TrawlExpert: A Tool for Watershed Biological
Research

Trawlstars Inc. (Group 11)
Lab section: L0O1
Version: 1.0

SFWRENG 2XB3

Christopher W. Schankula, 400026650, schankuc
Haley Glavina, 001412343, glavinhc
Winnie Liang, 400074498, liangw15

Ray Liu, 400055250, liuc40
Lawrence Chung, 400014482, chungl1

April 11, 2018

Revision History

Revision Date Author(s) Description

1.0 05.04.18 HG created

1.1 08.04.18 HG algorithmic analysis added

1.2 10.04.18 RL added Modular structure and uses
1.3 11.04.18 CS added 2.3.x subsections

By virtue of submitting this document we electronically sign and date that the work being submitted by all the
individuals in the group is their exclusive work as a group and we consent to make available the application
being developed through SE-2XB3 project, the reports, presentations, and assignments (not including my
name and student number) for future teaching purposes.

Team Contributions

The individual contributions of each team member are described below. Subteam B indicates an algo-
rithmic focus in a member’s efforts while Subteam A indicates a focus on data parsing and user interface
development. Although the contributions have been separated such that each task is recorded under one
contributor, members often overlapped duties and designed modules together.

Name Role Contributions
Lawrence Chung Head of Room Booking Implemented the depth first search, connected
Subteam B Member components algorithms, client code for connected

components, Graph building, Node class and Bag
class. Oversaw editing of Final Design Document.

Haley Glavina Meeting Minutes Administrator ~ Implemented the red-black tree, quickselect, and
Subteam B Member mergesort algorithms. Wrote Histogram function
to sum each year’s total individual count. De-
signed the final presentation slideshow, recorded
and submitted all meeting minutes, and assembled
the final design specification in LaTeX. Generated
UML state machine diagrams.

Winnie Liang Project Log Administrator Implemented the module responsible for parsing
Subteam A Member our data to create related objects (FileProcessor),
implemented TaxonNode ADT. Led user inter-
face development, set up tomcat files and direc-
tory structure, handled communication between
the Google Maps APIs and JavaScript code. Over-
looked and maintained project log entries.

Ray Liu TA & Professor Liaison Implemented Record ADT, Date ADT, parsing
Subteam A Member APT calls for WORMS API, RangeHelper for Ba-
sic Search, histogram output for command line,
histogram output for web interface. Oversaw edit-
ing of Requirements Specification Document.

Christopher Team Leader Determined the goals for each meeting, imple-

Schankula Subteam A Member mented the k-d tree algorithm, wrote backend of
server, wrote command-line tool, implemented the
BasicSearch and BasicSearchResult classes, imple-
mented RecordCluster ADT, implemented Trawl-
Expert model class. Generated UML class dia-
gram.

Abstract

TrawlEzxpert is a powerful tool to enable researchers to analyze and filter large datasets from fish trawl
surveys in order to perform environmental research on fish and invertebrate populations. The tool gives
researchers the ability to intelligently filter and query datasets based on biological classification such
as family, genus or species, or based on location or timeframe. Advanced outputs display data as a
histogram or geographical map, each depending on population abundance as a function of time and
spatial distribution. Additionally, TrawlEzpert provides a tool for finding local subpopulations within
a larger query. A dataset of thousands of Great Lakes trawl surveys from 1958-2016 will be used as a
demonstration of TrawlExpert’s capability to help researchers narrow down large datasets and glean data
which pertains to their research. TrawlEzpert will be designed to be used easily and effectively as the
first step in a groundbreaking climate and ecological research pipeline.

Contents
1 Project Scope 5
1.1 Objective o o o e e e e e e e 5
1.2 Motivation L e e e e e 5
1.3 Dataset L e e e 5
1.4 Final Product e 5
1.5 Glossary of Terms L e e e 6
2 Implementation 6
2.1 Modular Structure and Uses L e 6
2.2 Class Organization o . o ot e e e e 7
2.2.1 model Package e e 7
2.2.2 dataPackage 7
2.2.3 search Package e 7
2.2.4 sort Package 8
2.2.5 graph Package 8
2.2.6 utils Package e e 8
2.27 web Package L 8
2.2.8 test Package. L 8
2.3 UML State Diagrams L e e e 8
2.3.1 Mainjavao e e e e e e 10
2.3.2 BioTreejava. L e e e 10
3 Algorithmic Opportunities 12
3.1 Quick Select oL e 12
3.2 kdTree o e 13
3.3 Graphing e 13
4 Software Design Principles 13
4.1 Robustness L e e 13
4.2 Scalability e 14
4.3 Generality L 14
4.3.1 General Compare L L e e 14
4.3.2 Field o o e 14
4.3.3 General Range e 14
5 Internal Review 15
5.1 Meeting Functional Requirements L o oL 15
5.2 Meeting Non-Functional Requirements oL 15
5.3 Changes During Development L e 15
5.4 Future Changes o L e 15
5.4.1 Improvements on Development Process 16

5.4.2 Future Functionality e 16

1 Project Scope

1.1 Objective

Provide a statistical and visual tool for the analysis of water ecosystems, based on scientific water trawl
data. Gives researchers with tools to analyze large datasets to find patterns in fish populations, including
the plotting of historical population data on a map, the analysis of population trends over time and the
determination of subpopulations of a certain biological classification.

1.2 Motivation

The diminishing of fish populations in the Great Lakes became a problem in the latter half of the 20th
century, with the total prey fish biomass declining in Lakes Superior, Michigan, Huron and Ontario between

1978 and 2015 (,). Annual bottom trawl surveys involve using specialized equipment to sweep
an area and are used to determine the relative temporal variation in stock size, mortality and birth rates
of different fish species (,). These surveys are performed annually and often have hundreds of

thousands of records, making manual analysis infeasible. The ongoing protection and development of the
Great Lakes water basins is considered an important topic for scientists in both Canada and the United
States, as evidenced by grants such as the Michigan Sea Grant (

TrawlExpert will give researchers tools to filter through these large amounts of data by allowmg them
to search through data based on class, order, genus, family or species. This will help support scientific
researchers and fishing companies as they study fish populations. These studies help inform initiatives to
preserve fish populations and conduct their business in an environmentally friendly way going forward. As
more data is collected on an annual basis, TrawlExpert can easily be injected with the new data and will
adjust and scale accordingly, combining the new data with the old data for continued analysis.

TrawlExpert will also analyze the trawl data to find connected subpopulations within the data, giving
researchers tools to analyze the portions of the water body that contain different populations and even track
these specific subpopulations over time.

The focus of the project will be to develop these unique data searching and querying tools as a first
step in a complete trawl survey analysis. For a complete analysis, tools like stratified statistical analysis are
required by the researcher (,). For purposes of maintaining a manageable scope for this project,
the implementation of advanced trawl survey scientific and statistical analysis tools will be relegated to
future developments.

1.3 Dataset

The test dataset that will be used for purposes of this project is the USGS Great Lakes Science Center
Research Vessel Catch Information System Trawl published by the United States Geological Survey (

). Compiled on yearly operations taking place from early spring to late fall
from 1958 until 2016, the dataset contains over 283,000 trawl survey records in the five Great Lakes, including
the latitude and longitude co-ordinates and biological classification such as family, genus and species.

1.4 Final Product

The final product included a command-line interface as well as a web interface using Apache tomcat. For
information on launching the console, please refer to the DEPLOYMENT.txt document in the submission
archive.

Apache tomcat was used to create a webserver which uses the internal functionality and model of Trawl-
Ezpert written in Java. The UT allows users to filter by using information about different taxa (their biological
relationships to each other, such as family / genus / species, etc) and display several different data outputs
such as histograms, heatmaps, maps and population clusters, in addition to viewing raw data in tabular

TrawlExpert About | GitHub

Phylum: [any 4] Class: [Any 4] Order: [any +| Family: [any 4 Genus: [Any 4] Species: [cottus cognatus
[Year Range: 1960 - 2016

Cluster Size: so00 kmA2 @ Cluster Map) Heatmap ~ Histogram = List Load

I
— Map Satellite

N
m Thunder Bay
o5 _~Superior /'

National Forest \ Cluster #9
Latitude: 45.54535026550293

Bemidji
° , ' Longitude: -81.94536819458008

Record Count: 10
Duluth Individual Count: 63 Réserve Q
= faunique La
T Vérendrye

MINNESOTA

' Algonquin
 / T "HET . otgea . Monyea
)
Minneoapolis
WlSCONSINGreegBay ' '

Rochester Oshkosh '
° S
Falls MICHIGAN

Madison Mllwgukee 'andgap‘ds

Shert:

) VERMONT
Kingstono =
Toronto v

o

Mississauga Rochester * 'VI
o

Lonodon
Buffalo NEW YORK Albany

'Gdogle

Rockford Detroit Map data ©2018 Google . Terms of Use

Figure 1: The final TrawlExpert web interface allows users to intelligently search for specific taxa and display
several helpful statistical and data visualization tools such as maps and histograms. A live version of the
web interface can be found at http://trawl.schankula.ca/Trawl

form. The clustering function is shown in figure 1. The TrawlExpert is hosted on Google Cloud Platform
and can be accessed at http://trawl.schankula.ca/Trawl.

1.5 Glossary of Terms

Classification tree: Tree describing the relationships between taxa (for example, a species is the child of
its genus).

Taxon (plural Taxa): Refers to a classification of a type of biological entity (species, family, etc)

Taxon ID: The ID given to a taxon in the WORMS database.

Trawl survey: Using Trawling to collect scientific data (,).

Trawling: A method of fishing by dragging a net along the bottom of a body of water (,).
WORMS: World Register of Marine Species, an openly accessible online database.

2 Implementation

The implementation involved over 30 classes implemented in Java. Additional JavaScript and HTML files
were used to create a sophisticated web-based user interface. For a complete description of each class and
module used, JavaDoc documentation can be viewed by opening the doc/index.html file in the submission
archive or by visiting http://trawl.schankula.ca/Trawl/doc.

2.1 Modular Structure and Uses

The requirements in the Requirement Specification Document are achieved by designing modules with mod-
ularity and separation of concerns as a guiding principle. The relationship amongst modules is shown in
the UML diagram in figure 2. Table 1 maps requirements to each class supporting that requirement. For
a complete description of uses relation and public and private methods and modules, please refer to the
JavaDoc documentation which can be viewed by opening the doc/index.html file in the submission archive
or by visiting http://trawl.schankula.ca/Trawl/doc.

http://trawl.schankula.ca/Trawl
http://trawl.schankula.ca/Trawl
http://trawl.schankula.ca/Trawl/doc
http://trawl.schankula.ca/Trawl/doc

Table 1: Modules contributing to requirements
FR: functional requirement, NF': non-functional requirement

Requirements Contributing modules

FR1. Reading input file and correcting corrupted data WormsAPI java, FileProcessor.java

FR2. Generate output file none — replaced by command-line tool and web GUI
FR3. List of species by family, order, genus BioTree.java, TaxonNode.java

FRA4. Historical distribution of records Histogram.java, RedBlackTree.Java, BasicSearch.java
FRS5. Basic search by family, genus, species, time, location, etc. | BasicSearch.java, KDT.java

FR6. Geographical subgroupings Cluster.java, RecordCluster.java, Graph.java, CC.java
FR7. Plotting/mapping tools BasicSearch.java, CC.java, Google Maps API, tomcat)
NR1. Accuracy KDT .java, TestBio.java, TestBasicSearch.java

NR2. Robustness FileProcessor.java, BioTree.java, Main.java, tomcat server
NR3. Fast speed KDT java, QuickSelect.java, and RedBlackTree.java
NR4. Low memory usage BioTree.java, DataStore.java

NR5. Scalability KDT java, QuickSelect.java, and RedBlackTree.java
NR6. User-friendly Main.java, tomcat, Google Maps API, Graphical histogram

2.2 Class Organization

An overview of the modules included in the TrawlExpert is shown in figure 2. The TrawlEzpert implemen-
tation efforts were divided into two subteams: Subteam A and Subteam B. Tasks were assigned so as to
maximize the parallelization of the development process. As a biproduct, modules were designed to uphold
the principles of information hiding, modularity and separation of concerns.

Using Java packages, related modules were grouped together to form packages of closely-related logic,
as well as to ensure that modules were organized and easy to find. This section describes a package-level
description of each one and justification for this modular decomposition.

By breaking up modules into generic pieces in this way, the team was able to parallelize development
efforts and agreement on APIs allowed for smooth integration between the subteams’ efforts. Effective
communication ensured that while subteams were working on independent projects concurrently, all team
members were aware of work being done throughout the team.

2.2.1 model Package

This package includes the class representing the model of the TrawlEzpert platform. TrawlExpert.java
provides wrapper hooks to function deeper inside the codebase, which allows different views to be used
separately from the internal functionality. Two such views are the command-line interface in main/Main. java
and the web interface through the tomcat server. This design allows any such view to be built upon the
foundation of the model, without needing to edit any underlying code.

2.2.2 data Package

The top-level data package contains three main types of modules: abstract data types (e.g. Record,
TaxonNode, Date), abstract objects (e.g. BioTree, DataStore) and supporting modules such as WormsAPI.

Abstract data types such as Record are classes for representing and accessing certain types of information
in our dataset. For example, Record is the representation of a single line of the dataset (including taxon ID,
latitude, longitude and date). Each ADT was designed to uphold the principle of encapsulation and provides
methods for accessing data relevant to the ADT.

Abstract singleton objects were used to provide a central storage location for data. For example, BioTree
contains information about the biological classification within the dataset. Since they are singleton objects,
data can always be accessed from anywhere else in the program which needs it (see figure 2) without needing
to pass references to objects. Similarly, DataStore provides a central location for the storage of Records in
the dataset in a kd-tree structure.

2.2.3 search Package

The search package provides several generic search structures such as Red-Black Tree and kd-tree. It also
contains a sub-package search.trawl which contains client code that utilizes these search structures to provide

TrawlEzxpert-specific searching.

Firstly, search and search.kdt provide generic kd-tree and Red-Black Tree implementations. These each
utilize the GeneralCompare interface for maximum generality.

Secondly, search.trawl provides the BasicSearch module. This module is the access point for range-
searching the dataset of Record objects in the DataStore. The BasicSearchResult class is the type of
object returned from a range search, providing metadata about the search (such as the amount of time
taken to find the results) as well as wrapper functions for generating histograms, clusters and sums of the
data. In the case of histogram and sum, these results are cached after the first time it is called to improve
performance if those fields are accessed again.

2.2.4 sort Package

The sort package includes modules such as MergeSort and QuickSelect as well as the custom interfaces
GeneralCompare, GeneralRange and Field.

The MergeSort package was designed using generic typing and using the GeneralCompare interface means
that it is even more flexible than using the regular Java Comparable interface. This class ended up being
largely replaced by the QuickSelect class which served our purposes better. However, MergeSort is still
used for sorting scientific names for the web interface, a small but integral part of the UI.

2.2.5 graph Package

The graph package provides functionality and abstract data types for constructing undirected graphs with
a given number of nodes. It also contains the CC class for outputting connected components of the graph in
question.

Additionally, the graph package includes the client code relevant to TrawlFExpert, including Cluster. java
and RecordCluster. java. These provide the functionality for clustering a given section of the dataset into
related subpopulations based on a user-defined area of similarity amongst the records.

2.2.6 utils Package

The utils package contains miscellaneous helpful utilities for the TrawlFxzpert. At present, the only contained
class is Stopwatch.java which provides the method for timing how long a BasicSearch query takes to
complete.

2.2.7 web Package

The web package contains the controller (Director.java) and the startup scripts (StartUpContext.java)
for the tomcat server. Director routes requests to the correct views in a model-view-controller-based setup.
StartUpContext loads the TrawlExpert data into persistent memory on the tomcat server, allowing for fast
lookups of data from memory.

Most of the other Java Server Pages (.jsp) files are contained in tomcat/webapps/Trawl/. Since this is
not a focus of the project, these are not covered further in this design document.

2.2.8 test Package

The test package contains JUnit test cases for modules in the program which help to show that the various
functionality is functioning as intended.

2.3 UML State Diagrams

Two UML state machine diagrams are included to describe the states and transitions within the BioTree.java
and Main.java class.

(ossoian

ST

DoNEGISTTE
RSS2
15 Oueaied
(osseogonsp
S
Jo085030140114©)
sy s> Gururwreoneos
eospoND
R wosessarsea e e
v emore | <csseorers> -
wor 7 - . A
<enkor>apONGHE
sy srer>>

PioooNE®

UML.png.

1ve as

<> LIND
<csse oner>>

HA Rk

ion arch

1SS

e
B
Osoiseeas

sicigeiea
<csseorers>

pon
<oy N3 <o o

(choarduonersuegcsnen R

<onIENRoN>3RINIAPON)
<esseenerss

unsayuRasIISEA D

vo| wessasu <cssu o>
il
W el
o sau080
ccsson oner>>

Opowoodnimp

wowoodnueis
<csstenerss

<anienRoy>apONTH O
<csse orer>>

ilable in the root directory of the subm

The UML class diagram of TrawlExpert, showing the relationships amongst modules. The full-

1011 vVersion 1S ava.

Figure 2
resolut

2.3.1 Main.java

The UML diagram for the Main.java class is shown in figure 3. This represents the TrawlExpert console
application’s states, giving an overview of the types of queries and functions the user has access to. Since
the Main.java class is a console version of the final server implementation, the states shown in its UML state
machine diagram are analogous to many of the states of the final TrawlFExpert website.

2.3.2 BioTree.java

The UML state diagram for the BioTree module is shown in figure 4. The BioTree class is a singleton
class which stores the information about the different taxa in the dataset. This method has a few advan-
tages. Firstly, the string names and relationships amongst taxa (e.g. species, genus, family) are stored only
once and accessed when needed, saving large amounts of memory. After running through the TrawlFzpert,
the serialized dataset representing the same data is only 27mb, requiring very little storage on the user’s
computer.

Secondly, this diagrams represents a key feature of TrawlFzpert in that it is able to recover corrupted
data as the dataset is processed, which is very helpful for large datasets. In the USGS dataset, for example,
there were 115 instances of different incorrectly named taxa, totalling 15,596 records (almost 6% of the
records in the dataset). Using this method, these records were able to be recovered for proper use by the
scientist. Using smart caching of incorrect names described by this UML diagram, the number of APT calls
to WORMS is kept at a minimum and the dataset processing only takes about 3 minutes. After the initial
processing, the BioTree and records are stored as serialized Java objects to the disc, and can be reloaded in
less than 10 seconds.

10

Exception raised
when accessing
serialized BioTree
from disk

BioTree
exist

Exception raised
when accessing
serialized Records
from disk

Error displayed to

Didn't find .csv file
user, program
terminates

0
does not

-

N

Records do not exist

Fish Logo on console

Foi

.csv on

d

| —
User
types
Records listed on User types "list" "exit"
console
| —
N

Main.java UML State Machine

BioTree and Records

Successful call to access
BioTree and Records from disk

Load serialized data into memory

exist on disk

BioTree and Records

Save serialized data to disk BioTree and Records

exist on disk and in

exist in memory

_

und .csv dataset exists FileProcessor.init()

memory

Main menu displayed

on disc
isc

User prompt for
display option of
record data

Sum of search
individual count
appears on console
| —

User types "sum"

0
Histogram appears User types "histogram"
on console
N
User issues cluster command
Connected with a specified area

component clusters

User | |ist
ypes sted on consol User
"exit" types
User "clusters"
issues list
command User types
"clusters"
List of cluster's
— records displayed on
User console
types User
"exit" 4 issues list
command

on console

BasicSearchResult
populated with
desired records

BioTree appears on
console

Figure 3: UML State machine diagram for main/Main.java, a class that provides console access to the
TrawlEzpert’s main functions. This class accepts search criteria from a user to produce a list of search
results, depict a histogram of the records in that result, and compute a count of the search hits.

11

BioTree.java UML State Machine

call to Node in BioTree returned

BioTree from disc

N

BioTree exists

Private static
constants exist

Unsuccessful

callto BioTree
from disc o of
) requested to add new requested to search for
Initialize taxon data a species
BioTree does not empty BioTree
exist 1D number _
retuned nameToTaxonID getTaxoniD search | Ul Pointer returned
search method used module used
Successful call
to dataset
W BioTres niialized Name is a valid Null Search returns
rom dataset ientifi . -
Datasetis scientific name pointer non-nul Scientific name exists
returned in BioTree
Unsuccessful
access to N
dataset getTaxonld search incorrectNames
O e database searched
for name
Exception thrown
Nul
Nul Node pointer
Non-null pointer returned returned
returned returned
< Incorrect spelling has Incorrect spelling has
Species exists ata Species does not been observed not been observed
node in BioTree existin BioTree before before
Create a node for 1
new taxon and
nonexistent i
ancestors node has Jode as Worms API
Number of records of BioTree contains taxoniD = -1 axoniD > processes misspelled
that node has been branch to the new name
incremented by 1. node Tiepaling 5100
severe to identify Correct species is
expected species identifiable Name and , Nl
j ID returned ey
Correct species is Misspeling is too
iable and has severe to identify
been added to expected species
incorrectNames name
Adjust
incorrectNames
tree
incorrectNames
contains new node
with mispelled name
and taxonID = -1

Figure 4: UML State machine diagram for /data/biotree/BioTree.java, a class that builds a tree data struc-
ture from the scientific name hierarchies (taxa) of fish. Uses the World Register of Marine Species (WORMS)
API to identify the correct spelling of species names for misspelled scientific names in the dataset.

3 Algorithmic Opportunities

The TrawlExpert was made possible by the use of vaious algorithms studied in SFWRENG 2C03: Algorithms
offered at McMaster University. These algorithms include Red-Black Tree for searching and Merge Sort for
sorting objects. Additional algorithms outside of the course scope were implemented to optimize the program;
they are described below.

3.1 Quick Select

A modified form of the QuickSort algorithm that returns the k' largest element of an unsorted array.
Similar to QuickSort, QuickSelect randomly chooses a partitioning element to sort the array such that all
elements smaller than the partition are left of it, and larger elements are to the right. However, rather than
recursively sorting both halves of the partitioned array, QuickSelect only sorts the half containing the k'"
index. The algorithm terminates once the partitioning element ends up at the k** index of the array, the
value of this element is returned.

This algorithm is implemented in /sort/QuickSelect.java. Tt is used during the construction of k-d trees
which require the frequent division of an array into two equally sized halves. By finding the median element
of an array, it is partially sorted into equally sized small and large halves. The QuickSelect class implements
a median method to simplify its usage in k-d tree construction.

12

3.2 kd Tree

A k-dimensional (kd) binary search tree was used to provide a fast range searching structure for the records.
Given that the current size of the USGS dataset is over 280,000 entries and likely to grow with additional
studies, it was crucial to have a structure to support fast searches. However, since the data contains many
dimensions (taxon id, latitude, longitude, date), a simple binary search tree is not useful for this task.
Instead, a kd-tree was employed.

A kd-tree is like a binary search tree except that on each level i of the tree, the comparison between
nodes is made on the (i % d)th axis of the data. For example, in a two-dimensional tree of (z,y) points, the
first level of the tree would be compared on x, and the second level would be compared on y, the third level
on x, and so on.

This structure gives a fast way of range searching for values in the tree, with a search complexity of
(’)(dnl_%) where n is the number of nodes in the tree and d is the number of splitting dimensions of the tree.
In the TrawlExpert, we use a 4-d tree to split on taxon id, date, latitude and longitude. Range searches for
specific species are very fast, often on the order of 5-10ms and sometimes as fast as 1ms.

In order to build the kd-tree in a balanced way, it’s crucial to be able to find the median of the data,
so that a balanced number of nodes are inserted on each left and right subtree within the tree. In order
to support fast kd tree building (which only needs to happen once when the dataset is first analyzed), the
aforementioned QuickSelect algorithm was used, which was able to allow building the whole kd-tree in about
0.6 seconds. The kd-tree class then contains methods for serializing the data of the kd-tree so that it can be
reloaded quickly from the disc on subsequent launches of TrawlEzxpert.

3.3 Graphing

Graph algorithms were used to support advanced searching features. Firstly, the biological classification
of each organism forms a tree from which species in the same genus, for example, can be located. This
was accomplished by creating a BioTree node, which stores the taxon id number of the classification, the
scientific name of the entry, the number of records with that taxon id contained in the dataset and pointers
to the parent and the children of the node. This structure directly mimics the method that scientists use to
classify species according to their similarities (into family, genus, species) and allows for intelligent filtering
and searching of the dataset. For example, with this structure it is possible to find all descendants of a
certain biological classification.

Secondly, a graph algorithm was used to find connected components among search results. Nodes are
connected together based on their distance to surrounding points (,). Depth-first search was
used to determine connected components (,).

4 Software Design Principles

4.1 Robustness

Robustness is a non-functional requirement prioritized during the TrawlEzpert’s development. Considering
all 280,000+ records in the dataset were entered by humans, data entry errors were inevitable. The Trawl-
Ezpert implementation had to ensure unexpected entries in the dataset were handled gracefully and could
be recovered if possible.

When building a BioTree from the dataset, the World Register of Marine Species (WORMS) database
API was used to find the correct scientific name of slightly misspelled names. Unless a name was severely
misspelled, the Worms API was able to salvage small data entry errors. This ensured records could be used
when building the BioTree and protected the tool from raising exceptions from small input errors. While
this introduces a dependance on an Internet connection to TrawlFzxpert, it was assumed that the scientists
working with TrawlEzpert would have access to an Internet connection, and the tradeoff is reasonable for
the recovery of many errors in the dataset.

The use of drop-down boxes on the user interface helped limit invalid search criteria from being entered.
From left to right, each box contains increasingly specific components of a scientific name for fish species.
When any of the dropdown boxes were selected, all boxes to the left (representing more general components of

13

that species name) were updated. This was to ensure the hierarchy formed by the more general components
contained the newly adjusted value. Additionally, all boxes to the right were cleared. If a more general feature
was adjusted, the resultant possible species no longer satisfies the hierarchy needed by values populating
the right-most boxes. To prevent invalid scientific names from being used as search input, they had to be
cleared.

4.2 Scalability

The tool must be able to handle large amounts of data, all while being able to complete queries at a high
speed. Currently, the tool uses a dataset of 200,000 lines of data, but it must be able to maintain its
high performace for larger datasets. Using sorting algorithms such as Quick Select to build a k-d tree, the
TrawlFxpert has been optimized to complete tree construction much faster.

Implementing Quick Select rather than Merge Sort drastically improved the TrawlEzpert’s performance.
When using Merge Sort during k-d tree construction, an array must be fully sorted before retrieving the
median element, taking O(nlgn) time where n is the size of the dataset. Quick Select only partially sorts
the array before reaching the median, taking O(n) time, and it reduced k-d tree construction from 40.083 s
using Merge Sort to 0.56 s, representing a 72x improvement.

4.3 Generality

A common theme among TrawlExpert classes is the use of lambda functions characterized by Java interfaces
which describe their syntax as well as their semantic meaning. Lambda functions provide the capacity for
parameterized object comparison or parameterized value access. This maintains the generality, and therefore
reusability, of each class by allowing for generic types in class definitions. Type(s) of the input(s) and the
how input object(s) are used only become assigned when the function is used.

4.3.1 General Compare

The GeneralCompare interface can be found at /sort/GeneralCompare.java. This interface includes a com-
pare function that takes two generically typed inputs and produces an integer output. When GeneralCompare
is used in other classes, a compare function (the lambda function) is used to instantiate the expected input
type and designate how the integer result must be calculated. This allows reuse of the interface among
modules that perform comparisons of differently typed objects. Two records consisting of a fish species, date
of observation, and geographic location can be compared based on lexicographic order of their names, date,
or proximity to some location. GeneralCompare enables the comparison of record objects based on any of
these parameters.

4.3.2 Field

The Field interface can be found at /search/Field.java. This interface includes a field function that retrieves
a key (a generic type) from a generically typed input object. Similar to GeneralCompare’s compare function,
field is a lambda function. The field interface is used to perform searches in a tree of records that have been
sorted by variable attributes from each record. The lambda function specifies which attribute to access when
searching through the tree.

4.3.3 General Range

The GeneralRange interface can be found at /sort/GeneralRange.java. This interface includes a isInBounds
function returns an integer to describe if a record is member to a subset of the search results. The input has
a generic type, rather than Record type, to satisfy reusability. The lambda function uses the range itself to
perform conditional checks about whether the input object is below, within, or above the range. A return
value of -1 indicates it is below, 0 indicates it is within, and 1 indicates it is above the range.

14

5 Internal Review

Table 1 shows the modules responsible for helping to meet the functional and non-functional requirements
laid out in the Requirements Specification Document. This section describes in more detail how these were
met.

5.1 Meeting Functional Requirements

The first challenge in developing this tool was parsing the data. One requirement was to read and clean
the data, then produce a data structure of Record objects (FR1). The software tool performed this task as
planned, and even exceeded expectations by using a k-d tree to store the Records in an easily and quickly
accessible manner and the BioTree module had tools to recover corrupt data. FR3 described a requirement
to be able to list related taxa (family, genus, species, etc) in an intelligent way, which was achieved by the
BioTree module as well. FR4 was achieved by the Histogram module which generated a histogram that
was displayed on the command-line and web GUI interfaces. Another requirement was to accomplish basic
searching capabilities based on input criteria (FR5). This aspect was achieved through efficient sorting and
searching algorithms, the results were verified using JUnit test cases of all searching and sorting algorithms.
The geographical subgroupings (FR6) was achieved by using an undirected graph structure and connected
component analysis.

The requirement of outputting records to .csv was not completed FR2 as it was replaced by efforts in
the command-line interface and web GUI. It should be explored further in the future.

5.2 Meeting Non-Functional Requirements

In terms of meeting non-functional requirements, the team met expectations. The use of the WORMS API
when parsing the dataset improved robustness (NR2) and algorithmic choices such as QuickSelect and kd-
trees improved performance (NR3, NR5). The final product achieved the requirement of being user-friendly
(NR6) since it is easily accessible via the Google Cloud server and prevents the user from entering invalid
search criteria.

Additional goals included using less than 1GB of RAM (NR4), this was achieved since the TrawlEzpert
used approximately 0.5 GB of RAM. One way this was achieved was storing duplicate data (e.g. scientific
name strings) only once. An additional goal was to perform queries in less than 1 second (NR3), this was
achieved, with many queries taking approximately 1-10ms.

A positive team dynamic throughout the development process ensured collaboration and help were always
offered, this was a large contributing factor to the success of the final product.

5.3 Changes During Development

There were some algorithmic changes that were realized during development. Two key algorithmic changes
were the change from Merge Sort to using Quick Select, and changing cluster groups of Connected Com-
ponents. As discussed in Algorithmic Opportunities, the use of Quick Select dramatically improved perfor-
mance.

Another algorithmic change involved the client code for Connected Components when determining fish
clusters. Initially, every node was visited multiple times to determine whether other nodes were within
a given radius. The running time was unacceptable using this approach, and as a result, the algorithm
was changed such that visited nodes were not revisited. This decreased running time significantly and was
considered acceptable by the team.

5.4 Future Changes

While TrawlFzpert met all of its original goals for this stage of its development, there are several points for
improvement and future development of the platform as an all-in-one research tool for watershed research.

15

5.4.1 Improvements on Development Process

Most of the changes that would benefit the TrawlEzpert involve its development requirements. The original
goals for this section were quite extensive, however one aspect that was overlooked was file organization.
Although GitLab was used for version control, confusion still occurred over which packages certain classes
belonged to. For example, there were instances in the project where a search class would be located in the
graph package. Adding a requirement for file organization would make the project more easily accessible in
the development process and would also yield more efficient workflow because less time would be dedicated
to searching for a desired class.

5.4.2 Future Functionality

Functionally, there are many future goals in the development of TrawlEzpert. This phase of the development
process was aimed at providing scientists with an effective tool to search and filter data relevant to their
research, as well as some basic statistical tools. However, this only represents the first stage in a larger
scientific research pipeline. Often, more advanced tools such as stratified statistical analysis is needed to
properly take into account the many variables in trawl survey expeditions (,). The future work
includes building these tools into TrawlExzpert in order to create an all-in-one research platform for trawl
surveys.

Additionally, the original requirements specification stated that the program should be able to output
subsets of the dataset to .csv files (FR2). This was replaced by the command-line interface in Main. java
and the web GUI, but should be explored further in the future as it would be helpful to scientists interested
in obtaining raw data for further analysis.

16

References

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., and Wiener,
J. (2000). Graph structure in the web. Computer networks, 33(1-6):309-320.

Kinnunen, R. (2017). Great Lakes prey fish populations declining. http://msue.anr.msu.edu/news/great_
lakes_prey_fish_populations_declining msgl7_kinnunenl?7.

Michigan State University, U. (2018). Michigan sea grant. http://www.miseagrant.umich.edu/.

Toml10 (2012). 2d point clustering. https://stackoverflow.com/questions/3937663/
2d-point-clustering.

United States Geological Survey (2018). USGS Great Lakes Science Center Research Vessel Catch Informa-
tion System Trawl. https://wuwl.usgs.gov/obis-usa/ipt/resource?r=usgs_glsc_rvcat_trawl.

Walsh, S. J. (1997). Efficiency of bottom sampling trawls in deriving survey abundance indices. Oceanographic
Literature Review, 7(44):748.

17

http://msue.anr.msu.edu/news/great_lakes_prey_fish_populations_declining_msg17_kinnunen17
http://msue.anr.msu.edu/news/great_lakes_prey_fish_populations_declining_msg17_kinnunen17
http://www.miseagrant.umich.edu/
https://stackoverflow.com/questions/3937663/2d-point-clustering
https://stackoverflow.com/questions/3937663/2d-point-clustering
https://www1.usgs.gov/obis-usa/ipt/resource?r=usgs_glsc_rvcat_trawl

	Project Scope
	Objective
	Motivation
	Dataset
	Final Product
	Glossary of Terms

	Implementation
	Modular Structure and Uses
	Class Organization
	model Package
	data Package
	search Package
	sort Package
	graph Package
	utils Package
	web Package
	test Package

	UML State Diagrams
	Main.java
	BioTree.java

	Algorithmic Opportunities
	Quick Select
	kd Tree
	Graphing

	Software Design Principles
	Robustness
	Scalability
	Generality
	General Compare
	Field
	General Range

	Internal Review
	Meeting Functional Requirements
	Meeting Non-Functional Requirements
	Changes During Development
	Future Changes
	Improvements on Development Process
	Future Functionality

