
List of Figures

1.1 Overview of recommended process for documentation. . . . 10
1.2 SRS table of contents. 12
1.3 Proposed V&V plan table of contents. 15
1.4 Proposed MG table of contents. 17
1.5 Example literate code documentation. 18
1.6 Solar water heating tank, with heat flux qc from coil and qP

to the PCM. 20
1.7 Goal statements for SWHS. 21
1.8 Sample assumptions for SWHS. 21
1.9 Sample theoretical model. 22
1.10 Sample general definition. 23
1.11 Sample instance model. 24
1.12 Uses hierarchy among modules. 25

1

List of Tables

1.1 Improving Scientific Software Qualities via Rational Design 7
1.2 Recommended Documentation 9
1.3 Excerpt from Table of Input Variables for SWHS 25

3

Chapter 1

A Rational Document Driven Design
Process for Scientific Software

W. Spencer Smith

McMaster University, Computing and Software Department

1.1 Introduction . 5
1.2 A Document Driven Method . 9

1.2.1 Problem Statement . 10
1.2.2 Development Plan . 11
1.2.3 Software Requirements Specification (SRS) 11
1.2.4 Verification and Validation (V&V) Plan and Report . . . 13
1.2.5 Design Specification . 14
1.2.6 Code . 17
1.2.7 User Manual . 18
1.2.8 Tool Support . 18

1.3 Example: Solar Water Heating Tank . 19
1.3.1 Software Requirements Specification (SRS) 19
1.3.2 Design Specification . 23

1.4 Justification . 25
1.4.1 Comparison between CRAN and Other Communities . . 26
1.4.2 Nuclear Safety Analysis Software Case Study 27

1.5 Concluding Remarks . 28

1.1 Introduction

This chapter motivates, justifies, describes and evaluates a rational doc-
ument driven design process for scientific software. The documentation is
adapted from the waterfall model [17, 60], progressing from requirements,
to design, to implementation and testing. Many researchers have stated that
a document driven process is not used by, nor suitable for, scientific soft-
ware. These researchers argue that scientific developers naturally use an agile
philosophy [1, 5, 13, 47], or an amethododical process [25], or a knowledge
acquisition driven process [26]. Just because a rational process is not cur-
rently used does not prove that it is inappropriate, only that past efforts have

5

6 Software Engineering for Science

been unsuccessful. The problem could be inadequate customization to the
needs of the scientific community and incomplete training of practitioners. To
date, the “from the textbook” Software Engineering (SE) approach may have
failed, but that does not mean it should be abandoned. With some modifi-
cation to suit scientific needs, the benefits of traditional SE can be realized.
For instance, a rational design process can provide quality improvements, and
Quality Assurance (QA), as shown in Table 1.1. Moreover, documentation,
written before and during development, can provide many benefits [42]: easier
reuse of old designs, better communication about requirements, more useful
design reviews, easier integration of separately written modules, more effec-
tive code inspection, more effective testing, and more efficient corrections and
improvements.

One argument against a document driven process is that scientists do not
view rigid, process-heavy approaches, favorably [5]. As an example from a
scientific software developer, Roache [45, p. 373] considers reports for each
stage of software development as counterproductive. However, the reports are
only counterproductive if the process used by the scientists has to follow the
same waterfall as the documentation. This does not have to be the case.
Given the exploratory nature of science, developers do not typically follow
a waterfall process, but, as Parnas and Clements [41] point out, the most
logical way to present the documentation is still to “fake” a rational design
process. “Software manufacturers can define their own internal process as long
as they can effectively map their products onto the ones that the much simpler,
faked process requires” [34]. Reusability and maintainability are important
qualities for scientific software. Documentation that follows a faked rationale
design process is easier to maintain and reuse because the documentation is
understandable and standardized. Understandability is improved because the
faked documentation only includes the “best” version of any artifacts, with no
need to incorporate confusing details around the history of their discovery [41].
Standardization on any process, with a rational process being a logical choice
as a standard, facilitates design reviews, change management and the transfer
(and modification) of ideas and software between projects [41].

Another argument against a rational process, where software is derived
from precise requirements, centers around the opinion that, in science, re-
quirements are impossible to determine up-front, because the details can only
emerge as the work progresses [5, 48]. Is science really so different from other
software domains? No, requirements are challenging for every domain. The dif-
ferences between science and other domains might actually make producing
a first draft of the requirements easier. For instance, scientific requirements,
in terms of physical models, have a high potential for reuse [54]. The laws
of physics are stable; they are almost universally accepted, well understood,
and slow to change. At the appropriate abstraction level, many problems have
significant commonality, since a large class of physical models are instances of
a relatively small number of conservation equations (conservation of energy,
mass and momentum). Moreover, scientific software does not typically have

A Rational Document Driven Design Process for Scientific Software 7

TABLE 1.1: Improving Scientific Software Qualities via Rational Design

Verifiability involves “solving the equations right” [45, p. 23]; it benefits
from rational documentation that systematically shows, with explicit
traceability, how the governing equations are transformed into code.

Validatability means “solving the right equations” [45, p. 23]. Validatability
is improved by a rational process via clear documentation of the theory
and assumptions, along with an explicit statement of the systematic
steps required for experimental validation.

Usability can be a problem. Different users, solving the same physical prob-
lem, using the same software, can come up with different answers, due
to differences in parameter selection [45, p. 370]. To reduce misuse, a
rational process must state expected user characteristics, modelling as-
sumptions, definitions and the range of applicability of the code.

Maintainability is necessary in scientific software, since change, through
iteration, experimentation and exploration, is inevitable. Models of
physical phenomena and numerical techniques necessarily evolve over
time [5, 48]. Proper documentation, designed with change in mind, can
greatly assist with change management.

Reusability provides support for the quality of reliability, since reliability is
improved by reusing trusted components [12]. (Care must still be taken
with reusing trusted components, since blind reuse in a new context can
lead to errors, as dramatically shown in the Ariane 5 disaster [37, p. 37–
38].) The odds of reuse are improved when it is considered right from
the start.

Understandability is necessary, since reviewers can only certify something
they understand. Scientific software developers have the view “that the
science a developer embeds in the code must be apparent to another
scientist, even ten years later” [25]. Understandability applies to the
documentation and code, while usability refers to the executable soft-
ware. Documentation that follows a rational process is the easiest to
follow.

Reproducibility is a required component of the scientific method [9]. Al-
though QA has, “a bad name among creative scientists and engi-
neers” [45, p. 352], the community need to recognize that participating
in QA management also improves reproducibility. Reproducibility, like
QA, benefits from a consistent and repeatable computing environment,
version control and separating code from configuration/parameters [9].

8 Software Engineering for Science

to deal with concurrency (except for the case of parallel processing), real-time
constraints, or complex user interactions. The typical scientific software design
pattern is simply: Input ⇒ Calculate ⇒ Output. All domains struggle with
up-front requirements, but scientists should remember that their requirements
do not have to be fully determined a priori. As mentioned in the previous para-
graph, iteration is inevitable and a rational process can be faked.

Although current practice tends to neglect requirements documentation,
it does not have to be this way. To start with, when researchers say that
requirements emerge through iteration and experimentation, they are only
referring to one category of scientific software. As observed previously [26, 52],
scientific software can be divided into two categories: specific physical models
and general purpose tools. When scientific software is general purpose, like a
solver for a system of linear equations, the requirements should be clear from
the start. General purpose tools are based on well understood mathematics for
the functional requirements, as shown in scientific computing textbooks [19].
Even the nonfunctional requirements, like accuracy, can be quantified and
described through error analysis and in some cases validated computing, such
as interval arithmetic.

Even specialized software, like weather prediction or structural analysis,
can be documented a priori, as long as the author’s viewpoint takes into ac-
count separation of concerns, a broad program family approach and consider-
ation for future change management. With respect to separation of concerns,
the physical models should be clearly separated from the numerical methods.
Knowing the most appropriate numerical technique is difficult at the outset,
but this is a decision for the design, not the requirements, stage. In addition,
rather than aim for a narrow specification of the model to be implemented,
the target should be a broad specification of the potential family of models.
A program family approach, where commonalities are reused and variabilities
are identified and systematically handled, is natural for scientific software [56].
As pointed out previously, at an abstract level, the modeler will know which
governing conservation equations will need to be satisfied. The challenge is
to know which simplifying assumptions are appropriate. This is where the
“experimentation” by scientists comes in. If the assumptions are documented
clearly, and explicit traceability is given to show what part of the model they
influence, then changes can be made later, as understanding of the problem
improves. Using knowledge from the field of SE, the documentation can be
built with maintainability and reusability in mind.

This chapter shows how SE templates, rules and guidelines, which have
been successful in other domains, can be adapted to handle rapid change and
complexity. The document driven approach is first described (Section 1.2) and
then illustrated via the example of software to model a solar water heating
tank (Section 1.3). Justification (Section 1.4) for the document driven process
is shown through a case study where legacy nuclear safety analysis code is
re-documented, leading to the discovery of 27 issues in the original documen-
tation. Further justification is given through a survey of statistical software for

A Rational Document Driven Design Process for Scientific Software 9

psychology, which shows that quality is highest for projects that most closely
follow a document driven approach.

1.2 A Document Driven Method

Table 1.2 shows the recommended documentation for a scientific software
project. The documents are typical of what is suggested for scientific software
certification, where certification consists of official recognition by an authority,
or regulatory body, that the software is fit for its intended use. For instance,
the Canadian Standards Association (CSA) requires a similar set of documents
for quality assurance of scientific programs for nuclear power plants [8].

TABLE 1.2: Recommended Documentation
Problem Statement Description of problem to be solved
Development Plan Overview of development process/infrastructure
Requirements Desired functions and qualities of the software
V&V Plan Verification that all documentation artifacts, includ-

ing the code, are internally correct. Validation, from
an external viewpoint, that the right problem, or
model, is being solved.

Design Specification Documentation of how the requirements are to be
realized, through both a software architecture and
detailed design of modules and their interfaces

Code Implementation of the design in code
V&V Report Summary of the V&V efforts, including testing
User Manual Instructions on installation, usage; worked examples

To achieve the qualities listed in Table 1.1, the documentation in Table 1.2
should have the following qualities: complete, correct, consistent, modifiable,
traceable, unambiguous, and verifiable. All of these qualities are listed in the
IEEE recommended practice for software requirements [22]. The IEEE guide-
lines are for requirements, but most qualities are relevant for all documentation
artifacts. Another relevant quality, which is not on the IEEE list, is abstract.
Requirements should state what is to be achieved, but be silent on how it is
to be achieved. Abstraction is an important software development principle
for dealing with complexity [17, p. 40]. Smith and Koothoor present further
details on the qualities of documentation for scientific software [49].

The recommended rational process (Figure 1.1) is a variation on the wa-
terfall model that is similar to the V-model. The steps proceed as for the
waterfall model up to the requirements specification, but then detour to cre-
ate the V&V plan, before renewing the waterfall. In the full V-model, each
development phase has a corresponding test plan and report. The proposed

10 Software Engineering for Science

process does not go this far; one document summarizes the V&V plan at the
crucial initial stage of development and provides an overview for the V&V of
the other phases. In the traditional waterfall, test plans are in a later stage,
but thinking about system tests early has the benefit that test cases are often
more understandable than abstract requirements. System test cases should
be considered at the same time as requirements; the tests themselves form
an alternative, but incomplete, view of the requirements. Iteratively work-
ing between requirements and system tests builds confidence that the project
is moving in the correct direction before making significant, and expensive,
decisions.

Development Plan

Requirements
Specification

Design
Specification

Code

Verification and
Validation Report

Problem
Statement

Verification and
Validation Plan

FIGURE 1.1: Overview of recommended process for documentation.

1.2.1 Problem Statement

A problem statement is a high level description of what the software hopes
to achieve. Like a mission statement in a strategic plan [38, p. 22], the problem
statement summarizes the primary purpose of the software, what it does, who
the users are and what benefits the software provides. A problem statement
should be abstract. That is, it should state what the mission is, but not how
to achieve it. The length of a problem statement should usually be about half
a page, or less. The seismology software Mineos [6] provides a good example of
a problem statement, starting with “Mineos computes synthetic seismograms
in a spherically symmetric non-rotating Earth by summing normal modes.”

The problem statement’s main impact on software quality is through im-
proving reuse, since a clear statement positions the current work relative to
similar software products. If the problem statement shows too much overlap

A Rational Document Driven Design Process for Scientific Software 11

with existing products, the decision may be made to go in another direc-
tion. Moreover, the information in the problem statement might be enough
to encourage future users and developers to adopt this product, rather than
develop something new. The problem statement also improves quality, since
it provides focus for subsequent work and documents.

1.2.2 Development Plan

The recommendations in this section imply a set of documents (Table 1.2),
but the specific contents of these documents and the process that underlies
them is not prescribed. As mentioned in Section 1.1, the external documen-
tation follows a “faked” rational process, but the internal process can be any-
thing that the developers desire. The development plan is where this internal
process is specified. The specific parts of the plan should include the following:

• What documents will be created?

• What template, including rules and guidelines, will be followed?

• What internal process will be employed?

• What technology infrastructure (development support tools) will be used
(see Section 1.2.8)?

• What are the coding standards?

• In the case of open source software, how does one contribute?

GRASS (Geographic Resources Analysis Support System) [18] provides
a good example of community developed software that has a clear software
development process and development support tool infrastructure [31]. The
seismology software Earthworm [23] provides another solid example. The de-
velopment plan for Earthworm distinguishes between three different categories
of software: core, contributed and encapsulated. In addition, details are pro-
vided on the expected coding standards and on how to contribute to the
project. Unfortunately, the requirements for contributing to Earthworm are
sparse and the support tools seem to be limited to issue tracking.

The presence of a development plan immediately improves the qualities of
visibility and transparency, since the development process is now defined. The
plan also improves reproducibility, since it records the development and testing
details. Depending on the choices made, the development support tools, such
as version control and issue tracking, can have a direct impact on the quality
of maintainability.

1.2.3 Software Requirements Specification (SRS)

The Software Requirements Specification (SRS) records the functionalities,
expected performance, goals, context, design constraints, external interfaces

12 Software Engineering for Science

and other quality attributes of the software [22]. Writing an SRS generally
starts with a template, which provides guidelines and rules for documenting
the requirements. Several existing templates contain suggestions on how to
avoid complications and how to achieve qualities such as verifiability, main-
tainability and reusability [15, 22, 35]. However, no template is universally
accepted. For the current purpose, a good starting point is a template specif-
ically designed for scientific software [54, 55], as illustrated in Figure 1.2. The
recommended template is suitable for science, because of its hierarchical struc-
ture, which decomposes abstract goals to concrete instance models, with the
support of data definitions, assumptions and terminology. The document’s
structure facilitates its maintenance and reuse [54], by using separation of
concerns, abstraction and traceability, as discussed in Section 1.1.
Contents

1 Reference Material 1
1.1 Table of Units . 1
1.2 Table of Symbols . 2
1.3 Abbreviations and Acronyms . 4

2 Introduction 4
2.1 Purpose of Document . 5
2.2 Scope of Requirements . 5
2.3 Organization of Document . 5

3 General System Description 5
3.1 User Characteristics . 6
3.2 System Constraints . 6

4 Specific System Description 6
4.1 Problem Description . 6

4.1.1 Terminology and Definitions . 6
4.1.2 Physical System Description . 7
4.1.3 Goal Statements . 7

4.2 Solution Characteristics Specification . 8
4.2.1 Assumptions . 8
4.2.2 Theoretical Models . 9
4.2.3 General Definitions . 11
4.2.4 Data Definitions . 13
4.2.5 Instance Models . 15
4.2.6 Data Constraints . 21

5 Requirements 23
5.1 Functional Requirements . 23
5.2 Nonfunctional Requirements . 24

6 Likely Changes 25

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

Throughout this document SI (Système International d’Unités) is employed as the unit sys-
tem. In addition to the basic units, several derived units are used as described below. For

1

FIGURE 1.2: SRS table of contents.

An SRS improves the software qualities listed in Table 1.1. For instance,
usability is improved via an explicit statement of the expected user character-
istics. Verifiability is improved because the SRS provides a standard against
which correctness can be judged. The recommended template [54, 55] facili-

A Rational Document Driven Design Process for Scientific Software 13

tates verification of the theory by systematically breaking the information into
structured units, and using cross-referencing for traceability. An SRS also im-
proves communication with stakeholders. To facilitate collaboration and team
integration, the SRS captures the necessary knowledge in a self-contained doc-
ument. If a standard template is adopted for scientific software, this would
help with comparing between different projects and with reusing knowledge.

1.2.4 Verification and Validation (V&V) Plan and Report

Verification is not just important for the code. As shown by the IEEE
Standard for Software Verification and Validation Plans [60, p. 412], V&V
activities are recommended for each phase of the software development life-
cycle. For instance, experts should verify that the requirements specification
is reasonable with respect to the theoretical model, equations, assumptions
etc. This verification activity is assisted by the use of a requirements tem-
plate tailored to scientific software, as discussed in Section 1.2.3. Verification
of the design and the code can potentially be improved by the use of Literate
Programming, as discussed in Section 1.2.6. An important part of the veri-
fication plan is checking the traceability between documents to ensure that
every requirement is addressed by the design, every module is tested, etc.

Developing test cases is particularly challenging for scientific software,
since scientific problems typically lack a test oracle [27]. In the absence of
a test oracle, the following techniques can be used to build system tests:

• Test cases can be selected that are a subset of the real problem for which
a closed-form solution exists. When using this approach, confidence in
the actual production code can only be built if it is the same code used
for testing; that is, nothing is gained if a separate, simpler, program is
written for testing the special cases.

• Verification test cases can be created by assuming a solution and using
this to calculate the inputs. For instance, for a linear solver, if A and x
are assumed, b can be calculated as b = Ax. Following this, Ax∗ = b can
be solved and then x and x∗, which should theoretically be equal, can be
compared. In the case of solving Partial Differential Equations (PDEs),
this approach is called the Method of Manufactured Solutions [45].

• Most scientific software uses floating point arithmetic, but for testing
purposes, the slower, but guaranteed correct, interval arithmetic [20] can
be employed. The faster floating point algorithm can then be verified by
ensuring that the calculated answers lie within the guaranteed bounds.

• Verification tests should include plans for convergence studies. The dis-
cretization used in the numerical algorithm should be decreased (usually
halved) and the change in the solution assessed.

• Confidence can be built in a numerical algorithm by comparing the

14 Software Engineering for Science

results to another program that overlaps in functionality. If the test
results do not agree, then one, possibly both of the programs is incorrect.

• The verification plan should also include test plans for nonfunctional
requirements, like accuracy, performance and portability, if these are
important implementation goals. Performance tests can be planned to
describe how the software responds to changing inputs, such as problem
size, condition number etc. Verification plans can include relative com-
parisons between the new implementation and competing products [52].

In addition to system test cases, the verification plan should outline other
testing techniques that will be used to build confidence. For instance, the plan
should describe how unit test cases will be selected, although the creation of
the unit test cases will have to wait until the design is complete. The test
plan should also identify what, if any, code coverage metrics will be used
and what approach will be employed for automated testing. If other testing
techniques, such as mutation testing, or fault testing [60], are to be employed,
this should be included in the plan. In addition to testing, the verification
plan should mention the plans for other techniques for verification, such as
code walkthroughs, code inspections, correctness proofs etc. [17, 60].

Validation is also included in the V&V plan. For validation, the document
should identify the experimental results for comparison to the simulated re-
sults. If the purpose of the code is a general purpose mathematical library
there is no need for a separate validation phase.

Figure 1.3 shows the proposed template for capturing the V&V plan. The
first two sections cover general and administrative information, including the
composition of the testing team and important deadlines. The “Evaluation”
section fleshes out the methods, tools and techniques while the “System Test
Description” provides an example of a system test. In an actual V&V report,
there would be multiple instances of this section, each corresponding to a
different system test. In cases where validation tests are appropriate, each
validation test would also follow this template.

The corresponding document for the V&V plan is the V&V report. Once
the implementation and other documentation is complete, the V&V activities
take place. The results are summarized in the report, with enough detail
to convince a reader that all the planned activities were accomplished. The
report should emphasize those changes that were made in a response to issues
uncovered during verification and validation.

1.2.5 Design Specification

As for other documents, the design document serves three purposes: design,
implementation and maintenance [21, p. 16]. The initial document is verified to
ensure it provides a good start, then it is used for software creation, and later,
when changes are needed, it is a reference for maintainers. The recommended

A Rational Document Driven Design Process for Scientific Software 15
Contents

1 General Information 2
1.1 Purpose . 2
1.2 Scope . 2
1.3 Overview of Document . 3

2 Plan 4
2.1 Software Description . 4
2.2 Test Team . 4
2.3 Milestones . 4

2.3.1 Location . 4
2.3.2 Dates and Deadlines . 4

2.4 Budget . 5

3 Evaluation 6
3.1 Methods and Constraints . 6

3.1.1 Methodology . 6
3.1.2 Extent of Testing . 6
3.1.3 Test Tools . 6
3.1.4 Testing Constraints . 7

3.2 Data Evaluation . 8
3.2.1 Data Recording . 8
3.2.2 Test Progression . 8
3.2.3 Testing Criteria . 8
3.2.4 Testing Data Reduction . 9

4 System Test Description 9
4.1 Test Identifier . 9

4.1.1 Means of Control . 9
4.1.2 Input . 9
4.1.3 Expected Output . 10
4.1.4 Procedure . 10
4.1.5 Preparation . 10

1

FIGURE 1.3: Proposed V&V plan table of contents.

approach to handle complexity in design is abstraction [60, p. 296]. For science,
the inspiration for abstraction is the underlying mathematics.

The documentation should include a high level view of the software archi-
tecture, which divides the system into modules, and a low level view, which
specifies the interfaces for the modules. A module is defined as a “work as-
signment given to a programmer or group of programmers” [40]. Wilson et
al. advise modular design for scientific software [63], but are silent on the
decomposition criterion. A good criterion is the principle of information hid-
ing [39]. This principle supports design for change through the “secrets” of
each module. As implied in Section 1.1, design for change is valuable for sci-
entific software, where a certain amount of exploration is necessary.

The modular decomposition can be recorded in a Module Guide (MG) [40],
which organizes the modules in a hierarchy by their secrets. Given his interest
in embedded real time systems, the top-level decomposition from Parnas [40]
includes a hardware hiding module. For scientific software on standard hard-

16 Software Engineering for Science

ware, with serial algorithms, simplification is usually possible, since the virtu-
alization of the hardware will typically not have to be directly implemented
by the programmer, being generally available via libraries, such as stdio.io

in C. Further simplifications are available in scientific software, by taking ad-
vantage of the Input ⇒ Calculate ⇒ Output design pattern mentioned in
Section 1.1. This pattern implies the presence of an input format hiding mod-
ule, an input parameter data structure hiding module and an output format
hiding module [21]. The bulk of the difference between designs comes through
the modules dealing with calculations. Typical calculation modules hide data
structures, algorithms and the governing physics. The application of the Par-
nas approach to scientific software has been illustrated by applying it to the
example of a mesh generator [57].

Figure 1.4 shows the proposed template for the MG document. The docu-
ment begins with an explicit statement of the anticipated, or likely, changes.
These anticipated changes guide the design. If a likely change is required,
then ideally only one module will need to be re-implemented. The “Module
Decomposition” section lists the modules, organized by a hierarchy of related
secrets. The top level decomposition of the hierarchy consists of hardware
hiding, behavior hiding and software decision hiding modules [40]. For each
module the secret it encapsulates and the service it provides are listed. Care
is taken that each module lists only one secret and that secrets are in the form
of nouns, not verbs. The example modules listed in the section of Figure 1.4
are typical of scientific software. The “Traceability Matrix” section shows how
the anticipated changes map to modules, and how the requirements from the
SRS map to modules. Section 1.3.2 describes an example MG, along with the
uses hierarchy between modules.

The modular decomposition advocated here has much in common with
Object Oriented (OO) design, which also emphasizes encapsulation. However,
care must be taken with overusing OO languages, since a significant perfor-
mance penalty is possible using dynamic dispatch, especially in an inner loop.
Operator overloading should also be used with care, since the operator seman-
tics may change depending on the type of its operands.

The MG alone does not provide enough information. Each module’s in-
terface needs to be designed and documented by showing the syntax and
semantics of its access routines. This can be done in the Module Interface
Specification (MIS) [21]. The MIS is less abstract than the architectural de-
sign. However, an MIS is still abstract, since it describes what the module will
do, but not how to do it. The interfaces can be documented formally [14, 57]
or informally. An informal presentation would use natural language, together
with equations. The specification needs to clearly define all parameters, since
an unclear description of the parameters is one cause of reusability issues for
libraries [11]. To assist with interface design, one can take inspiration from
the common design idioms for the structures of set, sequence and tuple [21, p.
82–83]. In addition, the designer should keep in mind the following interface
quality criteria: consistent, essential, general, minimal and opaque [21, p. 83].

A Rational Document Driven Design Process for Scientific Software 17
Contents

1 Introduction 2

2 Anticipated and Unlikely Changes 3
2.1 Anticipated Changes . 3
2.2 Unlikely Changes . 3

3 Module Hierarchy 4

4 Connection Between Requirements and Design 4

5 Module Decomposition 5
5.1 Hardware Hiding Modules (M1) . 5
5.2 Behavior-Hiding Module . 5

5.2.1 Input Format Module (M2) . 6
5.2.2 Input Parameters Module (M3) . 6
5.2.3 Output Format Module (M4) . 6
5.2.4 Calculation Related Module (M5) . 6
5.2.5 Another Calculation Related Module (M6) 7
5.2.6 Control Module (M7) . 7

5.3 Software Decision Module . 7
5.3.1 Data Structure Module (M8) . 7
5.3.2 Solver Module (M9) . 7
5.3.3 Plotting or Visualizing Module (M10) 8

6 Traceability Matrix 8

7 Use Hierarchy Between Modules 9

1

FIGURE 1.4: Proposed MG table of contents.

1.2.6 Code

Comments can improve understandability, since comments “aid the under-
standing of a program by briefly pointing out salient details or by providing
a larger-scale view of the proceedings” [28]. Comments should not describe
details of how an algorithm is implemented, but instead focus on what the
algorithm does and the strategy behind it. Writing comments is one of the
best practices identified for scientific software by Wilson et al. [63]. As said
by Wilson et al., scientific software developers should aim to “write programs
for people, not computers” and “[t]he best way to create and maintain refer-
ence documentation is to embed the documentation for a piece of software in
that software” [63]. Literate Programming (LP) [30] is an approach that takes
these ideas to their logical conclusion.

LP was introduced by Knuth [30]. The central idea is that “...instead of
imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer
to do” [30, pg. 99]. When using LP, an algorithm is refined into smaller,
simpler parts. Each of the parts is documented in an order that is natural
for human comprehension, as opposed to the order used for compilation. In
a literate program, documentation and code are maintained in one source.

18 Software Engineering for Science

The program is written as an interconnected “web” of “chunks” [30]. LP
can be used as a strategy for improving verifiability, understandability and
reproducibility for scientific software. One example of a commonly used LP
tool is Sweave [32]. (This tool is discussed further in Section 1.4.1.) Other
examples of LP in scientific software include a validated ODE solver [36] and
a photorealistic renderer [43].

Figure 1.5 shows a sample of literate code documentation drawn from a
program to analyze heat transfer in a nuclear reactor fuel pin [49]. The example
shows how documentation and code can be interleaved. The excerpt begins
with the mathematical formulae for the heat transfer coefficients and ends
with the actual C code used for their calculation. By having the theory and
the code side by side in this manner, a human reviewer will have an easier
time verifying the code implements the theory. The excerpt also illustrates
how LP automatically manages chunk numbering and referencing.

h initialization of average clad temperature T2,0 18 i ⌘18
/⇤ declaration of constants ⇤/

float a = 1.43 · 10�05;
float b = 1.17 · 10�02;

/⇤ computation of clad radius B.21 ⇤/
float r c = ⇤r f + ⇤tau g + ⇤tau c ;

/⇤ initializing coolant film conductance ⇤/
⇤h b = ⇤h ib ;

/⇤ computation of T2 in steady state ⇤/
float C10 = 2.0 ⇤ pi ⇤ r c ⇤ (⇤h b);
float C11 = 2.0 ⇤ C10 ⇤ a;
float C12 = C10 ⇤ (2.0 ⇤ b � (2.0 ⇤ a ⇤ (⇤t b))) � (⇤q N ⇤ 2.0 ⇤ a);
float C13 = �C10 ⇤ (⇤t b) ⇤ 2.0 ⇤ b � ⇤q N ⇤ (2.0 ⇤ b + ((⇤h b) ⇤ (⇤tau c)));

/⇤ solving quadratic equation ⇤/
⇤t 2 = (�C12 + sqrt (C12 ⇤ C12 � 4.0 ⇤ C11 ⇤ C13))/(2.0 ⇤ C11);

/⇤ computation of initial clad conductivity B.16 ⇤/
This code is used in chunk 15

hCalculation of kc 19 i ⌘19

⇤k c = a ⇤ (⇤t 2) + b;

This code is used in chunk 15

B.6.2 Computing hc, hg and TS

Using this clad conductivity (kc), we compute the heat transfer coe�cient (hc) and
the gap conductance (hg) as DD18 and DD19 of the SRS, respectively. That is,

hc =
2kchb

2kc + ⌧chb
, (B.23)

hg =
2kchp

2kc + ⌧chp
(B.24)

hCalculation of heat transfer coe�cient (hc) and the gap conductance (hg) 21 i ⌘21
/⇤ calculation of heat transfer coe�cient ⇤/

⇤h c = (2 ⇤ (⇤k c) ⇤ (⇤h b))/((2 ⇤ (⇤k c)) + (⇤tau c ⇤ (⇤h b)));
/⇤ calculation of gap conductance ⇤/

⇤h g = (2 ⇤ (⇤k c) ⇤ (⇤h p))/((2 ⇤ (⇤k c)) + (⇤tau c ⇤ (⇤h p)));

This code is used in chunks 15 and 60

12

FIGURE 1.5: Example literate code documentation.

1.2.7 User Manual

The presence of a user manual will have a direct impact on quality. The
quality of usability in particular benefits from a user manual, especially if the
manual includes a getting started tutorial and fully explained examples. A
user manual also benefits installability, as long as it includes linear installation
instructions. Advice for writing user manuals and technical instructions can
be found in technical writing texts [61]. The seismology software Mineos [6]
provides a good example of a user manual for scientific software.

A Rational Document Driven Design Process for Scientific Software 19

1.2.8 Tool Support

Scientific software developers should use tools for issue tracking and ver-
sion control. Issue tracking is considered a central quality assurance process [2].
Commercial issue trackers, such as Jira, are available, along with free tools
such as, iTracker, Roundup, GitHub and Bugzilla [24]. For version control, fre-
quently recommended tools are Subversion [44] and Git [33]. Version control
tools can support reproducibility, since they are able to record development
information as the project progresses. Davison [9], recommends more flexi-
ble and powerful automated reproducibility tools, such as Sumatra [10] and
Madagascar [16]. Issue tracking and version control tools should be employed
for all of the documents mentioned in the preceding sections.

Tool use for code documentation falls on a continuum between no tool use,
all the way up to full LP (discussed in Section 1.2.6). In between these extremes
there are code documentation assistants like Javadoc, Doxygen, Sphinx and
publish for MATLAB R©. These tools can be thought of as code first, then
documentation. LP flips this around with documentation first, then code.
Tools for LP include cweb, noweb, FunnelWeb and Sweave.

Tools also exist to make the testing phase easier. For functional testing,
unit testing frameworks are popular. A unit testing framework has been de-
veloped for most programming languages. Examples include JUnit (for Java),
Cppunit (for C++), CUnit (for C), FUnit (for FORTRAN), and PyUnit (for
Python). For nonfunctional testing related to performance, one can use a pro-
filer to identify the real bottlenecks in performance [63]. A powerful tool for
dynamic analysis of code is Valgrind. The specific choices of tools for a given
project should be documented in the V&V plan (Section 1.2.4).

1.3 Example: Solar Water Heating Tank

This section provides highlights of the documentation produced via a ra-
tional document driven process for a software program called SWHS. This
program simulates a Solar Water Heating System (SWHS) incorporating
Phase Change Material (PCM) [46]. Tanks are sometimes designed with
PCM to reduce the tank size over a water only tank. Incorporating PCM
reduces tank size since PCM stores thermal energy as latent heat, which
allows higher thermal energy storage capacity per unit weight. Figure 1.6
provides a conceptual view of the heat flux (q) in the tank. The full set of
documents, code and test cases, for the SWHS example can be found at:
https://github.com/smiths/swhs.git.

20 Software Engineering for Science

FIGURE 1.6: Solar water heating tank, with heat flux qc from coil and qP
to the PCM.

1.3.1 Software Requirements Specification (SRS)

Figure 1.2 shows the table of contents for the SRS for SWHS. Although
the SRS document is long (25 pages), this is in keeping with the knowledge
capture goal. Someone, like a new undergraduate or graduate student, with
a physics and mathematics background (as given in SRS Section 3.1, User
Characteristics) will have all that they need to understand the software. The
documentation is not written only for experts on heat transfer, but also for
people that are trying to become experts. The documentation alone will not
make someone an expert, but the intention is that it will provide enough
detail, and enough pointers to additional information, that it can serve as a
valuable learning, and later a reference, resource.

The table of contents shows how the problem is systematically decomposed
into more concrete models. Specifically, the presentation starts with the high
level problem goals (Figure 1.7), then the SRS provides the appropriate the-
oretical models to achieve the goals. The theoretical models are then refined
into what are termed instance models, which provide the equations needed
to solve the original problem. During this refinement from goals to theory
to mathematical models, the scientist applies different assumptions, builds
general definitions and creates data definitions. The template aids in docu-
menting all the necessary information, since each section has to be considered.
This facilitates achieving completeness by essentially providing a checklist. Be-
sides requiring that section headings be filled in, the template also requires

A Rational Document Driven Design Process for Scientific Software 21

that every equation either has a supporting external reference, or a derivation.
Furthermore, for the SRS to be complete and consistent every symbol, general
definition, data definition, and assumption needs to be used at least once.

The goal statements for SWHS, given in Figure 1.7, specify the target of
the system. In keeping with the principle of abstraction, the goals are stated
such that they describe many potential instances of the final program. As a
consequence, the goals will be stable and reusable.

4.1.2 Physical System Description

The physical system of SWHS, as shown in Figure 1, includes the following elements:

PS1: Tank containing water.

PS2: Heating coil at bottom of tank. (qC represents the heat flux from the coil into the
water.)

PS3: PCM suspended in tank. (qP represents the heat flux from the water into the PCM.)

Figure 1: Solar water heating tank, with heat flux from coil and to the PCM of qC and qP ,
respectively

4.1.3 Goal Statements

Given the temperature of the coil, initial conditions for the temperature of the water and
the PCM, and material properties, the goal statements are:

GS1: predict the water temperature over time

GS2: predict the PCM temperature over time

GS3: predict the change in the energy of the water over time

GS4: predict the change in the energy of the PCM over time

7
FIGURE 1.7: Goal statements for SWHS.

As mentioned in Section 1.1, scientists often need to experiment with their
assumptions. For this reason, traceability information needs to be part of the
assumptions, as shown in Figure 1.8. As the assumptions inevitably change,
the analyst will know which portions of the documentation will potentially
also need to change.

4.2 Solution Characteristics Specification

The instance models (ODEs) that govern SWHS are presented in Subsection 4.2.5. The
information to understand the meaning of the instance models and their derivation is also
presented, so that the instance models can be verified.

4.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical model by
filling in the missing information for the physical system. The numbers given in the square
brackets refer to the theoretical model [T], general definition [GD], data definition [DD],
instance model [IM], or likely change [LC], in which the respective assumption is used.

A1: The only form of energy that is relevant for this problem is thermal energy. All other
forms of energy, such as mechanical energy, are assumed to be negligible [T1].

A2: All heat transfer coe�cients are constant over time [GD1].

A3: The water in the tank is fully mixed, so the temperature is the same throughout the
entire tank [GD2, DD2].

A4: The PCM has the same temperature throughout [GD2, DD2, LC1].

A5: Density of the water and PCM have not spatial variation; that is, they are each constant
over their entire volume [GD2].

A6: Specific heat capacity of the water and PCM have no spatial variation; that is, they
are each constant over their entire volume [GD2].

A7: Newton’s law of convective cooling applies between the coil and the water [DD1].

A8: The temperature of the heating coil is constant over time [DD1, LC2].

A9: The temperature of the heating coil does not vary along its length [DD1, LC3].

A10: Newton’s law of convective cooling applies between the water and the PCM [DD2].

A11: The model only accounts for charging of the tank, not discharging. The temperature of
the water and PCM can only increase, or remain constant; they do not decrease. This
implies that the initial temperature (A12) is less than (or equal) to the temperature
of the coil [IM1, LC4].

A12: The initial temperature of the water and the PCM is the same [IM1, IM2, LC5].

A13: The simulation will start with the PCM in solid form [IM2, IM4].

A14: The operating temperature range of the system is such that the water is always in
liquid form. That is, the temperature will not drop below the melting point of water,
or rise above its boiling point [IM1, IM3].

8

FIGURE 1.8: Sample assumptions for SWHS.

22 Software Engineering for Science

The abstract theoretical model for the conservation of thermal energy is
presented in Figure 1.9. As discussed in Section 1.1, this conservation equation
applies for many physical problems. For instance, this same model is used in
the thermal analysis of a nuclear reactor fuel pin [49]. This is possible since
the equation is written without reference to a specific coordinate system.

A15: The tank is perfectly insulated so that there is no heat loss from the tank [IM1, LC6].

A16: No internal heat is generated be either the water or the PCM; therefore, the volumetric
heat generation is zero [IM1, IM2].

A17: The volume change of the PCM due to melting is negligible [IM2].

A18: The PCM is in either in a liquid or solid state, but not a gas [IM2, IM4].

4.2.2 Theoretical Models

This section focuses on the general equations and laws that SWHS is based on.

Number T1

Label Conservation of thermal energy

Equation �r · q + g = ⇢C @T
@t

Description The above equation gives the conservation of energy for time varying heat
transfer in a material of specific heat capacity C and density ⇢, where q
is the thermal flux vector, g is the volumetric heat generation, T is the
temperature, t is time, and r is the gradient operator. For this equation to
apply, other forms of energy, such as mechanical energy, are assumed to be
negligible in the system (A1).

Source http://www.efunda.com/formulae/heat_transfer/conduction/

overview_cond.cfm

Ref. By GD2

9

FIGURE 1.9: Sample theoretical model.

T1 (Figure 1.9) can be simplified from an abstract theoretical model to
a more problem specific General Definition (GD). Figure 1.10 shows one po-
tential refinement (GD2), which can be derived using Assumptions A3–A6
(Figure 1.8). The specific details of the derivation are given in the full SRS
on-line, but not reproduced here for space reasons. This restating of the con-
servation of energy is still abstract, since it applies for any control volume
that satisfies the required assumptions. GD2 can in turn be further refined
to specific (concrete) instanced models for predicting the temperature of the
water and the PCM over time.

IM1 and IM2 provide the system of ODEs that needs to be solved to
determine Tw and TP . If a reader would prefer a bottom up approach, as op-
posed to the default top down organization of the original SRS, they can start
their reading with the instance models and trace back to find any additional
information that they require. IM2 is shown in Figure 1.11. Hyperlinks are
included in the original documentation for easy navigation to the associated
data definitions, assumptions and instance models.

To achieve a separation of concerns between the requirements and the de-
sign, the SRS is abstract, as discussed in Section 1.2. The governing ODEs are
given, but not a solution algorithm. The focus is on “what” the software does,
not “how” to do it. The numerical methods are left to the design document.
This approach facilitates change, since a new numerical algorithm requires no
changes to the SRS.

A Rational Document Driven Design Process for Scientific Software 23

Number GD2

Label Simplified rate of change of temperature

Equation mC dT
dt

= qinAin � qoutAout + gV

Description The basic equation governing the rate of change of temperature, for a given
volume V , with time.

m is the mass (kg).

C is the specific heat capacity (J kg�1 �C�1).

T is the temperature (�C) and t is the time (s).

qin and qout are the in and out heat transfer rates, respectively (Wm�2).

Ain and Aout are the surface areas over which the heat is being transferred
in and out, respectively (m2).

g is the volumetric heat generated (Wm�3).

V is the volume (m3).

Ref. By IM1, IM2

Detailed derivation of simplified rate of change of temperature

Integrating (T1) over a volume (V), we have

�
Z

V

rqdV +

Z

V

gdV =

Z

V

⇢C
@T

@t
dV.

Applying Gauss’s Divergence theorem to the first term over the surface S of the volume,
with q as the thermal flux vector for the surface, and n̂ is a unit outward normal for the
surface,

�
Z

S

q · n̂dS +

Z

V

gdV =

Z

V

⇢C
@T

@t
dV. (1)

We consider an arbitrary volume. The volumetric heat generation is assumed constant. Then
(1) can be written as

qinAin � qoutAout + gV =

Z

V

⇢C
@T

@t
dV,

where qin, qout, Ain, and Aout are explained in GD2. Assuming ⇢, C and T are constant over
the volume, which is true in our case by assumption (A3), (A4), (A5), and (A6), we have

⇢CV
dT

dt
= qinAin � qoutAout + gV. (2)

12

FIGURE 1.10: Sample general definition.

If an expert reviewer is asked to “sign off” on the documentation, he or she
should find an explanation/justification for every symbol/equation/definition.
This is why IM2 not only shows the equation for energy balance to find TP ,
but also the derivation of the equation. (The derivation is not reproduced here
for space reasons, but it can be found at https://github.com/smiths/swhs.
git.)

Table 1.3 shows an excerpt for the table summarizing the input variables
for SWHS. With the goal of knowledge capture in mind, this table includes
constraints on the input values, along with data on typical values. When new
users are learning software, they often do not have a feel for the range and
magnitude of the inputs. This table is intended to help them. It also provides
a starting point for later testing of the software. The uncertainty information
is included to capture expert knowledge and to facilitate later uncertainty
quantification analysis.

1.3.2 Design Specification

The modular decomposition for SWHS is recorded in a Module Guide
(MG), as discussed in Section 1.2.5. The table of contents of the MG for
SWHS is similar to that shown in Figure 1.4, but with a few different modules.
The specific modules for SWHS are shown in Figure 1.12, which summarizes
the uses relation between the modules, where module A uses module B if a
correct execution of B may be necessary for A to complete the task described

24 Software Engineering for Science

Number IM2

Label Energy balance on PCM to find TP

Input mP , CS
P , CL

P , hP , AP , tfinal, Tinit, T P
melt, TW (t) from IM1

The input is constrained so that Tinit < T P
melt (A13)

Output TP (t), 0  t  tfinal, with initial conditions, TW (0) = TP (0) = Tinit (A12),
and TW (t) from IM1, such that the following governing ODE is satisfied.
The specific ODE depends on TP as follows:

dTP

dt
=

8
>><
>>:

dTP

dt
= 1

⌧S
P
(TW (t) � TP (t)) if TP < T P

melt

dTP

dt
= 1

⌧L
P
(TW (t) � TP (t)) if TP > T P

melt

0 if TP = T P
melt and 0 < � < 1

The temperature remains constant at T P
melt, even with the heating (or cool-

ing), until the phase change has occurred for all of the material; that is as
long as 0 < � < 1. � (from DD4) is determined as part of the heat energy
in the PCM, as given in IM4

tinit
melt, the temperature at which melting begins.

tfinal
melt, the temperature at which melting ends.

Description TW is water temperature (�C).

TP is the PCM temperature (�C).

⌧S
P =

mP CS
P

hP AP
is a constant (s).

⌧L
P =

mP CL
P

hP AP
is a constant (s).

Sources [4]

Ref. By IM1, IM4

Detailed derivation of the energy balance on the PCM during sensible heating
phase

To find the rate of change of TP , we look at the energy balance on the PCM. The volume
being considered is the volume of the PCM, VP . The derivation that follows is initially for
the solid PCM. The PCM in the tank has mass mP and specific heat capacity CS

P . Heat
input from the water to the PCM is qP over area AP . There is no heat flux output. Assuming
no internal heat generated (A16), g = 0, the equation for GD2 can be written as:

mP CS
P

dTP

dt
= qP AP

Using DD2 for qP , this equation can be written as

18

FIGURE 1.11: Sample instance model.

in its specification. The relation is hierarchical, which means that subsets of
the design can be independently implemented and tested. Some specific points
about the MG are as follows:

• Likely changes for SWHS include “the format of the initial input data”
and the “algorithm used for the ODE solver.” The likely changes are
the basis on which the modules are defined.

• One straightforward module is the Input Format Module (M2). This
module hides the format of the input, as discussed generically in Sec-
tion 1.2.5. It knows the structure of the input file, so that no other
module needs to know this information. The service that the Input For-
mat Module provides is to read the input data and then modify the
state of the Input Parameters Module (M3) so that it holds all of the
required information.

A Rational Document Driven Design Process for Scientific Software 25

TABLE 1.3: Excerpt from Table of Input Variables for SWHS

4.2.6 Data Constraints

Table 1 and 3 show the data constraints on the input and output variables, respectively. The
column physical constraints gives the physical limitations on the range of values that can
be taken by the variable. The column for software constraints restricts the range of inputs
to reasonable values. The constraints are conservative, to give the user of the model the
flexibility to experiment with unusual situations. The column of typical values is intended
to provide a feel for a common scenario. The uncertainty column provides an estimate of
the confidence with which the physical quantities can be measured. This information would
be part of the input if one were performing an uncertainty quantification exercise.

The specification parameters in Table 1 are listed in Table 2.

Table 1: Input Variables

Var Physical Constraints Software Constraints Typical Value Uncertainty

L L > 0 Lmin  L  Lmax 1.5 m 10%

D D > 0 D
L min

 D
L
 D

L max
0.412 m 10%

VP VP > 0 (*) VP � minfract · Vtank(D, L) 0.05 m3 10%

VP < Vtank(D, L)

AP AP > 0 (*) VP  AP  2
hmin

VP (#) 1.2 m2 10%

⇢P ⇢P > 0 ⇢min
P < ⇢P < ⇢max

P 1007 kg/m3 10%

T P
melt 0 < T P

melt < TC 44.2 �C 10%

CS
P CS

P > 0 CS
Pmin < CS

P < CS
Pmax 1760 J/(kg �C) 10%

CL
P CL

P > 0 CL
Pmin < CS

P < CL
Pmax 2270 J/(kg �C) 10%

Hf Hf > 0 Hmin
f < Hf < Hmax

f 211600 J/kg 10%

AC AC > 0 (*) AC  Amax
C 0.12 m2 10%

TC 0 < TC < 100 (+) 50 �C 10%

⇢W ⇢W > 0 ⇢min
W < ⇢W  ⇢max

W 1000 kg/m3 10%

CW CW > 0 Cmin
W < CW < Cmax

W 4186 J/(kg �C) 10%

hC hC > 0 hmin
C  hC  hmax

C 1000 W/(m2 �C) 10%

hP hP > 0 hmin
P  hP  hmax

P 1000 W/(m2 �C) 10%

Tinit 0 < Tinit < Tmelt (+) 40 �C 10%

tfinal tfinal > 0 tfinal < tmax
final (**) 50000 s 10%

(*) These quantities cannot be equal to zero, or there will be a divide by zero in the model.

(+) These quantities cannot be zero, or there would be freezing (A14).

21

Control Module
(M7)

Input Format
Module (M2)

Temperature
ODEs Module

(M5)
Energy Equations

Module (M6)
ODE Solver
Module (M9)

Plotting Module
(M10)

Output Format
Module (M4)

Input Parameters
Module (M3)

Sequence Data
Structure Module

(M8)

Hardware Hiding
Module (M1)

FIGURE 1.12: Uses hierarchy among modules.

• Several of the modules that are documented, such as the Sequence Data
Structure Module (M8) and the ODE Solver Module (M9), are already
available in Matlab, which is the selected implementation environment
for SWHS. These modules are still explicitly included in the design, with
a notation that indicates that they will be implemented by Matlab. They
are included so that if the implementation environment is later changed,
the developer will know that they need to provide these modules.

• The MG shows the traceability matrix between the modules and the SRS
requirements. This traceability increases confidence that the design is
complete because each requirement maps to a module, and each module
maps to at least one requirement.

26 Software Engineering for Science

1.4 Justification

Part of the justification for the document driven approach presented in
this chapter is an appeal to the value of a systematic, rigorous, engineering
approach. This approach has been successful in other domains, so it stands
to reason that it should be successful for scientific software. The example
of the solar water heating tank provides partial support for this, since the
documentation and code were positively reviewed by a mechanical engineer.
Although only providing anecdotal evidence in support of the documenta-
tion, the reviewer liked the explicit assumptions; the careful description of
names, nomenclature and units; and, the explicit planning for change in the
design. The reviewer thought that the documentation captured knowledge
that would facilitate new project members quickly getting up to speed. The
reviewer’s main concern was the large amount of documentation for such a rel-
atively simple, and non-safety critical, problem. This concern can be mitigated
by the following observations: i) the solar water heating example was inten-
tionally treated more seriously than the problem perhaps deserves, so that
a relatively small, but still non-trivial example, could be used to illustrate
the methods proposed in this paper; and, ii) if the community recognizes the
value of rational documentation, then tool support will follow to reduce the
documentation burden. This last point is explored further in the Concluding
Remarks (Section 1.5).

Justification by appeals to success in other domains, and by positive com-
ments from a review of SWHS, are not entirely satisfying. Maybe there really
is something about science that makes it different from other domains? The
research work presented below further justifies that this is not the case.

1.4.1 Comparison between CRAN and Other Communities

The value of documentation and a structured process is illustrated by a
survey of statistical software for psychology [50, 51]. The survey compares the
quality of statistical software when it is developed using an ad hoc process
versus employing the CRAN (Comprehensive R Archive Network [7]) process.

Thirty software tools were reviewed and ranked with respect to their ad-
herence to software engineering best practices. For the surveyed software, R
packages clearly performed better than the other categories for qualities re-
lated to development, such as maintainability, reusability, understandability
and visibility. Commercial software, for which the development process was
unknown, provided better usability, but did not show as much evidence of
verifiability. With respect to usability, a good CRAN example is mokken [59].

The overall high ranking of R packages stems largely from their use of Rd,
Sweave, R CMD check and the CRAN Repository Policy. The policy and sup-
port tools mean that even a single developer project can be sufficiently well

A Rational Document Driven Design Process for Scientific Software 27

documented and developed to be used by others. A small research project usu-
ally does not have the resources for an extensive development infrastructure
and process. By enforcing rules for structured development and documenta-
tion, CRAN is able to improve the quality of scientific software.

1.4.2 Nuclear Safety Analysis Software Case Study

To study the impact of a document driven process on scientific software,
a case study was performed on legacy software used for thermal analysis of
a fuel pin in a nuclear reactor [49, 53]. The legacy code and theory manual
were compared to a redeveloped version of the code and documentation using
the rational process described in this paper. The redeveloped documentation
focused on a single module, the thermal analysis module, and emphasized the
SRS and the use of LP. The case study is considered representative of many
other scientific programs.

Highly qualified domain experts produced the theory manual for the origi-
nal software. Their goal was to fully explain the theory for the purpose of QA.
The documentation followed the usual format for scientific journals or tech-
nical report. Even with an understanding of the importance of the original
documentation, the redeveloped version uncovered 27 issues in the previous
documentation, ranging from trivial to substantive. Although no errors were
uncovered in the code itself, the original documentation had problems with in-
completeness, ambiguity, inconsistency, verifiability, modifiability, traceability
and abstraction.

The redeveloped code used LP for documenting the numerical algorithms
and the code, in what was termed the Literate Programmer’s Manual (LPM).
An excerpt from the LPM is shown in Figure 1.5. This excerpt shows that
the LPM was developed with explicit traceability to the SRS. The traceabil-
ity between the theory, numerical algorithms and implementation, facilitates
achieving completeness and consistency, and simplifies the process of verifi-
cation and the associated certification. The case study shows that it is not
enough to say that a document should be complete, consistent, correct and
traceable; practitioners need guidance on how to achieve these qualities.

The case study highlights how a document driven process can improve ver-
ifiability. To begin with, verification is only possible with an explicit statement
of the requirements, or, in the terminology of Table 1.1, a list of the “right
equations.” The case study found that, due to inconsistent use of symbols for
heat transfer coefficients, two equations for thermal resistance in the origi-
nal theory manual were actually the “wrong equations.” A more systematic
process and explicit traceability between theory and code, would have caught
these mistakes. The use of LP was also shown to improve the quality of verifi-
ability, since all the information for the implementation is given, including the
details of the numerical algorithms, solution techniques, assumptions and the
program flow. The understandability of LP is a great benefit for code reading,
which is a key activity for scientists verifying their code [25].

28 Software Engineering for Science

Although some of the problems in the original documentation for the case
study would likely have been found with any effort to redo the documentation,
the rational process builds confidence that the methodology itself improves
quality. The proposed SRS template assisted in systematically developing the
requirements. The template helped in achieving completeness by acting as
a checklist. Since the template was developed following the principle of sep-
aration of concerns, each section could be dealt with individually, and the
details for the document could be developed by refining from goals to in-
stanced models. The proposed template provides guidelines for documenting
the requirements by suggesting an order for filling in the details. This reduces
the chances of missing information. Verification of the documentation involves
checking that every symbol is defined; that every symbol is used at least once;
that every equation either has a derivation, or a citation to its source; that
every general definition, data definition and assumption is used by at least one
other component of the document; and, that every line of code either traces
back to a description of the numerical algorithm (in the LPM), or to a data
definition, or to an instance model, or to an assumption, or to a value from
the auxiliary constants table in the SRS.

In all software projects, there is a danger of the code and documentation
getting out of sync, which seems to have been a problem in the legacy software.
LP, together with a rigorous change management policy, mitigates this danger.
LPM develops the code and design in the same document, while maintaining
traceability between them, and back to the SRS. As changes are proposed,
their impact can be determined and assessed.

1.5 Concluding Remarks

This chapter has shown the feasibility of a rational document driven pro-
cess for scientific software. In the past, scientific software has likely suffered
from the vicious cycle where documentation quality is continually eroded [42].
Since software documentation is disliked by almost everyone, the documenta-
tion that is typically produced is of poor quality. The reduced quality leads to
reduced usage, and the reduced usage in turn leads to a reduction in both re-
sources and motivation. The reduced resources and motivation means further
degradation in quality, and the vicious cycle repeats. Following a document
driven process, like that described here, can potentially end this vicious cycle.

The approach recommended in this paper is to produce the full suite of
software artifacts described in Section 1.2. However, this may be a daunting
task to start out with, especially for projects that begin with a small scope.
A practical starting point is to adopt tools wherever possible to simplify and
improve the development process. In particular, a version control system is
an important building block [62]. Ideally developers should adopt a full web

A Rational Document Driven Design Process for Scientific Software 29

solution, like GitHub, or SourceForge, which provide documentation and code
management, along with issue tracking. This approach provides the advan-
tage that the product website can be designed for maximum visibility [31].
Moreover, the project can gradually grow into the use of the available tools as
the need arises. For code documentation, developers should initially use a tool
like Doxygen, since this enforces consistency and produces documentation so
that other developers can more easily navigate the source code.

Although requirements are important, a more natural starting point for
many developers seems to be test cases, likely because test cases are less
abstract than requirements. To ease into a rational process, a project might
begin the development process by writing test cases, which in a sense form the
initial requirements for the project. If an infrastructure for automated testing
is created early in a project, this can help improve verification and validation
efforts going forward.

One potential shortcoming of the proposed approach is its reliance on
human beings. Following the documentation templates in Section 1.2, and
keeping all software artifacts in sync, should produce high quality software,
but this places a burden on the developers and reviewers to pay attention
to many details. Future work is planned to reduce this burden. Additional
tool support, such as the Drasil framework [58], can be incorporated into
the process. The fundamental task for Drasil is knowledge capture, so that
this knowledge can be used to generate the SRS, V&V plan, MG, code, etc.
In Drasil, each individual piece of knowledge is a named chunk, as in LP.
Chunks are assembled using a recipe and a generator then interprets recipes
to produce the desired document. With Drasil, the task of reusing knowledge,
managing change and maintaining traceability sits with the computer, which
is much better suited to these tasks than the typical human being.

Just as a compiler can check that all variables have been initialized, the
new tools can check the SRS for completeness and consistency and verify that
rules, like the one that all symbols are defined, are enforced. Code generation
techniques for scientific software [3, 4, 29] can be used to generalize the idea of
LP from the code to cover all software artifacts. A Domain Specific Language
(DSL) can be designed for capturing mathematical knowledge for families of
scientific software. For instance, any repetition between documents can au-
tomatically be generated, rather than relying on a manual process. Ideally,
code generation can be used to transform portions of the requirements di-
rectly into code. Furthermore, generation techniques may be used to generate
documentation to suit the needs of a particular user. For instance, the details
on the proof or derivation of equations can be removed for viewers using the
software for maintenance purposes, but added back in for reviewers verifying
the mathematical model. The user can specify the “recipe” for their required
documentation using the developed DSL.

Tool support will make the process easier, but practitioners should not
wait. The document driven methods as presented here are feasible today and
should be employed now to facilitate high quality scientific software. If an

30 Software Engineering for Science

approach such as that described in this paper becomes standard, then the work
load will be reduced over time as documentation is reused and as practitioners
become familiar with the templates, rules, and guidelines.

Bibliography

[1] Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant, Mike C. Miller, Chris-
tine A. Ramsdale, and Paul C. Stephenson. Scientific software develop-
ment at a research facility. IEEE Software, 25(4):44–51, July/August
2008.

[2] Arne Beckhause, Dirk Neumann, and Lars Karg. The impact of com-
muncation structure on issue tracking efficiency at a large business soft-
ware vendor. Issues in Information Systems, X(2):316–323, 2009.

[3] Jacques Carette. Gaussian elimination: A case study in efficient genericity
with MetaOCaml. Science of Computer Programming, 62(1):3–24, 2006.

[4] Jacques Carette, Mustafa ElSheikh, and W. Spencer Smith. A generative
geometric kernel. In ACM SIGPLAN 2011 Workshop on Partial Evalua-
tion and Program Manipulation (PEPM’11), pages 53–62, January 2011.

[5] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E.
Post. Software development environments for scientific and engineering
software: A series of case studies. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering, pages 550–559, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[6] CIG. Mineos. http://geodynamics.org/cig/software/mineos/,
March 2015.

[7] CRAN. The comprehensive R archive network. https://cran.

r-project.org/, 2014.

[8] CSA. Quality assurance of analytical, scientific, and design computer pro-
grams for nuclear power plants. Technical Report N286.7-99, Canadian
Standards Association, 178 Rexdale Blvd. Etobicoke, Ontario, Canada
M9W 1R3, 1999.

[9] Andrew P. Davison. Automated capture of experiment context for eas-
ier reproducibility in computational research. Computing in Science &
Engineering, 14(4):48–56, July-Aug 2012.

[10] Andrew P. Davison, M. Mattioni, D. Samarkanov, and B. Teleńczuk.
Sumatra: A toolkit for reproducible research. In V. Stodden, F. Leisch,

31

32 Bibliography

and R.D. Peng, editors, Implementing Reproducible Research, pages 57–
79. Chapman & Hall/CRC, Boca Raton, FL, March 2014.

[11] Paul F. Dubois. Designing scientific components. Computing in Science
and Engineering, 4(5):84–90, September 2002.

[12] Paul F. Dubois. Maintaining correctness in scientific programs. Comput-
ing in Science & Engineering, 7(3):80–85, May-June 2005.

[13] Steve M. Easterbrook and Timothy C. Johns. Engineering the software
for understanding climate change. IEEE Des. Test, 11(6):65–74, 2009.

[14] Ahmed H. ElSheikh, W. Spencer Smith, and Samir E. Chidiac. Semi-
formal design of reliable mesh generation systems. Advances in Engi-
neering Software, 35(12):827–841, 2004.

[15] ESA. ESA software engineering standards, PSS-05-0 issue 2. Technical
report, European Space Agency, February 1991.

[16] Sergey Fomel. Madagascar Project Main Page. http://www.ahay.org/

wiki/Main_Page, 2014.

[17] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd
edition, 2003.

[18] GRASS Development Team. GRASS GIS bringing advanced geospatial
technologies to the world. http://grass.osgeo.org/, 2014.

[19] Michael Heath. Scientific Computing: An Introductory Survey. McGraw-
Hill Publishing Company, New York, NY, USA, 2nd edition, 2002.

[20] Timothy Hickey, Qun Ju, and Maarten H. Van Emden. Interval arith-
metic: From principles to implementation. J. ACM, 48(5):1038–1068,
September 2001.

[21] Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated
Testing, and Maintenance: A Practical Approach. International Thomson
Computer Press, New York, NY, USA, 1995.

[22] IEEE. Recommended Practice for Software Requirements Specifications,
IEEE Std. 830. IEEE, 1998.

[23] ISTI. Earthworm software standards. http://www.earthwormcentral.

org/documentation2/PROGRAMMER/SoftwareStandards.html, Septem-
ber 2013.

[24] Jeffrey N Johnson and Paul F Dubois. Issue tracking. Computing in
Science & Engineering, 5(6):71–77, 2003.

Bibliography 33

[25] Diane Kelly. Industrial scientific software: A set of interviews on software
development. In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’13, pages 299–
310, Riverton, NJ, USA, 2013. IBM Corp.

[26] Diane Kelly. Scientific software development viewed as knowledge acqui-
sition: Towards understanding the development of risk-averse scientific
software. Journal of Systems and Software, 109:50–61, 2015.

[27] Diane F. Kelly, W. Spencer Smith, and Nicholas Meng. Software engi-
neering for scientists. Computing in Science & Engineering, 13(5):7–11,
October 2011.

[28] Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison-Wesley Professional, Reading, MA, 1999.

[29] Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. A methodology for
generating verified combinatorial circuits. In Proceedings of the 4th ACM
International Conference on Embedded Software, EMSOFT ’04, pages
249–258, New York, NY, USA, 2004. ACM.

[30] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number
27. Center for the Study of Language and Information, 1992.

[31] Adam Lazzarato, Spencer Smith, and Jacques Carette. State of the prac-
tice for remote sensing software. Technical Report CAS-15-03-SS, Mc-
Master University, January 2015. 47 pp.

[32] Friedrich Leisch. Sweave: Dynamic generation of statistical reports using
literate data analysis. In Wolfgang Härdle and Bernd Rönz, editors,
Compstat 2002 — Proceedings in Computational Statistics, pages 575–
580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

[33] Jon Loeliger and Matthew McCullough. Version Control with Git:
Powerful Tools and Techniques for Collaborative Software Development.
O’Reilly Media, Inc., 2012.

[34] Thomas Maibaum and Alan Wassyng. A product-focused approach to
software certification. IEEE Computer, 41(2):91–93, 2008.

[35] NASA. Software requirements DID, SMAP-DID-P200-SW, release 4.3.
Technical report, National Aeronautics and Space Agency, 1989.

[36] Nedialko S. Nedialkov. Implementing a Rigorous ODE Solver through
Literate Programming. Technical Report CAS-10-02-NN, Department of
Computing and Software, McMaster University, 2010.

[37] Suely Oliveira and David E. Stewart. Writing Scientific Software: A
Guide to Good Style. Cambridge University Press, New York, NY, USA,
2006.

34 Bibliography

[38] Linda Parker Gates. Strategic planning with critical success factors and
future scenarios: An integrated strategic planning framework. Tech-
nical Report CMU/SEI-2010-TR-037, Software Engineering Institute,
Carnegie-Mellon University, November 2010.

[39] David L. Parnas. On the criteria to be used in decomposing systems into
modules. Comm. ACM, 15(2):1053–1058, December 1972.

[40] David L. Parnas, P. C. Clement, and D. M. Weiss. The modular structure
of complex systems. In International Conference on Software Engineer-
ing, pages 408–419, 1984.

[41] David L. Parnas and P.C. Clements. A rational design process: How and
why to fake it. IEEE Transactions on Software Engineering, 12(2):251–
257, February 1986.

[42] David Lorge Parnas. Precise documentation: The key to better software.
In The Future of Software Engineering., pages 125–148, 2010.

[43] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2004.

[44] Michael Pilato. Version Control With Subversion. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2004.

[45] Patrick J. Roache. Verification and Validation in Computational Science
and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998.

[46] Padideh Sarafraz. Thermal optimization of flat plate PCM cap-
sules in natural convection solar water heating systems. Mas-
ter’s thesis, McMaster University, Hamilton, ON, Canada, 2014.
http://hdl.handle.net/11375/14128.

[47] Judith Segal. When software engineers met research scientists: A case
study. Empirical Software Engineering, 10(4):517–536, October 2005.

[48] Judith Segal and Chris Morris. Developing scientific software. IEEE
Software, 25(4):18–20, July/August 2008.

[49] Spencer Smith and Nirmitha Koothoor. A document driven method for
certifying scientific computing software used in nuclear safety analysis.
Nuclear Engineering and Technology, Accepted, October 2015. 42 pp.

[50] Spencer Smith, Yue Sun, and Jacques Carette. Comparing psychometrics
software development between CRAN and other communities. Technical
Report CAS-15-01-SS, McMaster University, January 2015. 43 pp.

Bibliography 35

[51] Spencer Smith, Yue Sun, and Jacques Carette. Statistical software for
psychology: Comparing development practices between CRAN and other
communities. Software Quality Journal, Submitted December 2015. 33
pp.

[52] W. Spencer Smith. Systematic development of requirements documenta-
tion for general purpose scientific computing software. In Proceedings of
the 14th IEEE International Requirements Engineering Conference, RE
2006, pages 209–218, Minneapolis / St. Paul, Minnesota, 2006.

[53] W. Spencer Smith, Nirmitha Koothoor, and Nedialko Nedialkov. Docu-
ment driven certification of computational science and engineering soft-
ware. In Proceedings of the First International Workshop on Software
Engineering for High Performance Computing in Computational Science
and Engineering (SE-HPCCE), November 2013. 8 pp.

[54] W. Spencer Smith and Lei Lai. A new requirements template for sci-
entific computing. In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on Situational Require-
ments Engineering Processes – Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes, SREP’05, pages
107–121, Paris, France, 2005. In conjunction with 13th IEEE Interna-
tional Requirements Engineering Conference.

[55] W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements analysis for
engineering computation: A systematic approach for improving software
reliability. Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83–107, February 2007.

[56] W. Spencer Smith, John McCutchan, and Fang Cao. Program families
in scientific computing. In Jonathan Sprinkle, Jeff Gray, Matti Rossi,
and Juha-Pekka Tolvanen, editors, 7th OOPSLA Workshop on Domain
Specific Modelling (DSM’07), pages 39–47, Montréal, Québec, October
2007.

[57] W. Spencer Smith and Wen Yu. A document driven methodology for
improving the quality of a parallel mesh generation toolbox. Advances in
Engineering Software, 40(11):1155–1167, November 2009.

[58] Daniel Szymczak, Spencer Smith, and Jacques Carette. Position paper:
A knowledge-based approach to scientific software development. In Pro-
ceedings of SE4Science’16, United States, May 16 2016. In conjunction
with ICSE 2016. 4 pp.

[59] L. Andries van der Ark. mokken: Mokken Scale Analysis in R, 2013.
R package version 2.7.5.

[60] Hans van Vliet. Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

36 Bibliography

[61] Judith S. VanAlstyne. Professional and Technical Writing Strategies.
Pearson Prentice Hall, Upper Saddle River, New Jersey, sixth edition,
2005.

[62] Gregory V. Wilson. Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in the software
industry. American Scientist, 94(1), 2006.

[63] Gregory V. Wilson, D.A. Aruliah, C. Titus Brown, Neil P. Chue Hong,
Matt Davis, Richard T. Guy, Steven H.D. Haddock, Kathryn D. Huff,
Ian M. Mitchell, Mark D. Plumblet, Ben Waugh, Ethan P. White,
and Paul Wilson. Best practices for scientific computing. CoRR,
abs/1210.0530, 2013.

