

Industrial Scientific Software – a Set of Interviews on

Software Development

Diane Kelly
Department of Mathematics and Computer Science

Royal Military College of Canada
Kingston, ON Canada

kelly-d@rmc.ca

Abstract
An ethnographic study is used to explore

activities carried out by industrial scientists to
successfully develop their software. The extremely
rich data set that resulted helps paint a picture of
their development context. Apparent are the
mismatches between software development
methods commonly described by the software
engineering community and the practices
successfully used by the industrial scientists.
Instead of following any type of prescribed method,
the scientists follow what has been described as an
amethodical approach to software development.
Acceptance of the validity of this approach could
provide an important alternative to how we
currently view software development.

1 Introduction
Scientists have been writing software for a very

long time (eg., [8]). About eight years ago, software
engineers started looking at what scientists were
doing and publishing what they were doing wrong
(eg. [24]). Generally, scientists seemed to be
ignorant of good software engineering practices.

In earlier work [18], we interviewed academic
scientists who wrote software for their research.
Several were well aware of practices recommended
by the software engineering community. Others
were soliciting help for their problems and it was
not immediately obvious what could be done for
them. It also wasn’t clear if there were differences
between working practices of academic scientists
and those of industrial scientists.

To explore these questions, a series of
interviews of Canadian industrial scientists was
carried out. Instead of purposely looking for “what

Copyright © 2013 Diane Kelly. Permission to copy is
hereby granted provided the original copyright notice is
reproduced in copies made.

they do wrong”, the interviews sought to find out
what practices worked for them. To eliminate pre-
conceived biases, the exact interview questions
were not determined ahead. The interviewer only
had a list of broad areas of discussion. The
scientists were interviewed in their own
environments and were encouraged to tell stories
and take control of the interview and its direction.
They were only given gentle nudges if they were
wandering too far in their narrative. The result was
an extremely rich set of ethnographic data.

From this data, a general picture emerged of the
software development environment of these
scientists. Immediately apparent is the bad fit of
standard software engineering development
methods to how scientists work and how they
should develop software.

Section II offers a set of factors intended to
define and differentiate different groups of
scientific software. Section III describes in more
detail the interviews of the industrial scientists.
Sections IV, V and VI discuss findings from the
interviews in terms of existing software
development and acquisition models. Section VII
lists activities described by the scientists in the
interviews that were key to successful development
of their software. Section VIII concludes.

2 Defining and Differentiating
Scientific Environments
In describing research related to scientific

software and software engineering, difficulties arise
in describing ideas and terminology across cultural
divides. The most basic difficulty here is the
definition of scientific software. The variation in
size, use, applications, and personnel involved is
enormous. We offer a definition of the specific type
of scientific software involved in our research. We
also offer a set of “factors” that define a continuum
on which to place most scientific software, and we
place software that we deal with in our research on

that continuum. The aim is to precisely define the
environment of the developers involved in the
interviews described in this paper and to make more
evident the reasons for the development choices
they make.

The definition we use for the term scientific
software is application software that provides data
to directly support scientific decisions. Most
frequently, this is modeling software that allows the
scientist to examine a situation computationally,
particularly in cases where experiments and real-
world observation are inappropriate.

Our suggested factors to define a continuum to
place types of scientific software are the following:

- the level of risk tolerance in the application

domain
- expected lifetime of the software
- expected duration of commitment of the

developer
- distance of the developer from specific scientific

questions
- breadth of expected knowledge

Risk tolerance is an important differentiator for
scientific software. Conversations with other
researchers have described groups such as financial
mathematicians, where the application domain
implies risk-taking and the developers treat their
software accordingly, doing very little testing to
check for trustworthiness. Instead, the scientists
involved in the interviews described in this paper,
are highly risk averse. Their application domains
include such as medical radiation treatments,
operating nuclear power stations, and identifying
structural faults in mine shafts. All the scientists in
our interviews reiterated that the software must not
lie to them. The data they glean from the software
to support their scientific or engineering decisions
must be correct. Therefore, there can be no
compromise on quality of the software, where
quality is trustworthiness. An additional observation
can be made regarding the effects of risk aversion.
In the academic environment, the social process of
accepting the correctness of a result happens at the
time of publication or presentation of a graduate
thesis. In a highly risk averse scientific or
engineering environment, the social process
happens well before “publication” of a report. This
leads to scientists having conversations and
information exchange about their software and its
output continually during development.

Expected lifetime of the software described in
the interviews is decades. This is often a feature of
scientific software [5]. The implications are that
long-term maintainability is important. Given that
most of the software described in the interviews
was already decades old, and was accompanied by
well established and successful development
practices, new technologies and methodologies that
imply sweeping changes and that would likely be
superceded by other technologies within a short
timeframe, are not considered useful.

Unlike the volatile employment environment
currently found in the IT industry (eg., see [6]),
scientific development groups interviewed expected
new-hires to commit to at least five years.
Developers interviewed talked of long-term
commitments where they expect to be responsible
for their software ten years down the road. This
impacts how a developer thinks about their work
and what sort of mechanisms they put in place to
ensure comprehension of their software at some
undetermined point in the future. This is in direct
opposition to environments where developers are on
short-term contracts or academic environments
where graduate students end their commitment to
the software they write after their theses are
finished.

Distance of the developer from a specific
scientific question distinguishes software, on one
extreme, that is written with no interaction with a
specific user, that addresses a general class of well-
understood questions, and that is written for the
purposes of commercial enterprise. On the opposite
spectrum is software written to address a novel
question and is used solely by the developer and/or
colleagues. The software described in the
interviews was close to this latter category, but with
important differences. The software is written by
the application domain scientist or groups of
scientists, and user groups are composed of
scientists in similar disciplines, varying in size from
three or four individuals to hundreds. In all cases,
however, the developers and the users are closely
linked, often physically co-located, and the
developers take an active role in answering specific
novel scientific questions. In all cases, the software
is seen as a means to an end, never the end in itself.

The expected breadth of knowledge for the
developer groups interviewed covers five
knowledge domains (see Table 1), ie., operational
knowledge of the software (how to use the
software), real world knowledge (the physical
world that the software is a part of or simulates),

theoretical knowledge (generally, the mathematical
models embedded in the software), software
knowledge (how to successfully express the
computational model in a software language), and
execution knowledge (the hardware environment
the software is executed on). Many of the
interviewees insisted that this breadth of knowledge
is essential for successfully developing and making
changes to the code.

3 Description of Interviews
In 2008, Sanders and Kelly carried out a series

of interviews of academic scientists working at two
educational institutions [18]. Their work supported
the findings of others (eg., [20]) that there is a
mismatch in the thinking of scientists who develop
software for their scientific pursuits and the
recommendations from the software engineering
community. In 2012, Kelly extended this research
to Canadian industrial scientists and engineers who
develop software as a major part of their industry
work.

Industry scientists were interviewed from four
different disciplines: non-medical nuclear research
(5), clinical medical physics (1), seismic analysis
(2), and flow analysis (5). The interviews were open
ended and encouraged story-telling. Aside from
gathering identification type of information (such as
size of software, size of user group, age of software,
etc.) the interview used questions and prompts that
encouraged the interviewees to elaborate on their
experiences. General discussion areas covered at
least the following topics:

- What typical user requests do you receive?
What was most challenging? What helped you to
resolve it?

- What was the most challenging coding issue
you’ve faced? What helped resolve it?

- What do you like most/least about the design
of the software you work on?

- What are the best resources for obtaining
information about your software?

- How do you convince yourself or someone
else that your answers are trustworthy? What do
you do by habit to convince yourself the code is
giving trustworthy answers?

- What parts of the software are volatile? stable?
- What one activity would you recommend to

someone new to be convinced their code is right?
- What do you do about user training to address

risk factors in the use of the software?

- Describe the management issues, eg. regulator,
internal management, handling users, trade-off
between quality and time, that has the most impact
on your work?

Most of the interviewees were long-term

employees (over ten years) and most held either
Masters or PhD degrees in engineering or physical
science disciplines. All were eager to tell their
stories and brought to the table additional issues
that were relevant and insightful.

Over fourteen hours of interviews were recorded
digitally and the interviews were transcribed into
nearly fifty type-written pages of major points.
From this, a set of themes was identified and
transcribed points were associated with the themes.

The following themes were identified:
- characteristics of users
- impact of outside regulators
-differences between academic settings and

industrial settings
- software requirements
- focus on science when developing the software
- software tools
- code reviews and discussions
- mismatches between software engineering and

scientists who write software
- code design issues
- software development management issues
- advice to students
- testing scientific software

This paper focuses on one aspect of

“mismatches between software engineering and
scientists who write software”, that of software
development methodologies and their application to
the work of scientists writing scientific application
software.

4 Ubiquitous Software
Development Methods and
Management Wisdom
Software development methodologies, as

described in the software engineering literature, are
roughly split into two camps: document driven and
agile. Royce [17] first described a heavily
document-driven software development method in
1970. By example, Royce said that a five million
dollar project (in 1970) should have a fifteen

hundred page design document. Royce’s
methodology is often called the waterfall method
(eg. [23]) because of its cascade of process phases,
one dependent on the previous being fully
completed. It has been long known that the
waterfall method, at its purest, is impractical
because no one has the omniscient view to be able
to decide a full set of requirements or complete
design for a software system before any of it is ever
built. Despite this, software development standards
such as ISO 9000-3 essentially follow the waterfall
method. It is easy to find consulting companies
advertising on the web exhorting the values of the
waterfall method, that by following it, projects will
be completed on schedule and on budget.

In answer to the document driven method, agile
methodologies have proliferated [2]. Examples of
these methods replace communication via
documentation with face-to-face communication
facilitated by such practices as on-site customers, a
simple shared story instead of requirements, stand-
up meetings, pair programming, and constant
refactoring where anyone can change any piece of
code anywhere. Boehm and Turner [4] suggest that
software projects can use a mix of document driven
and agile methods.

Beck, in his book on Extreme Programming [3],
applies a common extension to the Iron Triangle of
Project Management. To the constraints of scope,
cost, and time he adds quality as a fourth constraint.
In project management, it is understood that a
change in one of the constraints impacts the others
and a fixed constraint is achieved by managing the
other constraints. If a project is conceived where all
the constraints are considered fixed, then the project
is unmanageable.

Aside from the requirement of omniscience, the
waterfall methodology fails the Iron Triangle test. If
the project is expected to be on budget (cost) and on
schedule (time), that leaves only scope and quality
to manage. However, scope is set by the extensive
requirements documentation that is expected to be
fulfilled, and quality is determined by the
proscribed activities of verification and validation.
By management wisdom, all projects following the
waterfall methodology are doomed to fail.

The Agile methodologies such as Scrum and
Extreme Programming aim to address this failure
by fixing the cost and schedule of the project and
managing scope. The project’s functionality is
divided into small pieces and implemented in short
time periods. At the end of each time period, a
working piece of software is delivered. If there is

sufficient time and funding, another piece of
functionality is tackled. Quality is also a variable,
since it is determined by the customer, assuming
customer satisfaction will change as time and
money runs out.

Since the scientists interviewed were close to
the specific scientific question being answered, their
use of the software is always to answer novel
questions. The approach to a new question is
investigative and not completely predetermined.
Because of this, a waterfall approach is a poor fit.
Paths will be followed, changes will be made based
on current observations, and new paths chosen. One
scientist commented that he could spend a month
staring at specifications or equations on pieces of
paper and they won’t tell him what he needs to
know – he has to write the code and observe.

Several case studies describe applying Agile
methodologies to the development of scientific
software (eg. [1, 15]). However, considering the
Iron Triangle for managing a project to develop a
piece of scientific software, methodologies such as
Extreme Programming and Scrum are also a poor fit
for the scientists interviewed. Both these Agile
methods make two assumptions that are not true for
the scientific software described in the interviews.
First, that the software is the deliverable, and
second, that cost and schedule are more important
than quality and scope. If the scientific question
cannot be answered to the required precision, then
the software, no matter how quickly or cost
effectively it is developed, is of no use.

5 Other Development Models and
Software Acquisition Modes

5.1 Open Source Development Model
The open source development model was

examined by Raymond [16] to explain why it
seemed to be so successful. One of its advantages is
to allow “lots of eyes” on the code, which results in
mistakes being spotted. The other advantage is to
allow users to scrutinize and understand the
software and make changes applicable to their
specific situation.

Our series of interviews of academic scientists
in 2008 revealed a pastiche of opinions about the
use of open source in their scientific endeavours.
One scientist opined that you get what you pay for
and never used open source application software in

his particular field of engineering. Others belonged
to a large user community using specific open
source software for their scientific modeling. The
open source software allowed them to make
whatever changes were needed for the scientific
question being investigated and the large
community afforded discussion groups, online help,
data, and sample output.

The industrial scientists interviewed had two
main reasons for not using open source software or
offering up their systems as open source.

One is the issue of intellectual property. Before
1980, the author’s experience was that scientific
software was shared widely in the associated
industries [14]. This afforded the same advantages
as open source since a large number of interested
and capable people were sifting through the
software and quickly flagged anything that looked
wrong. As the 1990s arrived, the limited open
source model in industry mostly went away. The
term proprietary was replaced by the term
intellectual property, where some commercial
enterprises viewed the source code as a trade secret
and a source of revenue. The software described by
the industrial scientists interviewed in 2012 is
considered part of intellectual property and open
source is not considered.

The second reason is related to professional
concerns, particularly in risk-averse industries. The
software used to provide data for decisions has to
be controlled in a number of ways. Both its contents
and use have to be deemed trustworthy. This is a
long and pain-staking process and the scientists are
opposed to a situation where a “free-wheeling” user
or developer can readily make changes outside that
control.

5.2 Commercial Software
Commercial suppliers of application scientific

software have a very different goal from the
scientists using the software. For the commercial
suppliers, the software is the deliverable and their
goal is financial. The functionality of the software
has been chosen based on known and common
tasks. This is to maximize their potential user base.
This puts the commercial suppliers at the opposite
end of the distance from specific scientific question
spectrum from the scientists in both our 2008 and
2012 interviews. The academic scientists
interviewed in 2008 pointed out serious mismatches

between their needs and the management of
commercial software.

First, scientists pursue new lines of thought and
soon find the commercial software lacks the
functionality and models needed. Turn-around time
for major changes to commercial software was as
much as two years, leaving graduate students
without a project.

Second, commercial software did not guarantee
backwards compatibility with older versions as new
releases were issued. This left scientists with older
versions, data, and results that could not be
replicated with the new versions. This is out of step
with the long lifetime expected for scientific
software described in the interviews. Commercial
software suppliers work in a much shorter time
frame.

Third, the reputation of academic scientists is
based on the trustworthiness of their research, and
hence the trustworthiness of the software they use.
Transparency is needed to track intermediate
calculated values, solution techniques and models
used in the software, as well as details of the code
itself. The commercial supplier worried about
intellectual property may not reveal details beyond
what’s published in research papers. One of the
industrial scientists commented that in some cases,
implementing something as it is described in
publications will “blow up on you”: you have to
“inject a pile of engineering” to get the code to
work. In other words, this “pile of engineering”
does not appear in any publications.

The industrial scientists interviewed described
their concerns with commercial software. In some
cases, their managers had decided to replace home-
grown software with commercially available
software based on appealing selling factors. The
commercial software was “developed by
professionals”, it was “developed according to
software development standards”, and it was
“approved by a regulator”.

The reality is that the industrial scientists found
the software to be very buggy and they didn’t have
the source code to fix it. Since the Canadian market
is very small compared to that of the international
software suppliers, response to bug fixes and
requests for changes are slow or non-existent. More
disturbingly, the commercial suppliers take no
responsibility for problems that occur with the
software in use. The installed environment and the
needs for the software are highly variable. In one
case, when the scientists could not get the attention
of the supplier to provide fixes, the commercial

software was shelved and replaced by the old in-
house software. One problem is the commercial
suppliers do not see themselves as active
participants in the specific scientific question that
needs to be answered.

5.3 End-User Development Model
Segal has characterized scientists as

“professional” end-user developers [21]. These are
people who work in highly technical, knowledge-
rich environments, They are proficient with formal
languages and abstraction, and as such, they have
few problems with coding and learning software
languages.

Segal documented a case study where
laboratory space scientists and software engineers
were teamed to develop a new piece of software
[20]. The mismatch in their approaches to managing
the development stemmed largely from the
scientists’ exploratory approach to determining the
details of the software and the insistence of the
software engineers for up-front requirements so
they could fulfill their contract of software
development. It was a conflict between software
engineers applying the waterfall methodology and
scientists applying something that looked like Agile
because of the iterations involved, but wasn’t. The
scientists were close to the scientific question that
needed to be answered, and the software engineers
did not see themselves in that same space.

Fischer has described an end-user development
model [10] but his examples illustrating its use do
not include the development of scientific software.
Fischer classifies end-users as everything from
retail employees designing a kitchcn cabinet layout
to people who are “techno-sophisticated” and
comfortable with computer technologies. He further
describes his “prosumers” (as opposed to
consumers) as people who “have little fear of
hacking, modifying, and evolving artifacts to their
own requirements. They do not wait for someone
else to anticipate their needs, and they can decide
what is important for them. They participate in
learning and discovery and engage in
experimenting, exploring, building, tinkering,
framing, solving, and reflecting.” This sounds very
close to the environment of the scientific software
developer in our interviews, except lacking the
risk-aversion factor.

Fischer offers a model of software development
for his end-user communities. He describes a Seed-

Evolve-Reseed (SER) model of software design that
“creates open systems at design time that can be
modified by their users acting as co-designers,
requiring and supporting more complex interactions
at use time. SER is grounded in the basic
assumption that future uses and problems cannot be
completely anticipated at design time, when a
system is developed. At use time, users will
invariably discover mismatches between their needs
and the support that an existing system can provide
for them.”

Fischer does not give details on how his SER
approach will be implemented, but asks, “How we
can support skilled domain workers who are neither
novices nor naive users, but who are interested in
their work and who see the computer as a means
rather than as an end? How we can create co-
adaptive environments, in which users change
because they learn, and in which systems change
because users become co-developers and active
contributors?” Again, this appears to be
philosophically in line with what scientists need.

As part of the interviews in 2012, an SER
approach to software development was discussed
with the scientists and engineers. The SER
approach was described as creating a central core of
highly flexible software for users to readily modify
as required (Seed), observe what the users do with
the software (Evolve), and issue a new version to
better support user development efforts (Reseed).

For most cases, it was not readily apparent how
the SER approach would work with current
software, its uses, environment, and community.
Fischer explains how his approach “reduces the gap
in the world of computing between a population of
elite high-tech scribes who can act as designers and
a much larger population of intellectually
disenfranchised knowledge workers who are forced
into consumer roles.” The most apparent problem
was that of scale. When the user community is not
much larger than the development community, and
when the two are overlapping significantly, as is
often the case with scientific software, then the SER
model is unwieldy.

Only one software system described during the
2012 interviews fit the SER model. Due to
regulatory requirements in the application domain
of this software, the space of time between new
software releases is very long (as much as two
years). The regulator has imposed a waterfall style
software development standard that requires
extensive documentation, several phases of
verification and validation, and a plethora of plans.

To mitigate the impact of long release times on
users, the developers of this software have pushed
as much of the choices made in the modeling
software out to the user in the form of data input.
The software is about a half million lines of
FORTRAN code and allows the user immense
flexibility in what models they can build and how.
The scientists interviewed described the unexpected
creativity of their users and the broad range of
questions they are addressing. There is a large well-
connected user community, extensive user
documentation, and courses given by the
development group. The draw-back is complexity.
Building a model and successfully running it
requires a great deal of domain knowledge. One of
the developers said it took years for a new user to
become independently proficient with the software.
There is a trade-off. Using an SER-like model for
the design of this piece of software increases the
complexity of its use substantially. Card and Glass
[7] noted that there is an inherent complexity in any
problem and the solution can push that complexity
around, or make it worse, but not get rid of it.

6 Amethodical Software
development
One of the scientists interviewed worked in a

regulated industry under the auspices of a software
quality standard that was based on the waterfall
model. The scientist had been tasked with “backing
out” requirements and design documents for a
software system that had been in production for
fifteen years. If the documentation was not
completed, the system had to be taken out of
service.

The scientist researched the literature on
software design to determine the computing
industry’s recommendations. After her research, she
concluded, “In the software engineering literature,
software design is in a state of upheaval.” This is a
telling observation from a capable and informed
outsider of how software engineering presents
itself. Instead, this scientist pointed out a paper by
Truex et al [22] that deconstructed the word
“method” and offered a different view of software
development methodologies. Truex et al offer the
following quote: “We have conflicting evidence as
to whether systems development methods are ever
used; or that they work successfully if indeed they
are ever used.” Instead, Truex et al explain that
software development mostly is amethodical, and

they continue in the paper to explain what they
mean.

They offer a definition of amethodical software
development: “Amethodical systems building
implies management and orchestration of systems
development without a predefined sequence,
control, rationality, or claims to universality.” They
also clarify that “… amethodical may reject
structure but does not imply anarchy or chaos.”

The characteristics of method and amethod that
these authors describe were found to fit well with
the stories scientists were telling in the 2012
interviews. The balance of this section explores
these different characteristics and their relation to
the development of scientific software by scientists.

6.1 Methods Require a Nearly Perfect
Fore-Knowledge

Truex et al state [22], “In order for methods to
actually control information systems development,
developers must hold a nearly perfect knowledge of
a throng of interrelated factors.”

Kelly [12] has described five knowledge
domains that capture the knowledge areas that
contribute to developing a software system. These
are summarized in Table 1.

Knowledge
Domain

Description

Physical world
knowledge

Knowledge of physical world
phenomena pertinent to the

problem being solved.

Theory-based
knowledge

Theoretical models that
provide (usually)

mathematical understanding
and advancement of the

problem towards a solution.

Software
knowledge

Representations, conventions,
and practices used to construct

the solution.

Execution
knowledge

Knowledge of the software
and hardware tools used to

create, maintain, control, and
run the computer solution.

Operational
knowledge

Knowledge related to the use
of the computer solution.

Table 1: Knowledge common to all software
development.

For any waterfall or its related methods (eg., V-
model, Spiral) the assumption is that all knowledge
is acquired and recorded before the system is built.
It has been generally agreed that this approach does
not work for the majority of software systems.

If we examine one of the more popular Agile
methodologies, Extreme Programming, it fails in
this regard as well. Extreme Programming allows
any developer to make changes anywhere in the
system as they see fit, which means that they are
fully capable of doing this at any time. Developers
do testing, but the onsite customer does the
acceptance testing and makes the decision that the
software is fit for use. Again the customer is seen as
fully capable to do this.

Looking at any job site that advertises for
programmers, systems analysts, or the like, one
finds that nearly all the postings ask for experience
in at least ten different technical skills in areas such
as programming languages, hardware environments,
and tools. In other words, employers are looking for
people who are fully capable in Execution
Knowledge and Software Knowledge. There is no
accommodation for learning-on-the-job. This leaves
three of the five Knowledge Domains to be covered
off by the knowledge of the customer. In other
words, the on-site customer, to make her decision
on the acceptability of the software, has to know the
Physical World in which the software will be
embedded, the Theory that should be included in
the software that underlies both its models and its
use, plus current and future use (Operational
Knowledge) of the software for its intended
lifetime. These are ambitious expectations for the
on-site customer and can only work in systems that
are very simple or that are exact replicas of
something already developed.

The scientists who were interviewed, instead
talked about learning as they developed the
software. Their learning is spread over all five
Knowledge Domains and they insist a valuable
team member is open to this broad learning. They
also talked about expectations for new-hires. The
key expectation is problem solving ability, not
technology and not development paradigms. Every
scientist interviewed talked about mentoring new-
hires and expected to do a lot of this.

The environment of scientific software
development as described by the interviewees is a
learning environment where no one is expected to
“know it all” at the outset, but expected to develop a
broad knowledge in all five knowledge domains (as
in Table 1).

6.2 Cooperation and Communication
More Important than Sequence of
Activities

Truex et al state [22], “Any causal chain of
dependent intermediate products in an information
systems development project is largely imaginary.
Any one of the chain of products can be created
first, and all others constructed for compatibility…
In fact, the assumption that exactly one activity
must be first is methodical.” They point out what
are the drivers of amethodical development:
“Compatibility of activity outcomes is not really
dependent on their sequence, but rather on
cooperation, communication and negotiation.”

The industrial scientists interviewed talked
about “agreement in the group how to code”, “a lot
of continuity, hallway conversations, and
collaborative work”, and activities where “any
change that isn’t obvious, [the scientist] sits with
one other person, prints off the code, and chats over
it.” In all the interviews, there were conversations
about collaboration and communication. This is the
de facto way of working for these scientists, which
fits with the risk averse environment of these
scientists.

6.3 Human Choice Instead of
Predefined Order

Truex et al state, “Amethodical information
systems development is the outcome of the exercise
of unprogrammed, independent human choice during
every development project activity.”

The industrial scientists interviewed were highly
skilled people. Their skills form the basis of their
problem solving ability and their programming
ability. Given the multitude of factors involved in
the solutions they are seeking (e.g., solution
techniques, numerical grids, coordinate systems,
finite approximations, etc.), the scientists explore
and make decisions based on their explorations.
Their exploration and decision-making are driven by
the science, the difficulty of different parts of the
problem, and availability of information, amongst
other considerations. All the scientists talked about
evolving their software and in every case the
evolution started in a different place. At the same
time, the software they were discussing were key
systems currently in production.

6.4 Creative Use of Ideas Instead of
Predefined Activities

Truex et al explain that amethodical means
being non-conformant in how tools are used and
activities carried out during software development.
“The amethodical assumptions suggest that
information systems development is a pastiche of
activities, events and products. … Each element of
the development pastiche is very likely to violate,
in some way or another, the structures of any
particular information systems development
method.”

A case study carried out in 2010 [11] described
how a scientist designed his own approach to
testing a new piece of software despite being
directed to use a standard software engineering
testing method. The new approach worked far better
for the scientist’s goals. The 2012 interviews also
revealed a tendency for the scientists to use tools
and activities in unique ways.

In one case, the scientists were mandated to use
code walkthroughs as part of their quality assurance
activities. They shared the target code well before
the scheduled walkthrough meeting and an informal
back-and-forth interaction amongst the scientists
ensued. Questions were asked, an open door policy
reigned, and problems with the code were sorted
out. The walkthrough meeting was reduced to a
formalization of the paperwork.

Even at the coding level, the scientists were
aware of the non-conformist direction they had
chosen. One commented that their code “might be
ugly with respect to computer science but the
science is readable.” Given that the science is of
utmost importance, having the “science readable” is
the preferable route for the sake of trustworthiness
over the long lifetime of the software.

7 What the Scientists Interviewed
Do Instead of Method

7.1 General Approaches
From the 2012 interviews, it was apparent that

there was a common set of activities the scientists
used to assure the trustworthiness of their software.
Along with this was a common set of values that
underwrote the activities. The most apparent
characteristic driving their activities was risk-
aversion.

First on their list was testing. Testing was
focused on the science. It was iterative and
exploratory. The approaches used were as varied as
the scientific questions being modeled. Scientist
wrote test harnesses for some code, examined the
output of small units of code against known
solutions, offered up completed code for users to try
on real-world problems, examined sharp physical
transitions to see if they were reproduced correctly,
ran the codes against whatever real world data they
had, reran the new changes on important data and
compared to earlier runs, slowly built up sections of
code and tested as they went carefully considering
the output data at each step. Testing was integrated
with code development and learning.

Next on the list was code reading. All
interviewees mentioned reading the code as a key
activity. One scientist commented, “When we got
this code, we worked through it line-by-line to
understand it.” Another commented, “If you don’t
understand what’s in the code, you haven’t a hope
of finding a bug.” This comment also relates to the
expected broad knowledge base.

To support code reading, all the scientists
interviewed were adamant that the code had to be
self-explanatory. They wanted useful comments and
plenty of them. Functions and variables were to be
well named and tied to the science they represent.
One scientist commented, “No Hungarian, please!”
Another scientist described how they established a
scientific vocabulary that was carried over to the
variable names in the code. Another scientist said
an important tenet for writing code was “don’t
obscure the algorithm”. The view is that the science
a developer embeds in the code must be apparent to
another scientist, even ten years later.

All the scientists viewed their current jobs as
long-term commitments. They spoke of two months
to two years required to become independently
proficient with their software and that the codes are
repositories of “hundreds of man-years of
research”. They spoke about “pride of ownership”
and “personal responsibility” for the code they
wrote, expecting to still be involved with their
codes ten or more years down the road. This is a
very different mindset from the revolving door
careers faced by many computer science graduates.

Scientists, according to the interviewees, need to
understand the “big picture”. One stated, “Scientists
need the spark, inquisitiveness, desire to know
everything.” Every part of the software product is
integrated with the solution to the scientific
question being examined.

Finally, teamwork plays an important role in the
development of scientific software. All interviewees
mentioned working in a dedicated team. One
commented, “Silos don’t work.” Another said about
students looking for a career job, “Find a company
where you enjoy working with the people.” All the
interviewees talked about agreement in the team,
continuity, collaborative work, people eager to help
each other, discussion of problems, and
communication. This is an important factor in the
success of their software, especially over the long
term.

7.2 Onion Model for Phased Releases
The “onion” refers to the layered user

community that exists for some examples of
scientific software. Easterbrook and Johns [9]
describe layered releases in a case study of climate
modeling software. The user community in these
examples of scientific software consists of one
segment that may be co-located with the developers
and works closely with them. A second segment is
physically and knowledge-wise more removed from
the developers. The core of the onion is the group
of developers.

Two pieces of software described in the 2012
interviews followed a layered release scheme. New
versions of the software are released from the core
to the first layer, the user segment closer both
physically and in domain knowledge to the
developers. Problems with the new release are
handled informally and quickly using face-to-face
discussions and an open-door policy with this
segment of users. One software group continued
with the software released to the first user segment
for a year, the other for two years, before the
software was released to the second segment of
users.

The inner core of users have a good
understanding of the software and use it in “real
world” work, giving the software a thorough test in
the working environment. Their close relationship
with the group of developers allows them to work
efficiently and effectively through problems that
crop up. Considered part of their beta-testing, one
of the developers listed this as one of their most
effective and important strategies.

8 Conclusions
The development of scientific software as

described by the interviewees is a poor fit with the
standard development methods prescribed by

software engineering literature. One interviewee
was worried because he was not following
“software engineering best practices”, that he was
doing things “ad hoc”. Yet, when he described his
development activities, they were thoughtful,
focused, meticulous, careful, and effective. He was
not doing things “ad hoc”, but amethodically.

Another contributor to problems between
software engineering and scientists is terminology.
If specifically asked if they do “code reading”, or
“unit testing”, some of the interviewees said, no.
Yet, when they describe their development
activities, they do something very close that would
merit a “yes”. The difference is that they have
invented an activity that isn’t exactly “by the book”,
an activity that works better for their situation. The
scientists interviewed were far more aware of good
software practices (for their environment) and the
pitfalls that software entails, than scientists in
general have been given credit for.

Educating young scientists and engineers in
good software practices is important. But so far,
there has been a failure to identify suitable content
for that education. This failure was discussed in two
IBM CASCON workshops [13]. The scientists
interviewed offered some suggestions. They said a
plethora of tools and languages is not useful. This
comment is based on the long lifetimes of the
software as opposed to the rapid rate at which many
tools and languages come and go. Also not useful
are process, procedures, and paradigms. Instead the
scientists want to see their new-hires arrive with
strong abilities in problem solving, communication,
and knowing the fundamentals of computing
environments and of the appropriate science or
engineering. They also want to see a love of
learning, commitment, responsibility, and an open
mind.

After observing scientists working in their
environment, Segal [19] concluded, “There is no
such thing as ‘one model fits all’, and that the way
in which professional end-user developers [aka,
scientists] construct software makes perfect sense in
the context of being embedded in a close-knit
scientific user community.” The context of the
scientific development environment is key to their
mode of work. It is important that managers, the
scientists themselves, and computing professionals
look closely at the context of any software
development activities they are considering. It is
and has been detrimental to enforce paradigms and
processes from one context to another, particularly
from contexts outside the scientific domains. The

five factors we described at the outset of this paper
may help to place the types of software
development activities best suited to an
environment. The industrial scientists’ amethodical
approach to software development seems to be well
suited to their particular environment. It is an
interesting option that should be explored further by
the software engineering community at large.

Acknowledgment
This work is funded by the Natural Sciences and

Engineering Research Council of Canada
(NSERC). Many thanks go to the scientists and
engineers who offered their time and enthusiasm for
these interviews.

References
[1] Ackroyd, K.S., Kinder, S.H., Mant, G.R., Miller,

M.C., Ramsdale, C.A., Stephenson, P.C.. “Scientific
Software Development at a Research Facility”,
IEEE Software, 25 (4), 2008, pp. 44-51

[2] Agile Alliance website “What is Agile Software
Development?”, http://www.agilealliance.org/the-
alliance/what-is-agile/; accessed January 20, 2012

[3] Beck, K. Extreme Programming Explained.
Addison- Wesley, 2000.

[4] Boehm, B. & Turner, R. Balancing Agility and
Discipline. Addison-Wesley, Pearson
Educational. 2004

[5] Ronald F. Boisvert, Ping Tak Peter Tang, editors,
The Architecture of Scientific Software, Klewer
Academic Publishers, 2001

[6] Business Computing World, UK, online, February
17, 2012; accessed on 10 January 2013 at
http://www.businesscomputingworld.co.uk/it-job-
churn-is-putting-business-continuity-and-recovery-
at-risk/

[7] David N. Card, Robert L. Glass; Measuring
Software design Quality; Prentice Hall, 1990

[8] George Dyson, Turing’s Cathedral – The Origins of
the Digital Universe; Pantheon Books, New York,
2012

[9] S. M. Easterbrook and T. Johns, “Engineering the
Software for Understanding Climate Change”, IEEE
Computing in Science and Engineering, Vol 11 (6),
pp. 65-74. November 2009

[10] Fischer, G., "End-User Development and Meta-
Design: Foundations for Cultures of Participation",
Journal of Organizational and End User Computing,
22(1), pp. 52-82., 2010, available at

http://l3d.cs.colorado.edu/~gerhard/papers/2010-
JOEUC.pdf

[11] Diane Kelly, Stefan Thorsteinson, and Daniel Hook,
“Scientific Software Testing: Analysis in Four
Dimensions”, IEEE Software, May/June 2011, pp.
84-90; preprint available online in IEEE Computer
Society Digital Library, Jan, 2010.

[12] Diane Kelly, “Innovative Approaches for
Developing Scientific Software”, Journal of
Organizational and End-User Computing, special
issue on Scientific End-User Computing; October-
December 2011, Vol. 23. No. 4, pp. 63-78

[13] Diane Kelly, Spencer Smith and Nicholas Meng,
“Software Engineering for Science”, IEEE CiSE,
Vol. 13, Issue 5, Sept/Oct 2011, pp 7-11

[14] Diane Kelly, Rebecca Sanders, “Mismatch of
Strategies: Scientific Researchers and Commercial
Software Suppliers”, The Software Practitioner, ed.
Robert Glass, July 2007

[15] Pitt-Francis, J., Bernabeu, M.O., Cooper, J., Garny,
A., Momtahan, L., Osborne, J., Pathmanathan, P.,
Rodriguez, B., Whiteley, J.P., Gavaghan, D.J.;
“Chaste: using agile programming techniques to
develop computational biology software”,
Philosophical Transactions of the Royal Society,
366, 2008, pp. 3111-3136

[16] Eric S. Raymond, “The Cathedral and the Bazaar”,
available at
http://archive.org/details/CathedralAndTheBazaar;
accessed Jan. 20 2012

[17] Royce, W., “Managing the Development of Large
Software Systems”, Proceedings IEEE WESCON,
August 1970, 328-338

[18] Rebecca Sanders, Diane Kelly, “Scientific
Software: Where’s the Risk and how do Scientists
Deal with it?”, IEEE Software, special issue on
software engineering for computational software,
July/August 2008, pp. 21-28

[19] Segal, Judith. “Models of scientific software
development”; SECSE 08, First International
Workshop on Software Engineering in
Computational Science and Engineering, 13 May
2008, Leipzig, Germany.

[20] Segal J., ‘When software engineers met research
scientists: a case study’, Empirical Software
Engineering, 10, 2005, pp. 517-536.

[21] Segal, J., “Professional end user developers and
software development knowledge”. Open
University Technical Report No.: 2004/25, 2004

[22] Truex, D.P., Baskerville, R. and Travis, J.
"Amethodical Systems Development: The Deferred
Meaning of Systems Development Methods,"
Accounting Management and Information
Technologies (10), pp. 53-79, 2000.

[23] Van Vliet, H., Software Engineering Principles and
Practices, Wiley, Chicester, England, 2000

[24] Wilson, Gregory V.,”Where’s the real bottleneck
in scientific computing?”, American Scientist,
94(1), 2006, pp. 5-6

