
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

03 Requirements

Dr. Spencer Smith

Faculty of Engineering, McMaster University

September 12, 2017

Requirements

Administrative details

Questions: project choices?, software tools?

Problem statement and example

Software Engineering for Scientific Computing literature

Scientific Computing Software Qualities

Motivation: Challenges to Developing Quality Scientific
Software

Requirements documentation for scientific computing

A requirements template

Advantages of new template and examples

The template from a software engineering perspective

Concluding remarks

References
Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 2/70

Administrative Details

Add smiths to your GitHub repos

Linked-In

Assign the instructor an issue to review your problem
statement

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 3/70

Administrative Details: Deadlines

Problem Statement Week 02 Sept 15
SRS Present Week 04 Week of Sept 25
SRS Week 05 Oct 4
V&V Present Week 06 Week of Oct 16
V&V Plan Week 07 Oct 25
MG Present Week 08 Week of Oct 30
MG Week 09 Nov 8
MIS Present Week 10 Week of Nov 13
MIS Week 11 Nov 22
Impl. Present Week 12 Week of Nov 27
Final Documentation Week 13 Dec 6

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 4/70

Introductions

Your name

Degree program

Academic background

Experience with:
I Scientific computing
I Continuous math
I Discrete math
I Software engineering
I Software development technology

I Git
I GitHub or GitLab
I LaTeX
I Make etc.

What do you hope to get out of this course?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 5/70

Questions?

Questions about project choices?

Questions about software tools?
I git?
I LaTex?

Partial tex files in the blank project template

Problem statement

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 6/70

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/BlankProjectTemplate/Doc/ProblemStatement/ProblemStatement.tex

Problem Statement

Written in LaTeX

Due electronically (on GitLab) by deadline

Comments might be typed directly into your source

For later assignments with LaTeX source, include the
LaTeX commands for comments

What problem are you trying to solve?

Not how you are going to solve the problem

Why is this an important problem?

What is the context of the problem you are solving?
I Who are the stakeholders?
I What is the environment for the software?

A page description should be sufficient

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 7/70

Sample Project Statements

CParser

FloppyFish

Screenholders

Template in repo

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 8/70

https://gitlab.cas.mcmaster.ca/ThisTooShallParse/3XA3_CParser
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup
https://gitlab.cas.mcmaster.ca/screenholders/screenholders

SE For SC Literature

CAS 741 process is document driven, adapted from the
waterfall model [6, 26]
Many say a document driven process is not used by, nor
suitable for, scientific software.

I Scientific developers naturally use an agile
philosophy [1, 2, 5, 17],

I or an amethododical process [9]
I or a knowledge acquisition driven process [10].

Scientists do not view rigid, process-heavy approaches,
favorably [2]

Reports for each stage of development are
counterproductive [15, p. 373]

Up-front requirements are impossible [2, 21]

What are some arguments in favour of a rational
document driven process?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 9/70

Counter Arguments

Just because document driven is not used, does not mean
it will not work
Documentation provides many benefits [14]:

I easier reuse of old designs
I better communication about requirements
I more useful design reviews
I easier integration of separately written modules
I more effective code inspection
I more effective testing
I more efficient corrections and improvements.

Actually faking a rational design process
Too complex for up-front requirements sounds like an
excuse

I Laws of physics/science slow to change
I Often simple design patterns
I Think program family, not individual member

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 10/70

Definition of Software Qualities

Measures of the excellence or worth of a software product
(code or document) or process with respect to some
aspect

What are some important aspects (qualties) for scientific
softwarwe?

User Satisfaction = The Important Qualities are High +
Within Budget

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 11/70

Important Qualities for Scientific Computing

Software

External qualities
I Correctness (Thou shalt not lie)
I Reliability
I Robustness
I Performance

I Time efficiency
I Space efficiency

Internal qualities
I Verifiability
I Usability
I Maintainability
I Reusability
I Portability

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 12/70

Correctness Versus Reliability Versus Robustness

What is the difference between these 3 qualities?

Can you assess correctness without a requirements
specification?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 13/70

Correctness

A software product is correct if it satisfies its
requirements specification

Correctness is extremely difficult to achieve because
I The requirements specification may be imprecise,

ambiguous, inconsistent, based on incorrect knowledge,
or nonexistent

I Requirements often compete with each other
I It is virtually impossible to produce “bug-free” software
I It is very difficult to verify or measure correctness

If the requirements specification is formal, correctness can
in theory and possibly in practise be

I Mathematically defined
I Proven by mathematical proof
I Disproven by counterexample

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 14/70

Reliability

A software product is reliable if it usually does what is
intended to do

Correctness is an absolute quality, while reliability is a
relative quality

A software product can be both reliable and incorrect

Reliability can be statistically measured

Software products are usually much less reliable than
other engineering products

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 15/70

Robustness

A software product is robust if it behaves reasonably even
in unanticipated or exceptional situations

A correct software product need not be robust
I Correctness is accomplished by satisfying requirements
I Robustness is accomplished by satisfying unstated

requirements

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 16/70

Question on Correctness. Reliability and

Robustness

Reliable programs are a superset of correct programs AND
robust programs are a superset of reliable programs. Is this
statement True or False?

A. True

B. False

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 17/70

Performance

What are some ways you could measure software performance?

What are some ways you could specify performance
requirements to make them unambiguous and verifiable?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 18/70

Performance

The performance of a computer product is the efficiency
with which the product uses its resources (memory, time,
communication)

Performance can be evaluated in three ways
I Empirical measurement
I Analysis of an analytic model
I Analysis of a simulation model

Poor performance often adversely affects the usability and
scalability of the product

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 19/70

Usability

What are some examples of excellent usability?

When you go to a friend’s house, you can likely operate their
microwave without reading the manual. What did human
factors engineers do to make this possible?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 20/70

Usability

The usability of a software product is the ease with which
a typical human user can use the product

Usability depends strongly on the capabilities and
preferences of the user

The user interface of a software product is usually the
principle factor affecting the product’s usability

Human computer interaction (HCI) is a major
interdisciplinary subject concerned with understanding and
improving interaction between humans and computers

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 21/70

Verifiability

The verifiability of a software product is the ease with
which the product’s properties (such as correctness and
performance) can be verified

Verifiability can be both an internal and an external
quality

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 22/70

Maintainability

The maintainability of a software product is the ease with
which the product can be modified after its initial release
Maintenance costs can exceed 60% of the total cost of
the software product
There are three main categories of software maintenance

1. Corrective: Modifications to fix residual and introduced
errors

2. Adaptive: Modifications to handle changes in the
environment in which the product is used

3. Perfective: Modifications to improve the qualities of the
software

Software maintenance can be divided into two separate
qualities

1. Repairability: The ability to correct defects
2. Evolvability: The ability to improve the software and to

keep it current
Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 23/70

Maintainability

What do software developers do to promote maintainability?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 24/70

Reusability

What are the advantages of reusing code?

Why doesn’t it happen more often?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 25/70

Reusability

A software product or component is reusable if it can be
used to create a new product

Reuse comes in two forms

1. Standardized, interchangeable parts
2. Generic, instantiable components

Reusability is a bigger challenge in software engineering
than in other areas of engineering

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 26/70

Portability

A software product is portable if it can run in different
environments

The environment for a software product includes the
hardware platform, the operating system, the supporting
software and the user base

Since environments are constantly changing, portability is
often crucial to the success of a software product

Some software such as operating systems and compilers,
is inherently machine specific

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 27/70

Understandability

The understandability of a software product is the ease
with which the requirements, design, implementation,
documentation, etc. can be understood

Understandability is an internal quality that has an impact
on other qualities such as verifiability, maintainability, and
reusability

There is often a tension between understandability and
the performance of a software product

Some useful software products completely lack
understandability (e.g. those for which the source code is
lost)

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 28/70

Relationship between Qualities

Draw a diagram showing the relationships between the various
software qualities

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 29/70

Measurement of Quality

A software quality is only important if it can be measured
- without measurement there is no basis for claiming
improvement

A software quality must be precisely defined before it can
be measured

Most software qualities do not have universally accepted

Can you directly measure maintainability?

How might you measure maintainability?

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 30/70

Problems with Developing Quality Scientific

Computing Software

Need to know requirements to judge reliability

In many cases the only documentation is the code

Reuse is not as common as it could be
I Meshing software survey
I Public domain finite element programs
I etc.

Many people develop “from scratch”

Cannot easily reproduce the work of others

Neglect of simple software development technology [27]

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 31/70

http://www.andrew.cmu.edu/user/sowen/softsurv.html
http://www.engr.usask.ca/~macphed/finite/fe_resources/node137.html

Adapt Software Engineering Methods

Software engineering improves and quantifies quality

Successfully applied in other domains
I Business and information systems
I Embedded real time systems

Systematic engineering process

Design through documentation

Use of mathematics

Reuse of components

Warranty rather than a disclaimer

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 32/70

Developing Scientific Computing Software

Facilitators
I One user viewpoint for specifying a physical model
I Assumptions can be used to distinguish models
I High potential for reuse
I Libraries
I Already mathematical

Challenges
I Verification and Validation
I Acceptance of software engineering methodologies
I No existing templates or examples

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 33/70

Outline of Discussion of Requirements

Background on requirements elicitation, analysis and
documentation

Why requirements analysis for engineering computation?

System Requirements Specification and template for
beam analysis software

I Provides guidelines
I Eases transition from general to specific
I Catalyses early consideration of design
I Reduces ambiguity
I Identifies range of model applicability
I Clear documentation of assumptions

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 34/70

A Rational Design Process

Code

Software
Design

ments
Require

Validation
Derivation

Legend:

Real
World Acceptance Testing

 !

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 35/70

Sometimes Include Commonality Analysis

Real
World

Requirement
Analysis

Module
Interface

Specification

Code

Derivation
Validation
Acceptance TestingCommonality

Analysis

Module
Architecture

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 36/70

Software Requirements Activities

A software requirement is a description of how the system
should behave, or of a system property or attribute

Requirements should be unambiguous, complete,
consistent, modifiable, verifiable and traceable

Requirements should express “What” not “How”

Formal versus informal specification

Functional versus nonfunctional requirements

Software requirements specification (SRS)

Requirements template

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 37/70

Why Requirements Analysis?

Code

Alg.
Num.

Model

NFRs
&

compare

results

results of model

numerical

with known

compare
numerical
results with
experimental
data

Real
World Validation

Derivation
Legend:physical model error,

previous computation error,
measured data error &

error due to sensitivity of the problem

numerical error &

the algorithm

programming error

error due to stability of

computer round!off error &

Experimental Validation

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 38/70

Beam Analysis Software

Fax Fbx

Fay Fby

L

F1

F2
x2

x1

θ3 θ4a b

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 39/70

Proposed Template
1. Reference Material: a) Table of Symbols ...

2. Introduction: a) Purpose of the Document; b) Scope of the Software
Product; c) Organization of the Document.

3. General System Description: a) System Context; b) User
Characteristics; c) System Constraints.

4. Specific System Description:

4.1 Problem Description: i) Background Overview ...
4.2 Solution specification: i) Assumptions; ii) Theoretical Models; ...
4.3 Non-functional Requirements: i) Accuracy of Input Data; ii)

Sensitivity ...

5. Traceability Matrix

6. List of Possible Changes in the Requirements

7. Values of Auxiliary Constants

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 40/70

Provides Guidance

Details will not be overlooked, facilitates multidisciplinary
collaboration

Encourages a systematic process

Acts as a checklist

Separation of concerns
I Discuss purpose separately from organization
I Functional requirements separate from non-functional

Labels for cross-referencing
I Sections, physical system description, goal statements,

assumptions, etc.
I PS1.a “the shape of the beam is long and thin”

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 41/70

Eases Transition from General to Specific

“Big picture” first followed by details

Facilitates reuse

“Introduction” to “General System Description” to
“Specific System Description”

Refinement of abstract goals to theoretical model to
instanced model

I G1. Solve for the unknown external forces applied to the
beam

I T1
∑

Fxi = 0,
∑

Fyi = 0,
∑

Mi = 0
I M1 Fax − F1 · cos θ3 − F2 · cos θ4 − Fbx = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 42/70

Ensures Special Cases are Considered
H1

SGET = Ssym − SunkF SGET 6=
(Ssym −
SunkF)

SunkF /∈ P3 - (ErrorMsg ′ = InvalidUnknown)
∧ChangeOnly(ErrorMsg)

FALSE

SunkF =
{@Fax ,@Fbx ,@Fay}

- ErrorMsg ′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax ,@Fay ,@F1}

x1 6= 0
∧ θ3 6= 0
∧ θ3 6=
180

F ′ax =
− cos θ3F2x2 sin θ4+cos θ3FbyL+F2 cos θ4x1 sin θ3+Fbxx1 sin θ3

x1 sin θ3
∧
F ′ay = −F2x2 sin θ4−FbyL−F2 sin θ4x1+Fbyx1

x1

∧ F ′1 =
−F2x2 sin θ4+FbyL

x1 sin θ3
∧ ChangeOnly(SunkF)

otherwise (ErrorMsg ′ = Indeterminant)
∧ChangeOnly(ErrorMsg)

H2 G

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 43/70

Catalyses Early Consideration of Design

Identification of significant issues early will improve the
design

Section for considering sensitivity
I Conditioning?
I Buckling of beam

Non-functional requirements
I Tradeoffs in design
I Speed efficiency versus accuracy

Tolerance allowed for solution: |
∑

Fxi |/
√∑

Fxi
2 ≤ ε

Solution validation strategies

List of possible changes in requirements

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 44/70

Reduces Ambiguity

Unambiguous requirements allow communication between
experts, requirements review, designers do not have to
make arbitrary decisions

Tabular expressions allow automatic verification of
completeness

Table of symbols

Abbreviations and acronyms

Scope of software product and system context

User characteristics

Terminology definition and data definition

Ends arguments about the relative merits of different
designs

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 45/70

Identifies Range of Model Applicability

Clear documentation as to when model applies

Can make the design specific to the problem

Input data constraints are identified
I Physically meaningful: 0 ≤ x1 ≤ L
I Maintain physical description: PS1.a, 0 < h ≤ 0.1L
I Reasonable requirements: 0 ≤ θ3 ≤ 180

The constraints for each variable are documented by
tables, which are later composed together

(minf ≤ |Fax | ≤ maxf) ∧ (|Fax | 6= 0)⇒
∀(FF |@FF ∈ SF · FF 6= 0 ∧ max{|Fax |,|FF |}

min{|Fax |,|FF |} ≤ 10rf)

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 46/70

Summary of Variables

Var Type Physical
Constraints

System
Constraints

Prop

x Real x ≥ 0 ∧ x ≤ L mind ≤ x ≤ maxd NIV
x1 Real x1 ≥ 0 ∧ x1 ≤ L mind ≤ x1 ≤ maxd IN
x2 Real x2 ≥ 0 ∧ x2 ≤ L mind ≤ x2 ≤ maxd IN
e Real e > 0 ∧ e ≤ h mine ≤ e ≤ maxe IN
h Real h > 0 ∧ h ≤ 0.1L minh ≤ h ≤ maxh IN
L Real L > 0 mind ≤ L ≤ maxd IN
E Real E > 0 minE ≤ E ≤ maxE IN
θ3 Real −∞ < θ3 < +∞ 0 ≤ θ3 ≤ 180 IN
θ4 Real −∞ < θ4 < +∞ 0 ≤ θ4 ≤ 180 IN
V Real −∞ < V < +∞ - OUT
M Real −∞ < M < +∞ - OUT
y Real −∞ < y < +∞ - OUT
...

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 47/70

Clear Documentation of Assumptions
Phy.
Sys.
/Goal

Data
/Model

Assumption Model

A1 A2 ... A4 ... A8 A9 A10 ... A14 M1 ...
G1 T1

√
... ...

√ √
...

√
...

G2 T2
√

... ...
√ √

... ...
G3 T3

√
... ...

√ √
... ...

M1
√

...
√

...
PS1.a L

√
...

...

A10. The deflection of the beam is caused by bending
moment only, the shear does not contribute.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 48/70

More on the Template

Why a new template?

The new template
I Overview of changes from existing templates
I Goal → Theoretical Model → Instanced Model hierarchy
I Traceability matrix
I System behaviour, including input constraints

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 49/70

Why a New Template?

1. One user viewpoint for the physical model

2. Assumptions distinguish models

3. High potential for reuse of functional requirements

4. Characteristic hierarchical nature facilitates change

5. Continuous mathematics presents a challenge

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 50/70

Overview of the New Template

Reference Material

Introduction: a) Purpose of the Document b) Scope of
the Software Product c) Organization of the Document

General System Description: a) System Context b) User
Characteristics c) System Constraints

Specific System Description: a) Problem Description b)
Solution Characteristics Specification c) Non-functional
Requirements

Other System Issues

Traceability Matrix

List of Possible Changes in the Requirements

Values of Auxiliary Constants

References

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 51/70

Overview of the New Template

Reference Material

Introduction: a) Purpose of the Document b) Scope of
the Software Product c) Organization of the Document

General System Description: a) System Context b) User
Characteristics c) System Constraints

Specific System Description: a) Problem Description b)
Solution Characteristics Specification c) Non-functional
Requirements

Other System Issues

Traceability Matrix

List of Possible Changes in the Requirements

Values of Auxiliary Constants

References

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 51/70

Excerpts from Specific System Description

Problem Description
I Physical system description (PS)
I Goals (G)

Solution Characteristics Specification
I Assumptions (A)
I Theoretical models (T)
I Data definitions
I Instanced models (M)
I Data constraints
I System behaviour

Non-functional Requirements
I Accuracy of input data
I Sensitivity of the model
I Tolerance of the solution
I Solution validation strategies

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 52/70

Refinement from Abstract to Concrete

G1

T11 T12 T13

M111 M112 M113 M121 M122 M123 M131 M133M132

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 53/70

Refinement from Abstract to Concrete

G1

T11 T12 T13

M111 M112 M113 M121 M122 M123 M131 M133M132

G1: Solve for unknown forces

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 53/70

Refinement from Abstract to Concrete

G1

T11 T12 T13

M111 M112 M113 M121 M122 M123 M131 M133M132

(T11)


∑

Fxi = 0∑
Fyi = 0∑
Mi = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 53/70

Refinement from Abstract to Concrete

G1

T11 T12 T13

M111 M112 M113 M121 M122 M123 M131 M133M132

(M1)


Fax − F1 · cos θ3 − F2 · cos θ4 − Fbx = 0
Fay − F1 · sin θ3 − F2 · sin θ4 + Fby = 0
−F1 · x1 sin θ3 − F2 · x2 sin θ4 + Fby · L = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 53/70

Refinement from Abstract to Concrete

G1

T11 T12 T13

M111 M112 M113 M121 M122 M123 M131 M133M132

The virtual work done by all the external forces and couples
acting on the system is zero for each independent virtual
displacement of the system, or mathematically δU = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 53/70

Other goals and models

G2: Solve for the functions of shear force and bending
moment along the beam

G3: Solve for the function of deflection along the beam

T31: d2y
dx2

= M
EI

, y(0) = y(L) = 0

T32: y determined by moment area method

T33: y determined using Castigliano’s theorem

M311: y =
12

∫ L
0 (

∫ L
0 Mdx)dx

Eeh3
, y(0) = y(L) = 0

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 54/70

Kreyman and Parnas Five Variable Model

An alternative approach

Unfortunately the numerical algorithm is not hidden in
the requirements specification

The analogy with real-time systems leads to some
confusion

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 55/70

Examples

Solar Water Heating System

GlassBR

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 56/70

https://github.com/smiths/swhs
https://github.com/JacquesCarette/literate-scientific-software/tree/master/CaseStudies/glass/Documentation/SRS

Concluding Remarks

Quality is a concern for scientific computing software

Software engineering methodologies can help

Motivated, justified and illustrated a method of writing
requirements specification for engineering computation to
improve reliability

Also improve quality with respect to usability, verifiability,
maintainability, reusability and portability

Tabular expressions to reduce ambiguity, encourage
systematic approach

Conclusions can be generalized because other
computation problems follow the same pattern of Input
then Calculate then Output

Benefits of approach should increase as the number of
details and the number of people involved increase

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 57/70

Concluding Remarks (Continued)

A new template for scientific computing has been
developed

Characteristics of scientific software guided the design

Designed for reuse

Functional requirements split into “Problem Description”
and “Solution Characteristics Specification”

Traceability matrix

Addresses nonfunctional requirements (but room for
improvement)

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 58/70

References I

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant,
Mike C. Miller, Christine A. Ramsdale, and Paul C.
Stephenson.
Scientific software development at a research facility.
IEEE Software, 25(4):44–51, July/August 2008.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 59/70

References II

Jules Desharnais, Ridha Khedri, and Ali Mili.
Representation, validation and integration of scenarios
using tabular expressions.
Formal Methods in System Design, page 40, 2004.
To appear.

Paul F. Dubois.
Designing scientific components.
Computing in Science and Engineering, 4(5):84–90,
September 2002.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 60/70

References III

Steve M. Easterbrook and Timothy C. Johns.
Engineering the software for understanding climate
change.
Comuting in Science & Engineering, 11(6):65–74,
November/December 2009.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

IEEE.
Recommended practice for software requirements
specifications.
IEEE Std 830-1998, pages 1–40, Oct 1998.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 61/70

References IV

R. Janicki and R. Khedri.
On a formal semantics of tabular expression.
Science of Computer Programming, 39(2-3):189–213,
2001.

Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
’13, pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 62/70

References V

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

K. Kreyman and D. L. Parnas.
On documenting the requirements for computer programs
based on models of physical phenomena.
SQRL Report 1, Software Quality Research Laboratory,
McMaster University, January 2002.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 63/70

References VI

Lei Lai.
Requirements documentation for engineering mechanics
software: Guidelines, template and a case study.
Master’s thesis, McMaster University, Hamilton, Ontario,
Canada, 2004.

David L. Parnas and P.C. Clements.
A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering,
12(2):251–257, February 1986.

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148,
2010.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 64/70

References VII

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Suzanne Robertson and James Robertson.
Mastering the Requirements Process, chapter Volere
Requirements Specification Template, pages 353–391.
ACM Press/Addison-Wesley Publishing Co, New York,
NY, USA, 1999.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 65/70

References VIII

Judith Segal.
When software engineers met research scientists: A case
study.
Empirical Software Engineering, 10(4):517–536, October
2005.

Judith Segal.
End-user software engineering and professional end-user
developers.
In Dagstuhl Seminar Proceedings 07081, End-User
Software Engineering, 2007.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 66/70

References IX

Judith Segal.
Some problems of professional end user developers.
In VLHCC ’07: Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing, pages
111–118, Washington, DC, USA, 2007. IEEE Computer
Society.

Judith Segal.
Models of scientific software development.
In Proceedings of the First International Workshop on
Software Engineering for Computational Science and
Engineering (SECSE 2008), pages 1–6, Leipzig, Germany,
2008. In conjunction with the 30th International
Conference on Software Engineering (ICSE).

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 67/70

References X

Judith Segal and Chris Morris.
Developing scientific software.
IEEE Software, 25(4):18–20, July/August 2008.

W. Spencer Smith and Lei Lai.
A new requirements template for scientific computing.
In J. Ralyté, P. Ȧgerfalk, and N. Kraiem, editors,
Proceedings of the First International Workshop on
Situational Requirements Engineering Processes –
Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes,
SREP’05, pages 107–121, Paris, France, 2005. In
conjunction with 13th IEEE International Requirements
Engineering Conference.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 68/70

References XI

W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation.
In R. Muhanna and R. Mullen, editors, Proceedings of the
NSF Workshop on Reliable Engineering Computing, pages
29–51, Savannah, Georgia, 2004.

R. H. Thayer and M. Dorfman, editors.
IEEE Recommended Practice for Software Requirements
Specifications.
IEEE Computer Society, Washington, DC, USA, 2nd
edition, 2000.

The Institute of Electrical and Electronics Engineers, Inc.
Software Requirements Engineering.
IEEE Computer Society Press, 2nd edition, 2000.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 69/70

References XII

Hans van Vliet.
Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in
the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741, CES 741 Fall 2017: 03 Requirements 70/70

