
64	 This article has been peer-reviewed.� Computing in Science & Engineering

S o f t w a r e
e n g i n e e r i n g

Climate scientists build large, complex simulations with little or no software engineering
training—and don’t readily adopt the latest software engineering tools and techniques.
This ethnographic study of climate scientists shows that their culture and practices share
many features of agile and open source projects, but with highly customized software
validation and verification techniques.

Engineering the Software for
Understanding Climate Change

C omputational scientists develop soft-
ware in a very different way from the
development processes commonly de-
scribed in the software engineering

literature. They build software to explore scientific
questions for which the answers aren’t known in
advance. As a result, generic software development
processes are a poor fit: it’s hard to specify what
software will be needed, hard to predict how long
it will take to develop, and hard to verify correct-
ness.1 Nonetheless, the effort needed to develop
and verify the code can be a bottleneck in scientific
productivity. In fact, because advances in process-
ing speed haven’t been matched by advances in soft-
ware development techniques, time-to-solution in
many cases is growing, rather than shrinking.2

In this article, we describe a detailed case study
of climate scientists’ software development prac-
tices at a large government-funded research lab,
the UK Meteorological Office’s Hadley Centre for
Climate Prediction and Research. Software devel-
opment for climate models is interesting for nu-
merous reasons. Advances in climate science will
be central to improving our understanding of the

likely impacts of climate change over this century
and hence will guide government policy-making.
Computational models have always played a cen-
tral role in climate science, driving both a heavy
demand for supercomputing power and a need for
expertise in computational techniques. Any op-
portunities for improvements in software devel-
opment practices are therefore likely to have a big
impact on the field.

Our goal in this study was to investigate how
scientists get their ideas into working code and
reason about its correctness. We concentrated on
how climate scientists’ practices differ from other
forms of software engineering and how they them-
selves view the activities around model building.

Scientists and Software Practices:
General Characteristics
As many researchers have noted, computational
scientists’ software development practices have
several distinguishing characteristics.1,3 Devel-
opers are trained primarily in their scientific
discipline, rather than computing or software en-
gineering, and the distinction between developers
and users is blurred. The computational models
are continually reworked over years or decades, so
they tend to use older programming languages for
which the latest software development tools are
not available. Scientists have additional require-
ments for managing scientific code, including
that they need to keep track of exactly which code
version was used in a particular experiment, rerun

Steve M. Easterbrook
University of Toronto
Timothy C. Johns
Hadley Centre for Climate Prediction and Research

1521-9615/09/$26.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

November/December 2009 � 65

experiments with precisely repeatable results, and
build alternative versions of software for different
kinds of experiments.4 For all these reasons, sci-
entific teams tend to develop their own tools in-
house, rather than rely on external providers.

Because they generally don’t know the require-
ments up front, computational scientists generally
adopt an agile development approach. However,
they don’t use standard agile processes.1 Because
they focus on scientific goals rather than soft-
ware quality goals, they use measures of scien-
tific progress rather than code metrics to manage
their projects.5 Perhaps surprisingly, in the
high-performance computing domain, software
performance is not always the most important
nonfunctional requirement—it often takes second
place to code maintainability and portability.5

Software verification and validation (V&V) is
challenging in computational science because of
the lack of suitable test oracles and observational
data.3 In the Earth sciences, model validation is
a major challenge6 because a model’s value as a
scientific instrument doesn’t always depend on its
degree of isomorphism with the physical world.
Sometimes, the best way to improve our under-
standing of Earth systems is to build a model
that is unlike the Earth in some interesting way.6
In climate modeling, scientists are faced with
many choices about when to use simplifying
assumptions—such as parameterizing a physical
process rather than modeling it explicitly—and
when to attempt to improve realism.

Finally, scientific software tends to have a very
long lifetime, during which it continually evolves
to reflect advances in both the science itself and
the computational techniques used in the mod-
els. Hence, we can make useful comparisons with
previous studies of software evolution,7 especially
those in open source8 and agile9 projects.

Case Study Background
We conducted an eight-week observational study
at the Met Office Hadley Centre using ethno-
graphic techniques to identify the concepts and
work practices that climate scientists use, as well
as to understand their perspectives. We selected
the Hadley Centre because it’s recognized inter-
nationally as a leader in climate modeling, has a
reputation for good software development pro-
cesses, and already has state-of-the-art code man-
agement practices in place.4

Methodology
We conducted 24 semistructured interviews with
scientists across the organization and observed

many meetings, including project team meetings,
planning meetings, workshops, and scientific
seminars. We also visited two external partner
organizations to gain additional perspective on
collaborative relationships. We analyzed project
documentation and electronic media, including
the organizational wiki and newsgroups. Finally,
we extracted quantitative data from the code re-
pository to reconstruct the software’s historical
evolution.

We began the study with five key research
questions:

Correctness•	 : How do scientists assess the cor-
rectness of their code? What does correctness
mean to them?
Reproducibility•	 : How do scientists ensure ex-
periments can be reproduced (such as for peer
review)?
Shared understanding•	 : How do scientists de-
velop and maintain a shared understanding of
the large, complex codes they use? For example,
what forms of external representation do they
use when talking about their models?
Prioritization•	 : How do scientists prioritize
their requirements? For example, how do they
find a balance between doing what is compu-
tationally feasible and what is scientifically
interesting?
Debugging•	 : How do scientists detect (and/or
prevent) software errors?

We investigated these questions using an ethno-
graphic approach, focusing on aspects of the cul-
ture and practices that seemed interesting, and
exploring how the scientists themselves view their
work.

The Met Office Hadley Centre
The Met Office, based in Exeter, is an operational
weather forecasting center that provides services
to a range of customers including broadcast and
print media, civil aviation, and the UK military. It
employs more than 1,700 people.

The Met Office’s work on climate modeling
began in the early 1970s. In 1990, the Hadley
Centre was created to act as a center of excellence
for climate change research. It currently employs
approximately 180 scientists and 19 IT special-
ists. Research funding is largely from government
grants and EU contracts. In recent years, it has
expanded its mission to include consultancy on
climate impact assessments.

Climate research (CR) at the Hadley Cen-
tre is closely tied with the Met Office’s larger

66� Computing in Science & Engineering

meteorological research and development (Met
R&D) effort. The two groups primarily occupy
a single, open-plan office space on the second
floor of the Met Office’s Exeter headquarters
and have built a single unified code base. This
close relationship with an operational weather
forecasting center is unusual for a climate mod-
eling group, as is use of a unified code base. The
results we present here focus primarily on cli-
mate research, but our interviews—and the de-
velopment practices we observed—cover both
groups.

Climate Modeling Basics
Climate scientists use a range of computational
models in their research. The most sophisticated
are general circulation models (GCMs), which
represent the atmosphere and oceans using a
3D grid and solve the equations for fluid mo-
tion to calculate energy transfer between grid
points. GCMs are designed so that the various
subsystems (atmosphere, ocean, ice sheets, veg-
etation, and so on) can run either independent-
ly or coupled, with a coupler handling energy

and mass transfers between subsystems (see
Figure 1). Researchers can run the models at dif-
ferent resolutions, depending on the available
computing power. Coarse-resolution GCMs can
simulate large-scale phenomena, such as mid-
latitude weather systems, while finer-resolution
models are needed to simulate smaller-scale phe-
nomena, such as tropical cyclones.10

Scientists make many trade-offs when build-
ing climate models. It’s not computationally fea-
sible to simulate all relevant climate processes (to
the level they’re currently understood), so climate
scientists must decide which processes to resolve
explicitly and which to parameterize. They de-
velop parameter schemes from observational data
or from uncoupled runs of models that do resolve
the phenomena. For example, they can use a sepa-
rate cloud-resolving model to generate aggregate
cloud formation data for use as GCM parameters.
Judgment is needed to determine which processes
and resolutions are relevant to a given research
question.

The Earth’s climate is a complex system, ex-
hibiting chaotic behavior. The models might

Figure 1. Conceptual view of the components and couplings of a coupled Earth system model.

Sea ice

Chemistry

Atmospheric
transport

Dynamics

Ice sheet
coupler Atmosphere

surface
interface

Land
surface
model

Ocean
coupler

Dynamics

Inland ice

Dynamics

Mass
balance

Bedrock
model

Thermo-
dynamics

Surface
vegetation
atmosphere

transfer (SVAT)

Ocean

Atmosphere

Solar

Solar variability,
orbital parameters

Snow

Topography

Geothermal
heat Iceberg

calving

Energy Wind stress Precipitation

Fertilization
effect

Oceanic
carbon flux

Vegetation
cover

Energy Water Momentum

Emission of
greenhouse gases

and aerosols

Land use
Temperature

Hydrological
cycle

Thermo-
dynamics

Thermodynamics

Oceanic
transport

Carbon
cycle

Salinity

CO2

Terrestrial
carbon cycle

Vegetation
dynamics

Terrestrial vegetation

Precipitation

November/December 2009 � 67

fail to match the observational data for several
reasons11:

measurement error (observations might contain •	
inaccuracies),
natural variability introduces noise to both •	
model and observations,
scaling/aggregation issues (for example, obser-•	
vation locations might not match the grid points
in the model), and
model imperfections.•	

It can often be hard to identify which of these
factors is relevant. To investigate the latter three
points, climate scientists increasingly use various
types of model ensemble, including

multimodel ensembles, to compare models de-•	
veloped at different labs on a common scenario;
multimodel ensembles using variants of a single •	
model, to compare different schemes for the
model’s parts (such as different radiation schemes);
perturbed physics ensembles, to explore prob-•	
abilities of different outcomes in response to
systematically varying physical parameters in a
single model; and
varied initial conditions within a single model, •	
to test the model’s robustness and better quan-
tify probabilities for predicted climate change
signals.

Current issues in climate research include
quantifying uncertainty, assessing the impact
of climate change (such as on the occurrence of
severe weather events), and producing better re-
gional predictions.

Study Observations
We’ll first describe the models developed at the
Met Office and the processes by which they are
developed, and then compare these processes with
other software engineering projects.

The Met Office Unified Model
The Met Office maintains a common suite of For-
tran routines (the Unified Model) for its numeri-
cal weather prediction and climate models. This
code base has, arguably, been continually evolving
for at least 30 years. The NWP and climate codes
were unified about 20 years ago. Operational
weather forecasting models built from the UM in-
clude a global model, a European regional model,
and an ocean wave model. The climate models in-
clude HadCM3 and HadGEM1, which provided
data for the Intergovernmental Panel of Climate

Change’s 2007 assessment;10 HadGEM2, a newer
generation of the global environment model
(to be used for the next IPCC assessment); and
HadGEM3, a new research model.

Most of the code was developed in-house at a
single Met Office location. However, the range
of expertise needed to develop climate models
has grown, and it’s now hard to provide all the
necessary expertise in-house. Over the past few
years, the Met Office has participated in several
consortium efforts that complement its in-house
expertise. These have led to the inclusion of the
UK atmospheric chemistry model (UKCA), de-
veloped by a group of academic research labs, and
the Nucleus for European Modelling of the Ocean
(Nemo), a state-of-the-art model developed at the
Centre National de la Recherche Scientifique
(CNRS) in Paris.

The UM’s current release is about 830,000 lines
of Fortran. Figure 2 shows the UM’s growth over
the past 15 years. Discontinuities in the growth
curve represent the replacement of major compo-
nents: the dynamical core at version 5.0 and the
ocean model at version 7.0. At version 6.3, the Met
Office adopted a new code management system,
flexible configuration management,4 and cleaned
up the file structure (note the deliberately faster
release cycle after FCM’s adoption).

Interestingly, the time taken to perform a cli-
mate run hasn’t changed over UM’s life because
climate scientists take advantage of increases in
supercomputer power to increase their models’
resolution and complexity. A century-long cli-
mate simulation typically takes a couple of months
to run on an NEC SX-8. Scientists more often
run the models for just one to two decades of
simulation—which can still take a couple of
weeks, depending on the model configuration.
Older models can now be run on desktop ma-
chines, but much of the leading-edge science
uses the newest, higher-resolution models, which
means that supercomputer capacity is a major re-
source constraint.

In addition to the UM, the Met Office main-
tains a number of other critical software sys-
tems, including the UMUI, a user interface for
configuring model runs; an ancillary file genera-
tor, which takes observational datasets and cre-
ates input files for the models; and a suite of data
analysis and graphics packages for studying the
model outputs.

Software Evolution
As Figure 2 shows, the UM has undergone steady
evolution throughout its history. Drivers for

68� Computing in Science & Engineering

change come from several directions (see
Figure 3). First, advances in the underlying sci-
ence lead to improvements in how scientists rep-
resent physical processes in the model. Second,
the accuracy of the operational weather forecast
runs is analyzed regularly, and systematic errors

in these forecasts are investigated and corrected
(where possible). Third, the outputs from cli-
mate model runs are continually compared with
observational datasets and with runs of models
from other centers to identify areas of weakness.
Fourth, operational concerns sometimes lead to
changes—for example, to allow the models to run
on newer hardware.

Occasionally, scientists make opportunistic
changes to the UM, to improve speed or to tidy
up the code base. Such changes tend to be treated
as lower priority, except in cases where they’ll
likely lead to major improvements to the opera-
tional forecasting models. The prevailing culture
discourages such changes, in part because a sci-
entist proposing them must demonstrate that the
changes won’t negatively affect the accuracy and
performance of any of the operational models.

These change drivers are largely internal to
the Met Office. The Met Office’s customers don’t
interact with the software directly, so customer
requirements affect the change process only
indirectly—such as when forecasters identify a
demand for new types of weather forecast data.
On the other hand, other climate research centers
do run the models; change requests from peer in-
stitutes and science review committees are filtered
through Met Office contacts.

These change drivers lead to requirements
conflicts. For example, there is often a trade-off
between improving the models’ skill in repro-
ducing observed weather and climate variations
versus improving the physics schemes’ scientific
validity. The models must be tuned empirically

Figure 3. Drivers of change in UM code. The model’s steady
evolution is influenced by many factors, from advances in how
scientists represent physical processes in the model to operational
concerns, such as hardware upgrades. (Courtesy of Damian Wilson, UK
Meteorological Office.)

Analysis
of climate
simulation

runs

Physics
research

Operational
concerns

Analysis
of numerical

weather prediction
(NWP) forecast

runs

Code
cleanup

Better
techniques

New
data

New
insights

Comparison
with

observations

Comparison
with

control run

Comparison
with

other models

Accuracy
measuresNew

forecasting
services

Performance
enhancement

Coding
best

practices

Port to new
platforms

New hardware
configurations

Customers

Uni�ed
Model
code
base

Other
research
groups

Figure 2. The Unified Model’s growth over the past 15 years. Discontinuities in the growth curve indicate major component
replacements, such as at versions 5.0 and 7.0, when the UM’s dynamical core and ocean model were replaced, respectively. UM
adopted the UK atmospheric chemistry model (UKCA) at version 6.2 and flexible configuration management (FCM) at version 6.3.

0

100

200

300

400

500

600

700

800

900

1,000

Jan
1993

Jan
1994

Jan
1995

Jan
1996

Jan
1997

Jan
1998

Jan
1999

Jan
2000

Jan
2001

Jan
2002

Jan
2003

Jan
2004

Jan
2005

Jan
2006

Jan
2007

Jan
2008

Li
ne

s
of

 c
od

e
(t

ho
us

an
ds

)

0

1

2

3

4

5

6

7

8

9

10

N
um

be
r

of
 fi

le
s

(t
ho

us
an

ds
)

Lines of code (left-hand scale) Number of files (right-hand scale)

v4.5
v5.0 v5.1

v5.2
v5.3

v5.4
v5.5 v6.0

v6.1

v6
.2

v6
.3

v6
.4

v6
.5

v6
.6

v7
.0

v7
.1

v4.4

v4.3

v4.2v4.1
v4.0

v3.5v3.4

v3.3

N
ew

dy
na

m
ic

s

(M
ov

e
to

 E
xe

te
r)

FC
M

 a
do

p
te

d

O
ce

an
 r

ep
la

ce
d

Po
rt

 fr
om

 C
ra

y
to

 N
EC

U
KC

A
 a

dd
ed

v3.2
v3.1

November/December 2009 � 69

by adjusting the parameterization schemes be-
cause both the models and the parameteriza-
tions are approximations of the real physical
processes. As the scientists themselves note,
models sometimes get a good match with ob-
servations for the wrong reasons. (This problem
resembles the overfitting sometimes observed in
benchmarking.)

This conflict is complicated by the use of the
UM for weather forecasting, which places con-
straints on performance (forecasts must be deliv-
ered on time) and accuracy (the Met Office has
annual targets for improvements in weather fore-
cast accuracy). Scientific improvements often have
negative effects on performance or forecast accu-
racy, so they might be delayed until they can be
included in a bundle of changes that has an overall
positive effect. In addition, alternative versions of
various physics schemes are included in the UM,
which can be selected when different models are
built.

The Development Process
The Met Office’s software development processes
have also undergone significant evolution over the
UM’s life. In particular, the FCM adoption has
institutionalized practices that previously were
not applied systematically. Here, we describe the
processes we observed in the summer of 2008,
two years after FCM was introduced.

Met Office staff play a number of distinct roles,
organized like the “onion” model often observed
in open source projects. At the core, approximate-
ly 12 people from the two IT support teams (Met
R&D and CR) control the acceptance of changes
into the UM’s trunk. They act as experts for in-
tegration and platform-specific issues. Many of
them have scientific backgrounds, with PhDs in
numerical computing or related fields. At the next
layer, about 20 of the more senior scientists act as
code owners, each responsible for specific UM
sections (such as atmosphere, ocean, boundary
layer, dynamical core, and so on). Code owners
are domain experts who keep up to date with the
relevant science and maintain oversight of devel-
opments to their sections of the model. Member-
ship in these two layers rarely changes.

In the outer layers are scientists who run the
models as part of their research. A configuration
manager is appointed for each climate model (usu-
ally a more junior scientist). Configuration man-
agers become local experts for knowledge about
how to configure the model and track experi-
ments performed with the model. Approximately
100 Met Office scientists contribute code changes

for any given release. Finally, a broader group of
scientists both within and outside the Met Office
make occasional use of the models and might sug-
gest potential improvements.

UM releases are planned on a regular sched-
ule, typically every four to five months. All model
changes are captured as FCM tickets, which are
allocated to upcoming releases using an agile-
planning approach. Approximately three months
into the release cycle, there’s a deadline for tickets
to be included for that release, and one month lat-
er there’s a code freeze—the IT teams refer to it as
a “frosting” rather than a freeze, as some changes
are still permitted. One further month is allowed
for the IT teams to ensure all model configura-
tions work properly, fix any remaining bugs, and
ensure the UMUI is updated. A release date isn’t
fixed until this work is complete.

Each change passes through two review stages
before being accepted into the UM’s trunk. First,
the relevant code owner runs a scientific review.
Significant changes are typically discussed with
code owners in advance to explore the scientific
justification and relative priority; smaller changes
are submitted for review once they’re complete.
Second, an IT team member performs a system
review. This focuses on coding standards, basic
code hygiene (for example, to verify that files are
opened and closed properly), potential perfor-
mance issues, and integration testing across dif-
ferent model configurations. Once the review is
passed, the IT teams accept the changes (no more
than four per day) into the trunk and run an
automated test harness every night on the updated
trunk. Tickets are closed once the changes pass
this overnight test.

The process is overseen with lightweight proj-
ect management. Each named climate model
under active development is explicitly defined as
a project to identify the strategic scientific ob-
jectives, allocate resources, and manage risk.
Within a project, however, a bottom-up strategy
dominates, with individual team members taking
the initiative to identify what needs doing and to
prioritize tasks. The result is a hybrid strategy in
which code development proceeds using an agile-
planning approach, while specific model configu-
rations are more carefully controlled.

Verification and Validation
V&V processes are dominated by the understand-
ing that the models are imperfect representations
of highly complex physical phenomena. Instead of
reasoning about “code correctness,” Met Office
scientists treat the models as evolving theories

70� Computing in Science & Engineering

and conduct experiments using the models to test
specific hypotheses.

Indeed, they treat each model change as an
experiment. A previous run is used as a control,
the changed code is the experimental condition,
and observational datasets are used to assess
whether the change has had the expected effect.
As Figure 4 shows, automated tools, or validation
notes, generate visualizations of selected model
outputs. The scientists analyze these to under-
stand model error and ways to reduce it. Such
visualizations appear everywhere: on people’s
desks, pinned to the walls, passed around in
meetings, and on PowerPoint slides used in sci-
entific seminars. The example in Figure 4 shows
a change that has reduced the model errors in the
Antarctic.

Essentially, with this approach, the scientists
are performing continuous integration testing,
but they don’t view it as such because for them it’s
part of the business of “doing science.” They don’t

need “finished” software to perform these experi-
ments, but they continually experiment with the
software itself to improve their understanding.

A second V&V strategy is to automatically
check for bit comparison between the outputs of
two different runs. This is useful for checking
that a change didn’t break anything it shouldn’t.
Each change is designed so that it can be turned
off (via runtime switches) to ensure that previous
experiments can be reproduced. However, repro-
ducibility can be guaranteed only if the outputs of
the old and new runs are exactly identical (down
to the least significant bits). Because the models
are designed to run on different platform con-
figurations, bit comparison tests can also check
that all configurations give identical results.
IT staff members run these tests and maintain
a wiki page listing changes that break bit-level
reproducibility.

This use of bit-level comparison for automated
regression and configuration testing might be

Figure 4. An example validation note. This note shows the effect of a new polar filter on mean pressure at sea level (PMSL)
for December to February (djf): (a) the new model run, (b) the new run minus the control run, (c) the control run minus the
observational data, and (d) the new run minus the observational data.

November/December 2009 � 71

unique to the climate modeling community. Be-
cause full model runs take so long, a useful short-
cut is to run the model for, say, one simulation day
(which only takes a few minutes) and run the bit
comparison test on all model variables. Bit-level
reproducibility on a short run is a good indica-
tor of reproducibility over longer runs. The over-
night test harness runs many such tests. However,
this practice enforces a strong conservativeness
on model changes, so that refactoring is almost
impossible, except when bit comparison is already
lost for other reasons, such as on porting to a new
supercomputer.

Other V&V strategies include formally com-
paring results with other models in a series of
community-wide Model Intercomparison Proj-
ects12 or, more informally, facilitating debugging.

Overall code quality is hard to assess. Model
configuration problems and code defects fre-
quently prevent an experimental change to the
model from running, but these are quickly fixed.
Scientists treat some errors as modeling approxi-
mations, rather than defects. For example, defects
in the numerical routines that cause model drift
are hard to fix, so they might be accommodated by
making periodic corrections rather than by fixing
the underlying routines.

The combination of the scientists’ continuous
integration testing and bit reproducibility tests
catches most errors prior to release. The last six
releases averaged about 24 bug-fix tickets per re-
lease, against an average of 50,000 source lines of
code (SLOC) touched per release. This suggests
that, on average, two defects per 1,000 changed
SLOC make it through testing and review for
each release. (We thus estimate a post-release de-
fect density for the current release of 0.03 defects
per KSLOC, or approximately 24 latent defects
in 831,157 SLOC.) However, some of these bug
fixes represent defects that were treated as accept-
able model imperfections in previous releases. We
plan to complete a more detailed analysis of post-
release code defects as a followup study.

Maintaining a Shared Understanding
Met Office scientists use several different strate-
gies to maintain a shared understanding of the
software. Although there’s formal design docu-
mentation for the UM, it’s updated only sporadi-
cally. The scientists working on the model rely
heavily on face-to-face communication, together
with many “informalisms.”13

The office’s large open floorplan encourages face-
to-face communication; most CR and Met R&D
staff are accessible without traversing any doors

or stairs. The office culture discourages noise, but
many brief one-on-one technical conversations are
held at people’s desks. Longer conversations and
meetings are held in meeting pods scattered around
the office—or in social gathering spaces on the
landings and the ground floor coffee shop. Several
people commented that coordination has improved
dramatically since the move to Exeter; previously,
CR and Met R&D were in separate buildings.
Cross-functional teams are often formed to inves-
tigate specific model issues.

The teams also use electronic media extensively
for informal communication and coordination.
A site-wide wiki serves as a repository for design
notes, to-do lists, task status reports, glossaries,
and so on. Scientists use site-specific newsgroups
for both social interaction and technical commu-
nication, such as to broadcast the status of trunk
integration, overnight test results, and problems
encountered.

Representations of the code itself are rare. Oc-
casionally, people draw flowcharts to show a new
scheme’s control structure. Descriptions of de-
signs, defects, and potential improvements tend
to focus on the underlying equations. Test results
are described using visualizations and measure-
ments of root mean squared (rms) error against
observational data. Some scientists use the wiki as
an electronic lab book, creating a page to describe
each model run and its results.

When asked about the major challenges in their
work, nearly everyone we interviewed mentioned
the effort needed to coordinate their work with
others: keeping their branches up to date, know-
ing what changes are happening elsewhere, man-
aging the model configuration options, and so on.
Some described coordination problems with ex-
ternal groups who are using older versions of the
model. (The public releases of the model tend to
lag the internal releases by at least a year.)

Community Models
The fact that model development has taken place
at a single site appears to be important. David
Randall reports that all existing GCMs were de-
veloped at large research labs, with no geographi-
cally distributed development, and he suggests
that the complexity of the coupling prevents it.14
However, occasionally a module is transplanted
from one lab to another. For example, the original
ocean model used in the Hadley Centre GCMs
was an early version of the Modular Ocean Model
(MOM) developed at the Geophysical Fluid Dy-
namics Laboratory (GFDL) in Princeton, New
Jersey. Its replacement, Nemo, was developed at

72� Computing in Science & Engineering

CNRS. Such transplants allow a modeling group
to tap into expertise available elsewhere.

However, it can be hard to integrate a complex,
externally developed component into an existing
GCM. The component might need to be ported
and optimized for performance on a different
computer. To get the coupling to work, both the
GCM and the new component might need to
be modified. Seemingly trivial technical details
(such as tiny differences in physical constants)
can cause problems and are hard to track down.
When MOM was incorporated into the UM, the
modifications led to a fork from the GFDL model,
which meant that although the Met Office gained
a state-of-the art ocean model, it lost access to
GFDL’s ongoing scientific expertise to keep the
ocean model updated.

Open source teams usually dislike code fork-
ing because it divides communities and prevents
the subsequent sharing of changes. The same
problems occur for scientific software. To avoid
this problem for Nemo, the Met Office, CNRS,
and other partners have established a consortium
agreement, but coordination remains a challenge.
Nemo is maintained by a small group in Paris,
whose development cycle doesn’t match that
of the Met Office. The consortium has to deal
with the tension between members who want to
customize Nemo for use in their coupled models
and the Nemo team members who want to pre-
serve portability and flexibility.

Increasingly, community collaborations help
the Met Office foster links with other research
groups and tap into pools of expertise not available
in-house. Examples include UKCA; Jules, a land
surface scheme; and HiGEM, a community adap-
tation of HadGEM1 for higher resolutions. How-
ever, in each of these community efforts, control
of the core code base remains at a single site, and
the partners tend to specialize in particular areas
and submit their changes to the central site for in-
clusion in the reference model. The result is that
the core site can become a bottleneck.

Discussion
Our study confirms observations of the software
practices of computational scientists reported else-
where.1,3 The scientists have little formal training
in software engineering and are skeptical of most
claims for software engineering tools. However,
where such tools match their needs—such as for
code management and version control—they’re
readily adopted. The software itself has a long
lifetime, is written in an “old” programming
language (Fortran), and performance issues are

carefully balanced with maintainability and por-
tability concerns. As in Richard Kendall and his
colleague’s study,5 we found that the developers
had a strong, shared scientific background and an
informal, collegial management style. The cul-
ture was one of member participation and shared
responsibility.

We found no evidence of Douglass Post’s
slow down in time-to-solution.2 The near-linear
growth of the UM over the past 15 years indi-
cates a steady growth of functionality, despite the
model’s growing complexity. This steady growth
is also inconsistent with the findings of Meir
Lehman and colleagues, who found that for large
commercial systems, the growth rate tails off as
the software increases in size and complexity.7 In-
stead, it more closely resembles the evolution pat-
terns of open source projects reported by Michael
Godfrey and Qiang Tu.8 We hypothesize that
this is due to the many shared features with open
source projects.

Another notable finding is the broad set of V&V
approaches. The use of bit-comparison tests as a
technique for regression testing appears to be
unique to this community, and it reflects both a
scientific concern for reproducibility of experi-
ments and the challenges of automating test-
ing when full runs can take weeks or months to
complete. Frequent end-to-end integration test-
ing is built into the scientific practices. Scien-
tists spend a lot of time experimenting with each
change to the model, comparing the results with
control runs and observational data. Hence, in-
tegration testing is not regarded as a costly bur-
den (even though it is costly) because it’s part
of doing science. The extensive use of model
inter-comparisons and model ensembles is also a
distinct feature of this community.

In some ways, the organization behaves like an
agile software development company, with a large
open office and a strong reliance on informal com-
munication channels. It uses many agile develop-
ment practices, including release planning, onsite
customer, collective ownership, continuous inte-
gration, and risk management, but it doesn’t use
any established agile process. It also operates on
a scale much larger than any agile team described
in the literature.

These observations suggest interesting insights
into agile practices. The Met Office has developed
a set of practices that work very well for its partic-
ular context. They resemble agile practices in part
because they share with them a key characteristic:
over a period of time, a set of smart, engaged peo-
ple have figured out for themselves what works.

November/December 2009 � 73

This supports the argument that agile de-
velopment is a set of best practices adopted by
developers because they work well in a partic-
ular setting. It’s also consistent with our study
of successful software startup companies,15 in
which each company could be characterized as
using a subset of “agile” practices, but within a
distinct, homegrown process model. Over time,
it appears that these organizations evolve pro-
cesses that are highly adapted to their “ecologi-
cal niche.” This probably occurs only in stable,
well-established teams with a long history of
working together. Such observations suggest
that domain-independent process models (such
as Rational Unified Process, Scrum, XP, and so
on) are simply irrelevant to these organizations.

A comparison with open source software (OSS)
projects8 is also apt:

The Met Office’s release schedule isn’t driven •	
by commercial pressure because the code is
used primarily by the developers themselves,
rather than released to customers.
The developers are also the domain experts. •	
Most have PhDs in meteorology, climatology,
numerical methods, or related disciplines, and
most of them regularly publish in the top peer-
reviewed scientific journals.
The code is controlled by a few code owners, •	
with a careful review process to decide which
changes are accepted.
The community operates as a meritocracy. •	
Roles are decided based on perceived exper-
tise within the team. Code owners are the
most knowledgeable domain experts, and code
ownership tends to be stable over the long term.
The scientists are not full-time developers. •	
They change the model only when they need
something fixed or enhanced. They don’t like to
delegate code development tasks to others be-
cause they have the necessary technical skills,
understand what needs doing, and doing it
themselves is much easier than explaining their
needs to someone else.
V&V practices rely on the fact that the develop-•	
ers are also the primary users and are motivated
to try out each other’s contributions.

However, the Met Office lacks two key distin-
guishing traits of OSS projects: geographically dis-
tributed teams and a commitment to open source
licensing. This suggests an interesting hypothesis:
the success of open source projects might have
more to do with a community of domain experts
building and testing software for their own use,

rather than any commitment to the philosophy of
free/open source software and volunteerism. Such
experts figure out over time how to solve prob-
lems of coordination and communication, prefer
to work in a meritocracy, and build or adapt their
own tools rather than rely on commercial tools.

Limitations
We used an ethnographic approach for this study,
investigating how the scientists themselves talk
about their work. Mapping their concepts onto
terms used in the software engineering literature
might be problematic. For example, it was hard
to distinguish software development from other
aspects of the scientific practice, including data
analysis, theorizing, and the development of ob-
servational datasets. From a scientific viewpoint,
the distinction between changing the code and
changing the parameters is artificial, and scientists
often conflate the two—they sometimes recom-
pile even when it shouldn’t be necessary. There-
fore, characterizations of model evolution based
purely on source code changes miss an important
part of the picture. We would need to analyze the
evolution of datasets (ancillary files and input pa-
rameters) to overcome this limitation.

Similarly, there’s a difference in how the scien-
tists perceive defects and bug fixes compared to
the view in software engineering literature: sci-
entists accept model imperfections as inevitable.
Hence, any measure of defect density might not be
comparable with that of other types of software.

We can’t claim that the observations in this case
study generalize. As a climate modeling center, the
Met Office Hadley Centre is unique in some ways,
particularly in the close relationship with a major
operational weather forecasting facility. The soft-
ware development processes are highly tailored to
the Met Office’s needs. Hence, our observations
about why such tailoring has occurred and why
the processes work is likely to be more useful than
any specific detail of the processes themselves.

T he Met Office has evolved a mature
domain-specific software develop-
ment process that is highly adapted
to its needs, relies heavily on the

deep domain knowledge of the scientists building
the software, and is tightly integrated with their
scientific research practices. Model validation is
extensive because it’s built into a systematic inte-
gration and regression testing process, with each
model run set up as a controlled experiment. The
V&V practices are absorbed so thoroughly into

74� Computing in Science & Engineering

the scientific research that the scientists don’t re-
gard them as V&V. However, the Met Office does
appear to rely heavily on informal face-to-face
communication to allow its scientists to develop a
shared understanding of their models.

The Met Office’s software development prac-
tices share many features with both agile and
open source development. The comparison offers
interesting insights into why the practices used by
these communities work. In particular, all three
communities (open source, agile, and scientific
software) rely on their developers’ expertise and
self-organization. We hypothesize that under
such circumstances, the developers will gradually
evolve a set of processes that are highly custom-
ized to their context and that domain-independent
process models are unlikely to work. However,
further research into such comparisons is needed
to investigate these observations.		

Acknowledgments
We thank everyone at the Met Office who participat-
ed in this study for many stimulating discussions, and
Jorge Aranda, Greg Wilson, Jeff Carver, Janice Singer,
and Jon Pipitone for comments on earlier drafts. The
Natural Sciences and Engineering Research Council
of Canada provided primary funding for the study.
Tim Johns was supported by the Defra & MoD Inte-
grated Climate Programme (Defra) GA01101, (MoD)
CBC/2B/0417 Annex C5.

References
J. Carver et al., “Software Development Environ-1.	

ments for Scientific and Engineering Software: A

Series of Case Studies,” Proc. 29th Int’l Conf. Software

Eng. (ICSE 07), IEEE CS Press, 2007, pp. 550–559.

D. Post, “The Coming Crisis in Computational Sci-2.	

ence,” keynote, IEEE Int’l Conf. High-Performance

Computer Architecture: Workshop on Productivity

and Performance in High-End Computing, 2004;

www.tgc.com/hpcwire/hpcwireWWW/04/0319/

107234.html.

J. Segal and C. Morris, “Developing Scientific Soft-3.	

ware,” IEEE Software, vol. 25, no. 4, 2008, pp. 18–20.

D. Matthews, G.V. Wilson, and S.M. Easterbrook, 4.	

“Configuration Management for Large-Scale Scien-

tific Computing at the UK Met Office,” Computing in

Science & Eng., vol. 10, no. 6, 2008, pp. 56–65.

R. Kendall et al., “Development of a Weather Fore-5.	

casting Code: A Case Study,” IEEE Software, vol. 25,

no. 4, 2008, pp. 59–65.

N. Oreskes, K. Shrader-Frechette, and K. Belitz, 6.	

“Verification, Validation, and Confirmation of

Numerical Models in the Earth Sciences,” Science,

vol. 263, no. 5147, 1994, pp. 641–646.

M. Lehman et al., “Metrics and Laws of Software 7.	

Evolution—The Nineties View,” Proc. Int’l Software

Metrics Symp. (Metrics 97), IEEE CS Press, 1997,

pp. 20–43.

M. Godfrey and Q. Tu, “Evolution in Open Source 8.	

Software: A Case Study,” Proc. IEEE Int’l Conf. Software

Maintenance (ICSM 00), IEEE Press, 2000, pp. 131–142.

A. Capiluppi et al., “An Empirical Study of the Evolu-9.	

tion of an Agile Developed Software System,” Proc.

29th Int’l Conf. Software Eng. (ICSE 07), IEEE CS Press,

2007, pp. 511–518.

D.A. Randall et al., “Climate Models and Their Evalu-10.	

ation,” Climate Change 2007: The Physical Science

Basis, Working Group I, 4th Assessment Report, Inter-

govt. Panel Climate Change, S. Solomon et al., eds.,

Cambridge Univ. Press, 2007, p. 589.

R. Katz, “Techniques for Estimating Uncertainty 11.	

in Climate Change Scenarios and Impact Studies,”

Climate Research, vol. 20, no. 2, 2002, pp. 167–185.

T. Phillips et al., “Evaluating Parameterizations in 12.	

General Circulation Models: Climate Simulation

Meets Weather Prediction,” Bulletin Am. Meteorologi-

cal Soc., vol. 85, no. 12, 2004, pp. 1903–1915.

W. Scacchi, “Free/Open Source Software Develop-13.	

ment: Recent Research Results and Emerging Oppor-

tunities,” Proc. IEEE Int’l Symp. Foundations Software

Eng. (ESEC/FSE 07), 2007, pp. 459–468.

D.A. Randall, “A University Perspective on Global 14.	

Climate Modeling,” Bulletin Am. Meteorological Soc.,

vol. 77, no. 11, 1996, pp. 2685–2690.

J. Aranda, S. Easterbrook, and G. Wilson, “Require-15.	

ments in the Wild: How Small Companies Do It,”

Proc. IEEE Int’l Requirements Eng. Conf., IEEE CS Press,

2007, pp. 39–48.

Steve M. Easterbrook is a professor of computer sci-
ence at the University of Toronto. His research inter-
ests include software requirements analysis, software
verification, and human aspects of software develop-
ment, especially as applied to Earth system models.
Easterbrook has a PhD in computing from Imperial
College, London. He is a member of the ACM and the
American Geophysical Union. Contact him at sme@
cs.toronto.edu.

Timothy Johns is manager of the Global Coupled
Modelling team at the Met Office Hadley Centre,
where he works on global climate model develop-
ment, including the Unified Model and its software
infrastructure, and on modeling and understanding
climate change using coupled ocean-atmosphere cli-
mate models. Johns has a PhD in astrophysical mod-
eling from University College, Cardiff. He is a fellow
of the Royal Meteorological Society. Contact him at
tim.johns@metoffice.gov.uk.

November/December 2009 � 75

To Order North America
1-877-762-2971

Rest of the World
+ 44 (0) 1243
843291

Classroom
Materials
Available

 With Purchase

NEW TITLE FROM WILEY &

Discover the fundamental
techniques for managing and
leading software projects

Clear and accessible advanced
software engineering textbook/
reference with exercises
Each chapter appendix covers
the relevant topics from
CMMI-DEV-v1.2, IEEE/ISO
Standards 12207, IEEE Standard
1058, and the PMI Body of
Knowledge

15% Off
for CS Members

www.computer.org

