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S o f t w a r e 
e n g i n e e r i n g

Climate scientists build large, complex simulations with little or no software engineering 
training—and don’t readily adopt the latest software engineering tools and techniques. 
This ethnographic study of climate scientists shows that their culture and practices share 
many features of agile and open source projects, but with highly customized software 
validation and verification techniques.

Engineering the Software for 
Understanding Climate Change

C omputational scientists develop soft-
ware in a very different way from the 
development processes commonly de-
scribed in the software engineering 

literature. They build software to explore scientific 
questions for which the answers aren’t known in 
advance. As a result, generic software development 
processes are a poor fit: it’s hard to specify what 
software will be needed, hard to predict how long 
it will take to develop, and hard to verify correct-
ness.1 Nonetheless, the effort needed to develop 
and verify the code can be a bottleneck in scientific 
productivity. In fact, because advances in process-
ing speed haven’t been matched by advances in soft-
ware development techniques, time-to-solution in 
many cases is growing, rather than shrinking.2

In this article, we describe a detailed case study 
of climate scientists’ software development prac-
tices at a large government-funded research lab, 
the UK Meteorological Office’s Hadley Centre for 
Climate Prediction and Research. Software devel-
opment for climate models is interesting for nu-
merous reasons. Advances in climate science will 
be central to improving our understanding of the 

likely impacts of climate change over this century 
and hence will guide government policy-making. 
Computational models have always played a cen-
tral role in climate science, driving both a heavy 
demand for supercomputing power and a need for 
expertise in computational techniques. Any op-
portunities for improvements in software devel-
opment practices are therefore likely to have a big 
impact on the field.

Our goal in this study was to investigate how 
scientists get their ideas into working code and 
reason about its correctness. We concentrated on 
how climate scientists’ practices differ from other 
forms of software engineering and how they them-
selves view the activities around model building.

Scientists and Software Practices: 
General Characteristics
As many researchers have noted, computational 
scientists’ software development practices have 
several distinguishing characteristics.1,3 Devel-
opers are trained primarily in their scientific 
discipline, rather than computing or software en-
gineering, and the distinction between developers 
and users is blurred. The computational models 
are continually reworked over years or decades, so 
they tend to use older programming languages for 
which the latest software development tools are 
not available. Scientists have additional require-
ments for managing scientific code, including 
that they need to keep track of exactly which code 
version was used in a particular experiment, rerun 
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experiments with precisely repeatable results, and 
build alternative versions of software for different 
kinds of experiments.4 For all these reasons, sci-
entific teams tend to develop their own tools in-
house, rather than rely on external providers.

Because they generally don’t know the require-
ments up front, computational scientists generally 
adopt an agile development approach. However, 
they don’t use standard agile processes.1 Because 
they focus on scientific goals rather than soft-
ware quality goals, they use measures of scien-
tific progress rather than code metrics to manage  
their projects.5 Perhaps surprisingly, in the 
high-performance computing domain, software 
performance is not always the most important 
nonfunctional requirement—it often takes second 
place to code maintainability and portability.5

Software verification and validation (V&V) is 
challenging in computational science because of 
the lack of suitable test oracles and observational 
data.3 In the Earth sciences, model validation is 
a major challenge6 because a model’s value as a 
scientific instrument doesn’t always depend on its 
degree of isomorphism with the physical world. 
Sometimes, the best way to improve our under-
standing of Earth systems is to build a model 
that is unlike the Earth in some interesting way.6  
In climate modeling, scientists are faced with 
many choices about when to use simplifying  
assumptions—such as parameterizing a physical 
process rather than modeling it explicitly—and 
when to attempt to improve realism.

Finally, scientific software tends to have a very 
long lifetime, during which it continually evolves 
to reflect advances in both the science itself and 
the computational techniques used in the mod-
els. Hence, we can make useful comparisons with 
previous studies of software evolution,7 especially 
those in open source8 and agile9 projects.

Case Study Background
We conducted an eight-week observational study 
at the Met Office Hadley Centre using ethno-
graphic techniques to identify the concepts and 
work practices that climate scientists use, as well 
as to understand their perspectives. We selected 
the Hadley Centre because it’s recognized inter-
nationally as a leader in climate modeling, has a 
reputation for good software development pro-
cesses, and already has state-of-the-art code man-
agement practices in place.4

Methodology
We conducted 24 semistructured interviews with 
scientists across the organization and observed 

many meetings, including project team meetings, 
planning meetings, workshops, and scientific 
seminars. We also visited two external partner 
organizations to gain additional perspective on 
collaborative relationships. We analyzed project 
documentation and electronic media, including 
the organizational wiki and newsgroups. Finally, 
we extracted quantitative data from the code re-
pository to reconstruct the software’s historical 
evolution.

We began the study with five key research 
questions:

Correctness•	 : How do scientists assess the cor-
rectness of their code? What does correctness 
mean to them?
Reproducibility•	 : How do scientists ensure ex-
periments can be reproduced (such as for peer 
review)?
Shared understanding•	 : How do scientists de-
velop and maintain a shared understanding of 
the large, complex codes they use? For example, 
what forms of external representation do they 
use when talking about their models?
Prioritization•	 : How do scientists prioritize 
their requirements? For example, how do they 
find a balance between doing what is compu-
tationally feasible and what is scientifically 
interesting?
Debugging•	 : How do scientists detect (and/or 
prevent) software errors?

We investigated these questions using an ethno-
graphic approach, focusing on aspects of the cul-
ture and practices that seemed interesting, and 
exploring how the scientists themselves view their 
work.

The Met Office Hadley Centre
The Met Office, based in Exeter, is an operational 
weather forecasting center that provides services 
to a range of customers including broadcast and 
print media, civil aviation, and the UK military. It 
employs more than 1,700 people.

The Met Office’s work on climate modeling 
began in the early 1970s. In 1990, the Hadley 
Centre was created to act as a center of excellence 
for climate change research. It currently employs 
approximately 180 scientists and 19 IT special-
ists. Research funding is largely from government 
grants and EU contracts. In recent years, it has 
expanded its mission to include consultancy on 
climate impact assessments.

Climate research (CR) at the Hadley Cen-
tre is closely tied with the Met Office’s larger 
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meteorological research and development (Met 
R&D) effort. The two groups primarily occupy 
a single, open-plan office space on the second 
floor of the Met Office’s Exeter headquarters 
and have built a single unified code base. This 
close relationship with an operational weather 
forecasting center is unusual for a climate mod-
eling group, as is use of a unified code base. The 
results we present here focus primarily on cli-
mate research, but our interviews—and the de-
velopment practices we observed—cover both 
groups.

Climate Modeling Basics
Climate scientists use a range of computational 
models in their research. The most sophisticated 
are general circulation models (GCMs), which 
represent the atmosphere and oceans using a 
3D grid and solve the equations for fluid mo-
tion to calculate energy transfer between grid 
points. GCMs are designed so that the various 
subsystems (atmosphere, ocean, ice sheets, veg-
etation, and so on) can run either independent-
ly or coupled, with a coupler handling energy  

and mass transfers between subsystems (see  
Figure 1). Researchers can run the models at dif-
ferent resolutions, depending on the available 
computing power. Coarse-resolution GCMs can 
simulate large-scale phenomena, such as mid-
latitude weather systems, while finer-resolution 
models are needed to simulate smaller-scale phe-
nomena, such as tropical cyclones.10

Scientists make many trade-offs when build-
ing climate models. It’s not computationally fea-
sible to simulate all relevant climate processes (to  
the level they’re currently understood), so climate 
scientists must decide which processes to resolve 
explicitly and which to parameterize. They de-
velop parameter schemes from observational data 
or from uncoupled runs of models that do resolve 
the phenomena. For example, they can use a sepa-
rate cloud-resolving model to generate aggregate 
cloud formation data for use as GCM parameters. 
Judgment is needed to determine which processes 
and resolutions are relevant to a given research 
question.

The Earth’s climate is a complex system, ex-
hibiting chaotic behavior. The models might 

Figure 1. Conceptual view of the components and couplings of a coupled Earth system model.
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fail to match the observational data for several 
reasons11:

measurement error (observations might contain •	
inaccuracies),
natural variability introduces noise to both •	
model and observations,
scaling/aggregation issues (for example, obser-•	
vation locations might not match the grid points 
in the model), and
model imperfections.•	

It can often be hard to identify which of these 
factors is relevant. To investigate the latter three 
points, climate scientists increasingly use various 
types of model ensemble, including

multimodel ensembles, to compare models de-•	
veloped at different labs on a common scenario;
multimodel ensembles using variants of a single •	
model, to compare different schemes for the  
model’s parts (such as different radiation schemes);
perturbed physics ensembles, to explore prob-•	
abilities of different outcomes in response to 
systematically varying physical parameters in a 
single model; and
varied initial conditions within a single model, •	
to test the model’s robustness and better quan-
tify probabilities for predicted climate change 
signals.

Current issues in climate research include 
quantifying uncertainty, assessing the impact 
of climate change (such as on the occurrence of 
severe weather events), and producing better re-
gional predictions.

Study Observations
We’ll first describe the models developed at the 
Met Office and the processes by which they are 
developed, and then compare these processes with 
other software engineering projects.

The Met Office Unified Model
The Met Office maintains a common suite of For-
tran routines (the Unified Model) for its numeri-
cal weather prediction and climate models. This 
code base has, arguably, been continually evolving 
for at least 30 years. The NWP and climate codes 
were unified about 20 years ago. Operational 
weather forecasting models built from the UM in-
clude a global model, a European regional model, 
and an ocean wave model. The climate models in-
clude HadCM3 and HadGEM1, which provided 
data for the Intergovernmental Panel of Climate 

Change’s 2007 assessment;10 HadGEM2, a newer 
generation of the global environment model  
(to be used for the next IPCC assessment); and 
HadGEM3, a new research model.

Most of the code was developed in-house at a 
single Met Office location. However, the range 
of expertise needed to develop climate models 
has grown, and it’s now hard to provide all the 
necessary expertise in-house. Over the past few 
years, the Met Office has participated in several 
consortium efforts that complement its in-house 
expertise. These have led to the inclusion of the 
UK atmospheric chemistry model (UKCA), de-
veloped by a group of academic research labs, and 
the Nucleus for European Modelling of the Ocean 
(Nemo), a state-of-the-art model developed at the 
Centre National de la Recherche Scientifique 
(CNRS) in Paris.

The UM’s current release is about 830,000 lines 
of Fortran. Figure 2 shows the UM’s growth over 
the past 15 years. Discontinuities in the growth 
curve represent the replacement of major compo-
nents: the dynamical core at version 5.0 and the 
ocean model at version 7.0. At version 6.3, the Met 
Office adopted a new code management system, 
flexible configuration management,4 and cleaned 
up the file structure (note the deliberately faster 
release cycle after FCM’s adoption).

Interestingly, the time taken to perform a cli-
mate run hasn’t changed over UM’s life because 
climate scientists take advantage of increases in 
supercomputer power to increase their models’ 
resolution and complexity. A century-long cli-
mate simulation typically takes a couple of months  
to run on an NEC SX-8. Scientists more often 
run the models for just one to two decades of  
simulation—which can still take a couple of 
weeks, depending on the model configuration. 
Older models can now be run on desktop ma-
chines, but much of the leading-edge science 
uses the newest, higher-resolution models, which 
means that supercomputer capacity is a major re-
source constraint.

In addition to the UM, the Met Office main-
tains a number of other critical software sys-
tems, including the UMUI, a user interface for 
configuring model runs; an ancillary file genera-
tor, which takes observational datasets and cre-
ates input files for the models; and a suite of data  
analysis and graphics packages for studying the 
model outputs.

Software Evolution
As Figure 2 shows, the UM has undergone steady 
evolution throughout its history. Drivers for  
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change come from several directions (see  
Figure 3). First, advances in the underlying sci-
ence lead to improvements in how scientists rep-
resent physical processes in the model. Second, 
the accuracy of the operational weather forecast 
runs is analyzed regularly, and systematic errors 

in these forecasts are investigated and corrected 
(where possible). Third, the outputs from cli-
mate model runs are continually compared with 
observational datasets and with runs of models 
from other centers to identify areas of weakness. 
Fourth, operational concerns sometimes lead to 
changes—for example, to allow the models to run 
on newer hardware. 

Occasionally, scientists make opportunistic 
changes to the UM, to improve speed or to tidy 
up the code base. Such changes tend to be treated 
as lower priority, except in cases where they’ll 
likely lead to major improvements to the opera-
tional forecasting models. The prevailing culture 
discourages such changes, in part because a sci-
entist proposing them must demonstrate that the 
changes won’t negatively affect the accuracy and 
performance of any of the operational models.

These change drivers are largely internal to 
the Met Office. The Met Office’s customers don’t 
interact with the software directly, so customer 
requirements affect the change process only  
indirectly—such as when forecasters identify a 
demand for new types of weather forecast data. 
On the other hand, other climate research centers 
do run the models; change requests from peer in-
stitutes and science review committees are filtered 
through Met Office contacts.

These change drivers lead to requirements 
conflicts. For example, there is often a trade-off 
between improving the models’ skill in repro-
ducing observed weather and climate variations 
versus improving the physics schemes’ scientific 
validity. The models must be tuned empirically 

Figure 3. Drivers of change in UM code. The model’s steady 
evolution is influenced by many factors, from advances in how 
scientists represent physical processes in the model to operational 
concerns, such as hardware upgrades. (Courtesy of Damian Wilson, UK 
Meteorological Office.) 
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by adjusting the parameterization schemes be-
cause both the models and the parameteriza-
tions are approximations of the real physical 
processes. As the scientists themselves note, 
models sometimes get a good match with ob-
servations for the wrong reasons. (This problem 
resembles the overfitting sometimes observed in 
benchmarking.) 

This conflict is complicated by the use of the 
UM for weather forecasting, which places con-
straints on performance (forecasts must be deliv-
ered on time) and accuracy (the Met Office has 
annual targets for improvements in weather fore-
cast accuracy). Scientific improvements often have 
negative effects on performance or forecast accu-
racy, so they might be delayed until they can be 
included in a bundle of changes that has an overall 
positive effect. In addition, alternative versions of 
various physics schemes are included in the UM, 
which can be selected when different models are 
built.

The Development Process
The Met Office’s software development processes 
have also undergone significant evolution over the 
UM’s life. In particular, the FCM adoption has 
institutionalized practices that previously were 
not applied systematically. Here, we describe the 
processes we observed in the summer of 2008, 
two years after FCM was introduced.

Met Office staff play a number of distinct roles, 
organized like the “onion” model often observed 
in open source projects. At the core, approximate-
ly 12 people from the two IT support teams (Met 
R&D and CR) control the acceptance of changes 
into the UM’s trunk. They act as experts for in-
tegration and platform-specific issues. Many of 
them have scientific backgrounds, with PhDs in 
numerical computing or related fields. At the next 
layer, about 20 of the more senior scientists act as 
code owners, each responsible for specific UM 
sections (such as atmosphere, ocean, boundary 
layer, dynamical core, and so on). Code owners 
are domain experts who keep up to date with the 
relevant science and maintain oversight of devel-
opments to their sections of the model. Member-
ship in these two layers rarely changes.

In the outer layers are scientists who run the 
models as part of their research. A configuration 
manager is appointed for each climate model (usu-
ally a more junior scientist). Configuration man-
agers become local experts for knowledge about 
how to configure the model and track experi-
ments performed with the model. Approximately 
100 Met Office scientists contribute code changes 

for any given release. Finally, a broader group of 
scientists both within and outside the Met Office 
make occasional use of the models and might sug-
gest potential improvements.

UM releases are planned on a regular sched-
ule, typically every four to five months. All model 
changes are captured as FCM tickets, which are 
allocated to upcoming releases using an agile-
planning approach. Approximately three months 
into the release cycle, there’s a deadline for tickets 
to be included for that release, and one month lat-
er there’s a code freeze—the IT teams refer to it as 
a “frosting” rather than a freeze, as some changes 
are still permitted. One further month is allowed 
for the IT teams to ensure all model configura-
tions work properly, fix any remaining bugs, and 
ensure the UMUI is updated. A release date isn’t 
fixed until this work is complete.

Each change passes through two review stages 
before being accepted into the UM’s trunk. First, 
the relevant code owner runs a scientific review. 
Significant changes are typically discussed with 
code owners in advance to explore the scientific 
justification and relative priority; smaller changes 
are submitted for review once they’re complete. 
Second, an IT team member performs a system 
review. This focuses on coding standards, basic 
code hygiene (for example, to verify that files are 
opened and closed properly), potential perfor-
mance issues, and integration testing across dif-
ferent model configurations. Once the review is 
passed, the IT teams accept the changes (no more 
than four per day) into the trunk and run an  
automated test harness every night on the updated 
trunk. Tickets are closed once the changes pass 
this overnight test.

The process is overseen with lightweight proj-
ect management. Each named climate model 
under active development is explicitly defined as 
a project to identify the strategic scientific ob-
jectives, allocate resources, and manage risk. 
Within a project, however, a bottom-up strategy 
dominates, with individual team members taking 
the initiative to identify what needs doing and to 
prioritize tasks. The result is a hybrid strategy in 
which code development proceeds using an agile-
planning approach, while specific model configu-
rations are more carefully controlled.

Verification and Validation
V&V processes are dominated by the understand-
ing that the models are imperfect representations 
of highly complex physical phenomena. Instead of 
reasoning about “code correctness,” Met Office 
scientists treat the models as evolving theories 
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and conduct experiments using the models to test 
specific hypotheses.

Indeed, they treat each model change as an 
experiment. A previous run is used as a control, 
the changed code is the experimental condition,  
and observational datasets are used to assess 
whether the change has had the expected effect. 
As Figure 4 shows, automated tools, or validation 
notes, generate visualizations of selected model 
outputs. The scientists analyze these to under-
stand model error and ways to reduce it. Such 
visualizations appear everywhere: on people’s 
desks, pinned to the walls, passed around in 
meetings, and on PowerPoint slides used in sci-
entific seminars. The example in Figure 4 shows 
a change that has reduced the model errors in the 
Antarctic.

Essentially, with this approach, the scientists 
are performing continuous integration testing, 
but they don’t view it as such because for them it’s 
part of the business of “doing science.” They don’t 

need “finished” software to perform these experi-
ments, but they continually experiment with the 
software itself to improve their understanding.

A second V&V strategy is to automatically 
check for bit comparison between the outputs of 
two different runs. This is useful for checking 
that a change didn’t break anything it shouldn’t. 
Each change is designed so that it can be turned 
off (via runtime switches) to ensure that previous 
experiments can be reproduced. However, repro-
ducibility can be guaranteed only if the outputs of 
the old and new runs are exactly identical (down 
to the least significant bits). Because the models 
are designed to run on different platform con-
figurations, bit comparison tests can also check 
that all configurations give identical results. 
IT staff members run these tests and maintain 
a wiki page listing changes that break bit-level 
reproducibility.

This use of bit-level comparison for automated 
regression and configuration testing might be 

Figure 4. An example validation note. This note shows the effect of a new polar filter on mean pressure at sea level (PMSL) 
for December to February (djf): (a) the new model run, (b) the new run minus the control run, (c) the control run minus the 
observational data, and (d) the new run minus the observational data.
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unique to the climate modeling community. Be-
cause full model runs take so long, a useful short-
cut is to run the model for, say, one simulation day 
(which only takes a few minutes) and run the bit 
comparison test on all model variables. Bit-level 
reproducibility on a short run is a good indica-
tor of reproducibility over longer runs. The over-
night test harness runs many such tests. However, 
this practice enforces a strong conservativeness 
on model changes, so that refactoring is almost 
impossible, except when bit comparison is already 
lost for other reasons, such as on porting to a new 
supercomputer.

Other V&V strategies include formally com-
paring results with other models in a series of  
community-wide Model Intercomparison Proj-
ects12 or, more informally, facilitating debugging.

Overall code quality is hard to assess. Model 
configuration problems and code defects fre-
quently prevent an experimental change to the 
model from running, but these are quickly fixed. 
Scientists treat some errors as modeling approxi-
mations, rather than defects. For example, defects 
in the numerical routines that cause model drift 
are hard to fix, so they might be accommodated by 
making periodic corrections rather than by fixing 
the underlying routines.

The combination of the scientists’ continuous 
integration testing and bit reproducibility tests 
catches most errors prior to release. The last six 
releases averaged about 24 bug-fix tickets per re-
lease, against an average of 50,000 source lines of 
code (SLOC) touched per release. This suggests 
that, on average, two defects per 1,000 changed 
SLOC make it through testing and review for 
each release. (We thus estimate a post-release de-
fect density for the current release of 0.03 defects 
per KSLOC, or approximately 24 latent defects 
in 831,157 SLOC.) However, some of these bug 
fixes represent defects that were treated as accept-
able model imperfections in previous releases. We 
plan to complete a more detailed analysis of post-
release code defects as a followup study. 

Maintaining a Shared Understanding
Met Office scientists use several different strate-
gies to maintain a shared understanding of the 
software. Although there’s formal design docu-
mentation for the UM, it’s updated only sporadi-
cally. The scientists working on the model rely 
heavily on face-to-face communication, together 
with many “informalisms.”13

The office’s large open floorplan encourages face-
to-face communication; most CR and Met R&D 
staff are accessible without traversing any doors 

or stairs. The office culture discourages noise, but 
many brief one-on-one technical conversations are 
held at people’s desks. Longer conversations and 
meetings are held in meeting pods scattered around 
the office—or in social gathering spaces on the 
landings and the ground floor coffee shop. Several 
people commented that coordination has improved 
dramatically since the move to Exeter; previously, 
CR and Met R&D were in separate buildings. 
Cross-functional teams are often formed to inves-
tigate specific model issues.

The teams also use electronic media extensively 
for informal communication and coordination. 
A site-wide wiki serves as a repository for design 
notes, to-do lists, task status reports, glossaries, 
and so on. Scientists use site-specific newsgroups 
for both social interaction and technical commu-
nication, such as to broadcast the status of trunk 
integration, overnight test results, and problems 
encountered.

Representations of the code itself are rare. Oc-
casionally, people draw flowcharts to show a new 
scheme’s control structure. Descriptions of de-
signs, defects, and potential improvements tend 
to focus on the underlying equations. Test results 
are described using visualizations and measure-
ments of root mean squared (rms) error against 
observational data. Some scientists use the wiki as 
an electronic lab book, creating a page to describe 
each model run and its results.

When asked about the major challenges in their 
work, nearly everyone we interviewed mentioned 
the effort needed to coordinate their work with 
others: keeping their branches up to date, know-
ing what changes are happening elsewhere, man-
aging the model configuration options, and so on. 
Some described coordination problems with ex-
ternal groups who are using older versions of the 
model. (The public releases of the model tend to 
lag the internal releases by at least a year.)

Community Models
The fact that model development has taken place 
at a single site appears to be important. David 
Randall reports that all existing GCMs were de-
veloped at large research labs, with no geographi-
cally distributed development, and he suggests 
that the complexity of the coupling prevents it.14 
However, occasionally a module is transplanted 
from one lab to another. For example, the original 
ocean model used in the Hadley Centre GCMs 
was an early version of the Modular Ocean Model 
(MOM) developed at the Geophysical Fluid Dy-
namics Laboratory (GFDL) in Princeton, New 
Jersey. Its replacement, Nemo, was developed at 
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CNRS. Such transplants allow a modeling group 
to tap into expertise available elsewhere.

However, it can be hard to integrate a complex, 
externally developed component into an existing 
GCM. The component might need to be ported 
and optimized for performance on a different 
computer. To get the coupling to work, both the 
GCM and the new component might need to 
be modified. Seemingly trivial technical details 
(such as tiny differences in physical constants) 
can cause problems and are hard to track down. 
When MOM was incorporated into the UM, the 
modifications led to a fork from the GFDL model, 
which meant that although the Met Office gained 
a state-of-the art ocean model, it lost access to 
GFDL’s ongoing scientific expertise to keep the 
ocean model updated.

Open source teams usually dislike code fork-
ing because it divides communities and prevents 
the subsequent sharing of changes. The same 
problems occur for scientific software. To avoid 
this problem for Nemo, the Met Office, CNRS, 
and other partners have established a consortium 
agreement, but coordination remains a challenge. 
Nemo is maintained by a small group in Paris, 
whose development cycle doesn’t match that 
of the Met Office. The consortium has to deal 
with the tension between members who want to  
customize Nemo for use in their coupled models 
and the Nemo team members who want to pre-
serve portability and flexibility.

Increasingly, community collaborations help 
the Met Office foster links with other research 
groups and tap into pools of expertise not available 
in-house. Examples include UKCA; Jules, a land 
surface scheme; and HiGEM, a community adap-
tation of HadGEM1 for higher resolutions. How-
ever, in each of these community efforts, control 
of the core code base remains at a single site, and 
the partners tend to specialize in particular areas 
and submit their changes to the central site for in-
clusion in the reference model. The result is that 
the core site can become a bottleneck.

Discussion
Our study confirms observations of the software 
practices of computational scientists reported else-
where.1,3 The scientists have little formal training 
in software engineering and are skeptical of most 
claims for software engineering tools. However, 
where such tools match their needs—such as for 
code management and version control—they’re 
readily adopted. The software itself has a long 
lifetime, is written in an “old” programming 
language (Fortran), and performance issues are 

carefully balanced with maintainability and por-
tability concerns. As in Richard Kendall and his 
colleague’s study,5 we found that the developers 
had a strong, shared scientific background and an 
informal, collegial management style. The cul-
ture was one of member participation and shared 
responsibility.

We found no evidence of Douglass Post’s 
slow down in time-to-solution.2 The near-linear 
growth of the UM over the past 15 years indi-
cates a steady growth of functionality, despite the 
model’s growing complexity. This steady growth 
is also inconsistent with the findings of Meir  
Lehman and colleagues, who found that for large 
commercial systems, the growth rate tails off as 
the software increases in size and complexity.7 In-
stead, it more closely resembles the evolution pat-
terns of open source projects reported by Michael 
Godfrey and Qiang Tu.8 We hypothesize that 
this is due to the many shared features with open 
source projects.

Another notable finding is the broad set of V&V 
approaches. The use of bit-comparison tests as a 
technique for regression testing appears to be 
unique to this community, and it reflects both a 
scientific concern for reproducibility of experi-
ments and the challenges of automating test-
ing when full runs can take weeks or months to 
complete. Frequent end-to-end integration test-
ing is built into the scientific practices. Scien-
tists spend a lot of time experimenting with each 
change to the model, comparing the results with 
control runs and observational data. Hence, in-
tegration testing is not regarded as a costly bur-
den (even though it is costly) because it’s part 
of doing science. The extensive use of model 
inter-comparisons and model ensembles is also a  
distinct feature of this community.

In some ways, the organization behaves like an 
agile software development company, with a large 
open office and a strong reliance on informal com-
munication channels. It uses many agile develop-
ment practices, including release planning, onsite 
customer, collective ownership, continuous inte-
gration, and risk management, but it doesn’t use 
any established agile process. It also operates on 
a scale much larger than any agile team described 
in the literature.

These observations suggest interesting insights 
into agile practices. The Met Office has developed 
a set of practices that work very well for its partic-
ular context. They resemble agile practices in part 
because they share with them a key characteristic: 
over a period of time, a set of smart, engaged peo-
ple have figured out for themselves what works.
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This supports the argument that agile de-
velopment is a set of best practices adopted by 
developers because they work well in a partic-
ular setting. It’s also consistent with our study 
of successful software startup companies,15 in 
which each company could be characterized as 
using a subset of “agile” practices, but within a 
distinct, homegrown process model. Over time, 
it appears that these organizations evolve pro-
cesses that are highly adapted to their “ecologi-
cal niche.” This probably occurs only in stable, 
well-established teams with a long history of 
working together. Such observations suggest 
that domain-independent process models (such 
as Rational Unified Process, Scrum, XP, and so 
on) are simply irrelevant to these organizations.

A comparison with open source software (OSS) 
projects8 is also apt:

The Met Office’s release schedule isn’t driven •	
by commercial pressure because the code is 
used primarily by the developers themselves, 
rather than released to customers.
The developers are also the domain experts. •	
Most have PhDs in meteorology, climatology, 
numerical methods, or related disciplines, and 
most of them regularly publish in the top peer-
reviewed scientific journals.
The code is controlled by a few code owners, •	
with a careful review process to decide which 
changes are accepted.
The community operates as a meritocracy. •	
Roles are decided based on perceived exper-
tise within the team. Code owners are the 
most knowledgeable domain experts, and code  
ownership tends to be stable over the long term.
The scientists are not full-time developers. •	
They change the model only when they need 
something fixed or enhanced. They don’t like to 
delegate code development tasks to others be-
cause they have the necessary technical skills, 
understand what needs doing, and doing it 
themselves is much easier than explaining their 
needs to someone else.
V&V practices rely on the fact that the develop-•	
ers are also the primary users and are motivated 
to try out each other’s contributions.

However, the Met Office lacks two key distin-
guishing traits of OSS projects: geographically dis-
tributed teams and a commitment to open source 
licensing. This suggests an interesting hypothesis: 
the success of open source projects might have 
more to do with a community of domain experts 
building and testing software for their own use, 

rather than any commitment to the philosophy of 
free/open source software and volunteerism. Such 
experts figure out over time how to solve prob-
lems of coordination and communication, prefer 
to work in a meritocracy, and build or adapt their 
own tools rather than rely on commercial tools.

Limitations
We used an ethnographic approach for this study, 
investigating how the scientists themselves talk 
about their work. Mapping their concepts onto 
terms used in the software engineering literature 
might be problematic. For example, it was hard 
to distinguish software development from other 
aspects of the scientific practice, including data 
analysis, theorizing, and the development of ob-
servational datasets. From a scientific viewpoint, 
the distinction between changing the code and 
changing the parameters is artificial, and scientists 
often conflate the two—they sometimes recom-
pile even when it shouldn’t be necessary. There-
fore, characterizations of model evolution based 
purely on source code changes miss an important 
part of the picture. We would need to analyze the 
evolution of datasets (ancillary files and input pa-
rameters) to overcome this limitation.

Similarly, there’s a difference in how the scien-
tists perceive defects and bug fixes compared to 
the view in software engineering literature: sci-
entists accept model imperfections as inevitable. 
Hence, any measure of defect density might not be 
comparable with that of other types of software.

We can’t claim that the observations in this case 
study generalize. As a climate modeling center, the 
Met Office Hadley Centre is unique in some ways, 
particularly in the close relationship with a major 
operational weather forecasting facility. The soft-
ware development processes are highly tailored to 
the Met Office’s needs. Hence, our observations 
about why such tailoring has occurred and why 
the processes work is likely to be more useful than 
any specific detail of the processes themselves.

T he Met Office has evolved a mature 
domain-specific software develop-
ment process that is highly adapted 
to its needs, relies heavily on the 

deep domain knowledge of the scientists building 
the software, and is tightly integrated with their 
scientific research practices. Model validation is 
extensive because it’s built into a systematic inte-
gration and regression testing process, with each 
model run set up as a controlled experiment. The 
V&V practices are absorbed so thoroughly into 
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the scientific research that the scientists don’t re-
gard them as V&V. However, the Met Office does 
appear to rely heavily on informal face-to-face 
communication to allow its scientists to develop a 
shared understanding of their models.

The Met Office’s software development prac-
tices share many features with both agile and 
open source development. The comparison offers 
interesting insights into why the practices used by 
these communities work. In particular, all three 
communities (open source, agile, and scientific 
software) rely on their developers’ expertise and 
self-organization. We hypothesize that under 
such circumstances, the developers will gradually 
evolve a set of processes that are highly custom-
ized to their context and that domain-independent 
process models are unlikely to work. However, 
further research into such comparisons is needed 
to investigate these observations.		       
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