
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

02 Getting Started

Dr. Spencer Smith

Faculty of Engineering, McMaster University

September 8, 2017



Getting Started

LiCS overview by Dan

Administrative details

Introductions

Questions on suggested reading?

Project choices

Software tools

Software Engineering for Scientific Computing literature

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 2/26



Administrative Details

Benches and white boards

Use folder structure given in repo

Post any questions as issues in our repo

Problem statement due Friday, Sept 15 by 11:59 pm

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 3/26



Benches and Glassboards

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 4/26



Administrative Details: Grade Assessment

1. Presentations and class discussion 10%

2. Quality of GitHub issues provided to classmates 5%

3. Problem Statement 0%

4. System Requirements Specification (SRS) 20%

5. Verification and Validation Plan 10%

6. Module Guide (MG) 10%

7. Module Interface Specification (MIS) 10%

8. Final Documentation (including revised versions of
previous documents, plus the source code and a testing
report) 35%

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 5/26



Administrative Details: Report Deadlines

Problem Statement Week 02 Sept 15
System Requirements Specification (SRS) Week 05 Oct 4
Verification and Validation Plan Week 07 Oct 25
Module Guide (MG) Week 09 Nov 8
Module Interface Specification (MIS) Week 11 Nov 22
Final Documentation Week 13 Dec 6

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension, please ask

Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 6/26



Administrative Details: Presentations

SRS Present Week 04 Week of Sept 25
V&V Present Week 06 Week of Oct 16
MG Present Week 08 Week of Oct 30
MIS Present Week 10 Week of Nov 13
Implementation Present Week 12 Week of Nov 27

Tentative dates

Specific schedule depends on final class registration and
need

Informal presentations with the goal of improving
everyone’s written deliverables

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 7/26



Introductions

Your name

Degree program

Academic background

Experience with:
I Scientific computing
I Continuous math
I Discrete math
I Software engineering
I Software development technology

I Git
I GitHub or GitLab
I LaTeX
I Make etc.

What do you hope to get out of this course?

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 8/26



Questions on Suggested Reading?

Smith2016 [11]

SmithEtAl2007 [12]

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 9/26

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SoftEngForScienceBook.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SmithLaiAndKhedri2007fulltext.pdf


Project Selection: Desired Qualities

Related to scientific computing

Simple, but not trivial

If feasible, select a project related to your research

Ideally, re-implement existing software

Each student project needs to be unique

Possibly a specific physical problem

Possibly a (family of) general purpose tool(s)

Some examples follow, the links are just places to get
started

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 10/26



Project Selection: Specific Physical Problem

Heated rod

Heated plate

Double pendulum

Rigid body dynamics

Column buckling

Damped harmonic oscillator

Stoichiometric calculations (chemical balance)

Predator prey dynamics

Imaging: filters, edge detection etc.

etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 11/26

https://ocw.mit.edu/courses/mathematics/18-303-linear-partial-differential-equations-fall-2006/lecture-notes/heateqni.pdf
http://www.tech.plym.ac.uk/sme/THER204B-web/Heatran2.PDF
https://en.wikipedia.org/wiki/Double_pendulum
http://chrishecker.com/Rigid_Body_Dynamics
https://en.wikipedia.org/wiki/Harmonic_oscillator
http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html


Project Selection: Family of General Purpose Tools

Solution of ODEs

Solution of Ax = b

Regression

Interpolation

Numerical integration

FFT

Mesh generation

Finite element method

Any chapter from a standard numerical methods textbook

etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 12/26

https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikibooks.org/wiki/Numerical_Methods/Solution_of_Linear_Equation_Systems
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikibooks.org/wiki/Introduction_to_Numerical_Methods/Interpolation
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Mesh_generation
https://en.wikipedia.org/wiki/Finite_element_method


Tool Tutorials

Best way to learn is by doing

Some getting started information and exercises in the
ToolTutorials folder, modified from undergrad classes

Many other resources on-line

Your colleagues can help too

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 13/26



Git, GitLab and GitHub

Git manages changes to documents
I Tracks changes
I Keeps history, you can roll back
I Useful documentation over time
I Allows people to work simultaneously

Benefits for SC [14]
I Not necessary to make a backup copy of everything,

stores just enough information to recreate
I Do not need to come up with names for backup copies -

same file name, but with timestamps
I Enforces changelog discipline
I Facilitates identifying conflict and merging changes

The real bottleneck in scientific computing [15]

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 14/26



Git Typical Usage

First either init repo or clone (git init, git clone), then typical
workflow is

1. update repo (git pull)

2. create files

3. stage changes to be committed (git status, git add)

4. commit staged changes (git commit -m “message”)

5. push to remote, if using one (git push)

Commit after every separate issue, and when need to stop
working

Always include a meaningful and descriptive commit
message for the log

If a push reveals conflicts, take appropriate action to
merge

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 15/26



GitLab and GitHub Issue Tracking

See brief document in course repo

See examples

Create an issue

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 16/26

https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/gitAndGitLab
https://github.com/JacquesCarette/literate-scientific-software/issues
https://gitlab.cas.mcmaster.ca/smiths/cas741/issues


LaTeX

A typesetting language

Some initial information in course repo

Start from an example
I The lectures notes
I The Blank Project Template
I The problem statement

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 17/26

https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/LaTeX


SE For SC Literature

CAS 741 process is document driven, adapted from the
waterfall model [4, 13]
Many say a document driven process is not used by, nor
suitable for, scientific software.

I Scientific developers naturally use an agile
philosophy [1, 2, 3, 9],

I or an amethododical process [5]
I or a knowledge acquisition driven process [6].

Scientists do not view rigid, process-heavy approaches,
favorably [2]

Reports for each stage of development are
counterproductive [8, p. 373]

Up-front requirements are impossible [2, 10]

What are some arguments in favour of a rational
document driven process?

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 18/26



Counter Arguments

Just because document driven is not used, does not mean
it will not work
Documentation provides many benefits [7]:

I easier reuse of old designs
I better communication about requirements
I more useful design reviews
I easier integration of separately written modules
I more effective code inspection
I more effective testing
I more efficient corrections and improvements.

Actually faking a rational design process
Too complex for up-front requirements sounds like an
excuse

I Laws of physics/science slow to change
I Often simple design patterns
I Think program family, not individual member

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 19/26



References I

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant,
Mike C. Miller, Christine A. Ramsdale, and Paul C.
Stephenson.
Scientific software development at a research facility.
IEEE Software, 25(4):44–51, July/August 2008.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 20/26



References II

Steve M. Easterbrook and Timothy C. Johns.
Engineering the software for understanding climate
change.
Comuting in Science & Engineering, 11(6):65–74,
November/December 2009.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 21/26



References III

Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
’13, pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 22/26



References IV

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148,
2010.

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Judith Segal.
When software engineers met research scientists: A case
study.
Empirical Software Engineering, 10(4):517–536, October
2005.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 23/26



References V

Judith Segal and Chris Morris.
Developing scientific software.
IEEE Software, 25(4):18–20, July/August 2008.

W. Spencer Smith.
A rational document driven design process for scientific
computing software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
chapter Section I – Examples of the Application of
Traditional Software Engineering Practices to Science,
pages 33–63. Taylor & Francis, 2016.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 24/26



References VI

W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation: A
systematic approach for improving software reliability.
Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83–107, February 2007.

Hans van Vliet.
Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

Greg Wilson, Jennifer Bryan, Karen Cranston, Justin
Kitzes, Lex Nederbragt, and Tracy K. Teal.
Good enough practices in scientific computing.
CoRR, abs/1609.00037, 2016.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 25/26



References VII

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in
the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741, CES 741 Fall 2017: 02 Getting Started 26/26


