicting evidence as 
to whether systems development methods are ever 
used; or that they work successfully if indeed they 
are ever used.” Instead, Truex et al explain that 
software development mostly is amethodical, and 

they continue in the paper to explain what they 
mean.  

They offer a definition of amethodical software 
development: “Amethodical systems building 
implies management and orchestration of systems 
development without a predefined sequence, 
control, rationality, or claims to universality.” They 
also clarify that “… amethodical may reject 
structure but does not imply anarchy or chaos.” 

The characteristics of method and amethod that 
these authors describe were found to fit well with 
the stories scientists were telling in the 2012 
interviews. The balance of this section explores 
these different characteristics and their relation to 
the development of scientific software by scientists. 

 

6.1 Methods Require a Nearly Perfect 
Fore-Knowledge 

Truex et al state [22], “In order for methods to 
actually control information systems development, 
developers must hold a nearly perfect knowledge of 
a throng of interrelated factors.” 

Kelly [12] has described five knowledge 
domains that capture the knowledge areas that 
contribute to developing a software system. These 
are summarized in Table 1. 

Knowledge 
Domain  

Description 

Physical world 
knowledge 

Knowledge of physical world 
phenomena pertinent to the 

problem being solved. 

Theory-based 
knowledge 

Theoretical models that 
provide (usually) 

mathematical understanding 
and advancement of the 

problem towards a solution. 

Software 
knowledge 

Representations, conventions, 
and practices used to construct 

the solution. 

Execution 
knowledge 

Knowledge of the software 
and hardware tools used to 

create, maintain, control, and 
run the computer solution. 

Operational 
knowledge 

Knowledge related to the use 
of the computer solution. 

Table 1: Knowledge common to all software 
development. 

 



For any waterfall or its related methods (eg., V-
model, Spiral) the assumption is that all knowledge 
is acquired and recorded before the system is built. 
It has been generally agreed that this approach does 
not work for the majority of software systems. 

If we examine one of the more popular Agile 
methodologies, Extreme Programming, it fails in 
this regard as well. Extreme Programming allows 
any developer to make changes anywhere in the 
system as they see fit, which means that they are 
fully capable of doing this at any time. Developers 
do testing, but the onsite customer does the 
acceptance testing and makes the decision that the 
software is fit for use. Again the customer is seen as 
fully capable to do this. 

Looking at any job site that advertises for 
programmers, systems analysts, or the like, one 
finds that nearly all the postings ask for experience 
in at least ten different technical skills in areas such 
as programming languages, hardware environments, 
and tools. In other words, employers are looking for 
people who are fully capable in Execution 
Knowledge and Software Knowledge.  There is no 
accommodation for learning-on-the-job. This leaves 
three of the five Knowledge Domains to be covered 
off by the knowledge of the customer. In other 
words, the on-site customer, to make her decision 
on the acceptability of the software, has to know the 
Physical World in which the software will be 
embedded, the Theory that should be included in 
the software that underlies both its models and its 
use, plus current and future use (Operational 
Knowledge) of the software for its intended 
lifetime. These are ambitious expectations for the 
on-site customer and can only work in systems that 
are very simple or that are exact replicas of 
something already developed. 

The scientists who were interviewed, instead 
talked about learning as they developed the 
software. Their learning is spread over all five 
Knowledge Domains and they insist a valuable 
team member is open to this broad learning. They 
also talked about expectations for new-hires. The 
key expectation is problem solving ability, not 
technology and not development paradigms. Every 
scientist interviewed talked about mentoring new-
hires and expected to do a lot of this. 

The environment of scientific software 
development as described by the interviewees is a 
learning environment where no one is expected to 
“know it all” at the outset, but expected to develop a 
broad knowledge in all five knowledge domains (as 
in Table 1).  

6.2 Cooperation and Communication 
More Important than Sequence of 
Activities 

Truex et al state [22], “Any causal chain of 
dependent intermediate products in an information 
systems development project is largely imaginary. 
Any one of the chain of products can be created 
first, and all others constructed for compatibility… 
In fact, the assumption that exactly one activity 
must be first is methodical.” They point out what 
are the drivers of amethodical development: 
“Compatibility of activity outcomes is not really 
dependent on their sequence, but rather on 
cooperation, communication and negotiation.” 

The industrial scientists interviewed talked 
about “agreement in the group how to code”, “a lot 
of continuity, hallway conversations, and 
collaborative work”, and activities where “any 
change that isn’t obvious, [the scientist] sits with 
one other person, prints off the code, and chats over 
it.” In all the interviews, there were conversations 
about collaboration and communication. This is the 
de facto way of working for these scientists, which 
fits with the risk averse environment of these 
scientists. 

6.3 Human Choice Instead of 
Predefined Order 

Truex et al state, “Amethodical information 
systems development is the outcome of the exercise 
of unprogrammed, independent human choice during 
every development project activity.”  

The industrial scientists interviewed were highly 
skilled people. Their skills form the basis of their 
problem solving ability and their programming 
ability. Given the multitude of factors involved in 
the solutions they are seeking (e.g., solution 
techniques, numerical grids, coordinate systems, 
finite approximations, etc.), the scientists explore 
and make decisions based on their explorations. 
Their exploration and decision-making are driven by 
the science, the difficulty of different parts of the 
problem, and availability of information, amongst 
other considerations.  All the scientists talked about 
evolving their software and in every case the 
evolution started in a different place. At the same 
time, the software they were discussing were key 
systems currently in production. 



6.4 Creative Use of Ideas Instead of 
Predefined Activities 

Truex et al explain that amethodical means 
being non-conformant in how tools are used and 
activities carried out during software development.  
“The amethodical assumptions suggest that 
information systems development is a pastiche of 
activities, events and products. … Each element of 
the development pastiche is very likely to violate, 
in some way or another, the structures of any 
particular information systems development 
method.” 

A case study carried out in 2010 [11] described 
how a scientist designed his own approach to 
testing a new piece of software despite being 
directed to use a standard software engineering 
testing method. The new approach worked far better 
for the scientist’s goals. The 2012 interviews also 
revealed a tendency for the scientists to use tools 
and activities in unique ways. 

In one case, the scientists were mandated to use 
code walkthroughs as part of their quality assurance 
activities. They shared the target code well before 
the scheduled walkthrough meeting and an informal 
back-and-forth interaction amongst the scientists 
ensued. Questions were asked, an open door policy 
reigned, and problems with the code were sorted 
out. The walkthrough meeting was reduced to a 
formalization of the paperwork. 

Even at the coding level, the scientists were 
aware of the non-conformist direction they had 
chosen. One commented that their code “might be 
ugly with respect to computer science but the 
science is readable.” Given that the science is of 
utmost importance, having the “science readable” is 
the preferable route for the sake of trustworthiness 
over the long lifetime of the software. 

7  What the Scientists Interviewed 
Do Instead of Method 

7.1 General Approaches 
From the 2012 interviews, it was apparent that 

there was a common set of activities the scientists 
used to assure the trustworthiness of their software. 
Along with this was a common set of values that 
underwrote the activities. The most apparent 
characteristic driving their activities was risk-
aversion. 

First on their list was testing. Testing was 
focused on the science. It was iterative and 
exploratory. The approaches used were as varied as 
the scientific questions being modeled. Scientist 
wrote test harnesses for some code, examined the 
output of small units of code against known 
solutions, offered up completed code for users to try 
on real-world problems, examined sharp physical 
transitions to see if they were reproduced correctly, 
ran the codes against whatever real world data they 
had, reran the new changes on important data and 
compared to earlier runs, slowly built up sections of 
code and tested as they went carefully considering 
the output data at each step. Testing was integrated 
with code development and learning. 

Next on the list was code reading. All 
interviewees mentioned reading the code as a key 
activity. One scientist commented, “When we got 
this code, we worked through it line-by-line to 
understand it.” Another commented, “If you don’t 
understand what’s in the code, you haven’t a hope 
of finding a bug.” This comment also relates to the 
expected broad knowledge base. 

To support code reading, all the scientists 
interviewed were adamant that the code had to be 
self-explanatory. They wanted useful comments and 
plenty of them. Functions and variables were to be 
well named and tied to the science they represent. 
One scientist commented, “No Hungarian, please!” 
Another scientist described how they established a 
scientific vocabulary that was carried over to the 
variable names in the code. Another scientist said 
an important tenet for writing code was “don’t 
obscure the algorithm”. The view is that the science 
a developer embeds in the code must be apparent to 
another scientist, even ten years later. 

All the scientists viewed their current jobs as 
long-term commitments. They spoke of two months 
to two years required to become independently 
proficient with their software and that the codes are 
repositories of “hundreds of man-years of 
research”. They spoke about “pride of ownership” 
and “personal responsibility” for the code they 
wrote, expecting to still be involved with their 
codes ten or more years down the road. This is a 
very different mindset from the revolving door 
careers faced by many computer science graduates. 

Scientists, according to the interviewees, need to 
understand the “big picture”. One stated, “Scientists 
need the spark, inquisitiveness, desire to know 
everything.” Every part of the software product is 
integrated with the solution to the scientific 
question being examined. 



Finally, teamwork plays an important role in the 
development of scientific software. All interviewees 
mentioned working in a dedicated team. One 
commented, “Silos don’t work.” Another said about 
students looking for a career job, “Find a company 
where you enjoy working with the people.” All the 
interviewees talked about agreement in the team, 
continuity, collaborative work, people eager to help 
each other, discussion of problems, and 
communication. This is an important factor in the 
success of their software, especially over the long 
term. 

7.2 Onion Model for Phased Releases 
The “onion” refers to the layered user 

community that exists for some examples of 
scientific software. Easterbrook and Johns [9] 
describe layered releases in a case study of climate 
modeling software. The user community in these 
examples of scientific software consists of one 
segment that may be co-located with the developers 
and works closely with them. A second segment is 
physically and knowledge-wise more removed from 
the developers. The core of the onion is the group 
of developers. 

Two pieces of software described in the 2012 
interviews followed a layered release scheme. New 
versions of the software are released from the core 
to the first layer, the user segment closer both 
physically and in domain knowledge to the 
developers. Problems with the new release are 
handled informally and quickly using face-to-face 
discussions and an open-door policy with this 
segment of users. One software group continued 
with the software released to the first user segment 
for a year, the other for two years, before the 
software was released to the second segment of 
users. 

The inner core of users have a good 
understanding of the software and use it in “real 
world” work, giving the software a thorough test in 
the working environment. Their close relationship 
with the group of developers allows them to work 
efficiently and effectively through problems that 
crop up. Considered part of their beta-testing, one 
of the developers listed this as one of their most 
effective and important strategies. 

8  Conclusions 
The development of scientific software as 

described by the interviewees is a poor fit with the 
standard development methods prescribed by 

software engineering literature. One interviewee 
was worried because he was not following 
“software engineering best practices”, that he was 
doing things “ad hoc”. Yet, when he described his 
development activities, they were thoughtful, 
focused, meticulous, careful, and effective. He was 
not doing things “ad hoc”, but amethodically. 

Another contributor to problems between 
software engineering and scientists is terminology. 
If specifically asked if they do “code reading”, or 
“unit testing”, some of the interviewees said, no. 
Yet, when they describe their development 
activities, they do something very close that would 
merit a “yes”. The difference is that they have 
invented an activity that isn’t exactly “by the book”, 
an activity that works better for their situation. The 
scientists interviewed were far more aware of good 
software practices (for their environment) and the 
pitfalls that software entails, than scientists in 
general have been given credit for. 

Educating young scientists and engineers in 
good software practices is important. But so far, 
there has been a failure to identify suitable content 
for that education. This failure was discussed in two 
IBM CASCON workshops [13]. The scientists 
interviewed offered some suggestions. They said a 
plethora of tools and languages is not useful. This 
comment is based on the long lifetimes of the 
software as opposed to the rapid rate at which many 
tools and languages come and go. Also not useful 
are process, procedures, and paradigms.  Instead the 
scientists want to see their new-hires arrive with 
strong abilities in problem solving, communication, 
and knowing the fundamentals of computing 
environments and of the appropriate science or 
engineering. They also want to see a love of 
learning, commitment, responsibility, and an open 
mind. 

After observing scientists working in their 
environment, Segal [19] concluded, “There is no 
such thing as ‘one model fits all’, and that the way 
in which professional end-user developers [aka, 
scientists] construct software makes perfect sense in 
the context of being embedded in a close-knit 
scientific user community.” The context of the 
scientific development environment is key to their 
mode of work. It is important that managers, the 
scientists themselves, and computing professionals 
look closely at the context of any software 
development activities they are considering. It is 
and has been detrimental to enforce paradigms and 
processes from one context to another, particularly 
from contexts outside the scientific domains. The 



five factors we described at the outset of this paper 
may help to place the types of software 
development activities best suited to an 
environment. The industrial scientists’ amethodical 
approach to software development seems to be well 
suited to their particular environment. It is an 
interesting option that should be explored further by 
the software engineering community at large. 
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