TrawlExpert: A Tool for Watershed Biological
Research

Trawlstars Inc. (Group 11)
Lab section: L0O1
Version: 1.0

SFWRENG 2XB3

Christopher W. Schankula, 400026650, schankuc
Haley Glavina, 001412343, glavinhc
Winnie Liang, 400074498, liangw15

Ray Liu, 400055250, liuc40
Lawrence Chung, 400014482, chungl1

April 10, 2018

Revision History

Revision Date Author(s) Description
1.0 05.04.18 HG created
1.1 08.04.18 HG algorithmic analysis added

By virtue of submitting this document we electronically sign and date that the work being submitted by all the
individuals in the group is their exclusive work as a group and we consent to make available the application
being developed through SE-2XB38 project, the reports, presentations, and assignments (not including my
name and student number) for future teaching purposes.

Team Contributions

The individual contributions of each team member are described below. Subteam B indicates an algo-
rithmic focus in a member’s efforts while Subteam A indicates a focus on data parsing and user interface
development. Although the contributions have been separated such that each task is recorded under one
contributor, members often overlapped duties and designed modules together.

Name Role Contributions

Lawrence Chung Head of Room Booking Implemented the depth first search and
Subteam B Member connected components algorithms.

Haley Glavina Meeting Minutes Administrator Implemented the red-black tree, quick-
Subteam B Member select, and mergesort algorithms. De-

signed the final presentation powerpoint,
recorded and submitted all meeting min-
utes, and assembled the final design spec-
ification in LaTeX. Generated UML state
machine diagrams.

Winnie Liang Project Log Administrator Implemented the module responsible for
Subteam A Member parsing out data to create related objects,
implemented taxonNode ADT. Led user
interface development, set up tomcat files
and directory structure, handled commu-
nication between the Google Maps APIs
and JavaScript code. Overlooked project
log entries.

Ray Liu TA & Professor Liaison Implemented Record ADT, Date ADT,
Subteam A Member parsing API calls for WORMS API,
RangeHelper for Basic Search, Histogram
output for command line, histogram out-
put for web interface.

Christopher Team Leader Determined the goals for each meet-

Schankula Subteam A Member ing, implemented the k-d tree algorithm,
wrote backend of server, wrote command-
line tool.

Abstract

TrawlEzxpert is a powerful tool to enable researchers to analyze and filter large datasets from fish trawl
surveys in order to perform environmental research on fish and invertebrate populations. The tool gives
researchers the ability to intelligently filter and query datasets based on biological classification such
as family, genus or species, or based on location or timeframe. Advanced outputs display data as a
histogram or geographical map, each depending on population abundance as a function of time and
spatial distribution. Additionally, TrawlExpert provides a tool for finding local subpopulations within
a larger query. A dataset of thousands of Great Lakes trawl surveys from 1958-2016 will be used as a
demonstration of TrawlFxpert’s capability to help researchers narrow down large datasets and glean data
which pertains to their research. TrawlEzpert will be designed to be used easily and effectively as the
first step in a groundbreaking climate and ecological research pipeline.

Contents

1

Project Scope

1.1 Objective o o e e e
1.2 Motivation e e e e
1.3 Dataset e e e e
1.4 Final Product e e e e

Implementation

2.1 Classes and Modules L e

2.2 Class Organization e e e

2.3 UML State Diagrams e e e
2.3.1 Mainjavao e e e e e e e
2.3.2 BioTreejava. o L L e e e

Algorithmic Opportunities

3.1 Quick Selecto
3.2 kdTree . . . o e s
3.3 Graphing e e e e

Software Design Principles

4.1 Robustness L e e

4.2 Scalability e e

4.3 Generality L. e
4.3.1 General Compare e e

Internal Review

5.1 Meeting Functional Requirements L o o

5.2 Meeting Non-Functional Requirements o L.

5.3 Changes During Development e

5.4 Future Changes o L e e e
5.4.1 TImprovements on Development Process

5.4.2 Future Functionality

1 Project Scope

1.1 Objective

Do DO Ut O (S22 B, BTSN

© © oo

Provide a statistical and visual tool for the analysis of water ecosystems, based on scientific water trawl
data. Gives researchers with tools to analyze large datasets to find patterns in fish populations, including

the plotting of historical population data on a map, the analysis of population trends over time and the
determination of subpopulations of a certain biological classification.

1.2 Motivation

The diminishing of fish populations in the Great Lakes became a problem in the latter half of the 20th
century, with the total prey fish biomass declining in Lakes Superior, Michigan, Huron and Ontario between

1978 and 2015 (,). Annual bottom trawl surveys involve using specialized equipment to sweep
an area and are used to determine the relative temporal variation in stock size, mortality and birth rates
of different fish species (,). These surveys are performed annually and often have hundreds of

thousands of records, making manual analysis infeasible. The ongoing protection and development of the
Great Lakes water basins is considered an important topic for scientists in both Canada and the United
States, as evidenced by grants such as the Michigan Sea Grant (,).

TrawlExpert will give researchers tools to filter through these large amounts of data by allowing them
to search through data based on class, order, genus, family or species. This will help support scientific
researchers and fishing companies as they study fish populations. These studies help inform initiatives to
preserve fish populations and conduct their business in an environmentally friendly way going forward. As
more data is collected on an annual basis, TrawlExpert can easily be injected with the new data and will
adjust and scale accordingly, combining the new data with the old data for continued analysis.

TrawlExpert will also analyze the trawl data to find connected subpopulations within the data, giving
researchers tools to analyze the portions of the water body that contain different populations and even track
these specific subpopulations over time.

The focus of the project will be to develop these unique data searching and querying tools as a first
step in a complete trawl survey analysis. For a complete analysis, tools like stratified statistical analysis are
required by the researcher (,). For purposes of maintaining a manageable scope for this project,
the implementation of advanced trawl survey scientific and statistical analysis tools will be relegated to
future developments.

1.3 Dataset

The test dataset that will be used for purposes of this project is the USGS Great Lakes Science Center
Research Vessel Catch Information System Trawl published by the United States Geological Survey (

,). Compiled on yearly operations taking place from early spring to late fall
from 1958 until 2016, the dataset contains over 283,000 trawl survey records in the five Great Lakes, including
the latitude and longitude co-ordinates and biological classification such as family, genus and species.

1.4 Final Product

Apache tomcat was used to create a webserver which uses the internal functionality and model of TrawlExpert
written in Java. The UI allows users to filter by using information about different taxa (their biological
relationships to each other, such as family / genus / species, etc) and display several different data outputs
such as histograms, heatmaps, maps and population clusters, in addition to viewing raw data in tabular
form. The clustering function is shown in 1. The TrawlEzpert is hosted on Google Cloud Platform and can
be accessed at http://trawl.schankula.ca/Trawl.

2 Implementation

2.1 Classes and Modules

The implementation involved over 30 classes implemented in Java. Additional JavaScript and HTML files
were used to create a sophisticated web-based user interface. For a description of each class and module
used, JavaDoc documentation can be viewed at

http://trawl.schankula.ca/Trawl

TrawlExpert About | GitHub

Phylum: [any 4] Class: [Any 4] Order: [any +| Family: [any 4 Genus: [Any 4] Species: [cottus cognatus
[Year Range: 1960 - 2016

Cluster Size: so00 kmA2 @ Cluster Map) Heatmap ~ Histogram = List Load

I
— Map Satellite

N
‘\% Thunder Bay
o5 __~Superior /'

National Forest \ Cluster #9
Latitude: 45.54535026550293

Bemidji
° ' ' Longitude: -81.94536819458008

Record Count: 10
Duluth

Individual Count: 63 Réserve Q
faunique La

T Vérendrye
MINNESOTA ' Al i
lgonquin
Ma*lm Provincial
StCloud ' Telahd Park Ottawa Montrealt ooy
¢
Minneapolis
= A S
WISCONSIN Green Bay '
) VERMONT
Rochester Oshkosh Sngsiors 2
° &
s MICHIGAN Toronto ' -
o
L3t Mississaiga pochestr +y
Madison Milwaukee and Rapids London 2
o
o o Buffalo NEW YORK Albany -
o

'Gdogle

Rockford Detroit Map data ©2018 Google . Terms of Use

Figure 1: The final TrawlExpert web interface allows users to intelligently search for specific taxa and display
several helpful statistical and data visualization tools such as maps and histograms.

2.2 Class Organization

The Trawl Expert implementation efforts were divided into two subteams: Subteam A and Subteam B.

2.3 UML State Diagrams

Two UML state machine diagrams are included to describe the states and transitions within the Bio Tree.java
and Main.java class.

2.3.1 Main.java

The UML digrama for the Main.java class is shown in 2. This represents the TrawlEzpert console application’s
states, giving an overview of the types of queries and functions the user has access to. Since the Main.java
class is a console version of the final server implementation, the states shown in its UML state machine
diagram are analogous to many of the states of the final TrawlExpert website.

2.3.2 BioTree.java

The UML state diagram for the BioTree module is shown in figure 3. The BioTree class is a singleton class
which stores the information about the different taxa in the dataset. This method has a few advantages.
Firstly, the string names and relationships amongst taxa (e.g. species, genus, family) are stored only once
and accessed when needed, saving large amounts of memory compared to the original dataset. For example,
the original .csv file of the dataset was approximately 130mb. After running through the TrawlExpert, the
serialized dataset representing the same data is only 27mb. This is because there was a large amount of
duplication of names on each line of the dataset.

Secondly, this diagrams represents a key feature of TrawlFzpert in that it is able to recover corrupted
data as the dataset is processed, which is very helpful for large datasets. In the USGS dataset, for example,
there were 115 instances of different incorrectly named taxa, totalling 15,596 records (almost 6% of the
records in the dataset). Using this method, these records were able to be recovered for proper use by the
scientist. Using smart caching of incorrect names described by this UML diagram, the number of API calls
to WORMS is kept at a minimum and the dataset processing only takes about 3 minutes. After the initial

processing, the BioTree and records are stored as serialized Java objects to the disc, and can be reloaded in

less than 10 seconds.

Main.java UML State Machine

Successful call to access
N . KDT<Record>()
BioTree from disk BioTree on disk N

Fish Logo on console

[

A
Save

serialized

BioTree to

Exception raised
disk

when accessing
BioTree from disk

fileProcessor.init()

Serialized data does
not exist

BioTree exists

init()

KDT of records exists

0
Records listed on User types "list" User User
" console types issues
oxit record
-
command
A 4
)
i User types "sum" User prompt for BasicSearchResult
aS ””;affsienaéihn?gi > display option of populated with
pp record data desired records
- J
K
0
Histogram appears | User types "histogram”
on console -
-

User issues cluster command
Connected with a specified area
—1 component clusters
listed on console

A

User
issues
tree
command

Y

BioTree appears on

console

Figure 2: UML State machine diagram for Main.java, a class that provides console access to the TrawlEzxpert’s
main functions. This class accepts search criteria from a user to produce a list of search results, depict a

histogram of the records in that result, and compute a count of the search hits.

call to
" BioTree from disc
Private static BioTree exists
constants exist

BioTree.java UML State Machine

]

Unsuccessful
call to BioTree
from disc

Initialize
BioTree does not empty BioTree
exist

Successful call
to dataset

BioTree initialized
from dataset
Dataset is processed
Exception thrown

Unsuccessful
access to
dataset

Node in BioTree returned

P
requested to add new
taxon data

et
requested to search for
a species

1D number
returned

(nameToTaxonID

Non-null
returned

Name is a valid
scientific name
getTaxonld search
module is used

Null
pointer
returned

Species exists at a
node in BioTree

Species does not
exist in BioTree

]

Create a
node for new
species

Number of records at
that node +=1 b

BioTree contains
ranch to a new node|

ksearch module used

getTaxoniD search | Nl ointer retumed
module used

Search

Search returns
non-null

Scientific name exists
in BioTree

Node

tree
for name

returned

Null
pointer
returned

[nccnem spelling ha:

been observed

before

s Incorrect spelling has
not been observed
before

]

l

node has
taxonID = -1

node has
taxoniD >0

Worms API
processes misspel
name

—

Null

is too
severe to identify Correct species is
expected species identifiable Name and
name ID returned pointer

‘ returned

Misspelling is too
Correct species is severe to identify
identifiable expected species

name

Adjust

incorrectNames
contains new node

with mispelled name
and taxonID = -1

Figure 3: UML State machine diagram for /data/Biotree/BioTree.java, a class that builds a tree data
structure from the scientific name hierarchies (called taxa) of fish. Uses a World Register of Marine Species
(Worms) API to identify the correct spelling of species names for misspelled scientific names in the dataset.

3 Algorithmic Opportunities

The TrawlEzpert was made possible by the use of vaious algorithms studied in SFWRENG 2C03: Algorithms
offered at McMaster University. These algorithms include Red-Black Tree for searching and Merge Sort for
sorting objects. Additional algorithms outside of the course scope were implemented to optimize the program;
they are described below.

3.1 Quick Select

A modified form of the Quick Sort algorithm that returns the k" largest element of an unsorted array.
Similar to Quick Sort, Quick Select randomly chooses a partitioning element to sort the array such that all
elements smaller than the partition are left of it, and larger elements are to the right. However, rather than
recursively sorting both halves of the partitioned array, Quick Select only sorts the half containing the k'"
index. The algorithm terminates once the partitioning element ends up at the k** index of the array, the
value of this element is returned.

This algorithm is implemented in /sort/QuickSelect.java. 1t is used during the construction of k-d trees
which require the frequent division of an array into two equally sized halves. By finding the median element
of an array, it is partially sorted into equally sized small and large halves. The Quick Select class implements
a median method to simplify its usage in k-d tree construction.

incorrectNames

3.2 kd Tree

A k-dimensional (kd) binary search tree was used to provide a fast range searching structure for the records.
Given that the current size of the USGS dataset is over 280,000 entries and likely to grow with additional
studies, it was crucial to have a structure to support fast searches. However, since the data contains many
dimensions (taxon id, latitude, longitude, date), a simple binary search tree is not useful for this task.
Instead, a kd-tree was employed.

A kd-tree is like a binary search tree except that on each level i of the tree, the comparison between
nodes is made on the (i % d)th axis of the data. For example, in a two-dimensional tree of (z,y) points, the
first level of the tree would be compared on x, and the second level would be compared on y, the third level
on x, and so on.

This structure gives a fast way of range searching for values in the tree, with a search complexity of
(’)(dnl_%) where n is the number of nodes in the tree and d is the number of splitting dimensions of the tree.
In the TrawlExpert, we use a 4-d tree to split on taxon id, date, latitude and longitude. Range searches for
specific species are very fast, often on the order of 5-10ms and sometimes as fast as 1ms.

In order to build the kd-tree in a balanced way, it’s crucial to be able to find the median of the data,
so that a balanced number of nodes are inserted on each left and right subtree within the tree. In order
to support fast kd tree building (which only needs to happen once when the dataset is first analyzed), the
aforementioned QuickSelect algorithm was used, which was able to allow building the whole kd-tree in about
0.6 seconds. The kd-tree class then contains methods for serializing the data of the kd-tree so that it can be
reloaded quickly from the disc on subsequent launches of TrawlEzxpert.

3.3 Graphing

Graph algorithms were used to support advanced searching features. Firstly, the biological classification
of each organism forms a tree from which species in the same genus, for example, can be located. This
was accomplished by creating a BioTree node, which stores the taxon id number of the classification, the
scientific name of the entry, the number of records with that taxon id contained in the dataset and pointers
to the parent and the children of the node. This structure directly mimics the method that scientists use to
classify species according to their similarities (into family, genus, species) and allows for intelligent filtering
and searching of the dataset. For example, with this structure it is possible to find all descendants of a
certain biological classification.

Secondly, a graph algorithm was used to find connected components among search results. Nodes are
connected together based on their distance to surrounding points (,). Depth-first search was
used to determine connected components (,).

4 Software Design Principles

4.1 Robustness

Robustness is a non-functional requirement prioritized during the TrawlEzpert’s development. Considering
all 280,000+ records in the dataset were entered by humans, data entry errors were inevitable. The Trawl-
Ezpert implementation had to ensure unexpected entries in the dataset were handled gracefully and could
be recovered if possible.

When building a BioTree from the dataset, the World Register of Marine Species (WORMS) database
API was used to find the correct scientific name of slightly misspelled names. Unless a name was severely
misspelled, the Worms API was able to salvage small data entry errors. This ensured records could be used
when building the BioTree and protected the tool from raising exceptions from small input errors. While
this introduces a dependance on an Internet connection to TrawlFzxpert, it was assumed that the scientists
working with TrawlEzpert would have access to an Internet connection, and the tradeoff is reasonable for
the recovery of many errors in the dataset.

The use of drop-down boxes on the user interface helped limit invalid search criteria from being entered.
From left to right, each box contains increasingly specific components of a scientific name for fish species.
When any of the dropdown boxes were selected, all boxes to the left (representing more general components of

that species name) were updated. This was to ensure the hierarchy formed by the more general components
contained the newly adjusted value. Additionally, all boxes to the right were cleared. If a more general feature
was adjusted, the resultant possible species no longer satisfies the hierarchy needed by values populating
the right-most boxes. To prevent invalid scientific names from being used as search input, they had to be
cleared.

4.2 Scalability

The tool must be able to handle large amounts of data, all while being able to complete queries at a high
speed. Currently, the tool uses a dataset of 200,000 lines of data, but it must be able to maintain its
high performace for larger datasets. Using sorting algorithms such as Quick Select to build a k-d tree, the
TrawlFxpert has been optimized to complete tree construction much faster.

Implementing Quick Select rather than Merge Sort drastically improved the TrawlEzpert’s performance.
When using Merge Sort during k-d tree construction, an array must be fully sorted before retrieving the
median element, taking O(nlgn) time where n is the size of the dataset. Quick Select only partially sorts
the array before reaching the median, taking O(n) time, and it reduced k-d tree construction from 40.083 s
using Merge Sort to 0.56 s, representing a 72x improvement.

4.3 Generality

A common theme among TrawlExpert classes is the use of lambda functions characterized by Java interfaces
which describe their syntax as well as their semantic meaning. Lambda functions provide the capacity for
parameterized object comparison or parameterized value access. This maintains the generality, and therefore
reusability, of each class by allowing for generic types in class definitions. Type(s) of the input(s) and the
how input object(s) are used only become assigned when the function is used.

4.3.1 General Compare

The GeneralCompare interface can be found at /sort/GeneralCompare.java. This interface includes a com-
pare function that takes two generically typed inputs and produces an integer output. When GeneralCompare
is used in other classes, a compare function (the lambda function) is used to instantiate the expected input
type and designate how the integer result must be calculated. This allows reuse of the interface among
modules that perform comparisons of differently typed objects. Two records consisting of a fish species, date
of observation, and geographic location can be compared based on lexicographic order of their names, date,
or proximity to some location. GeneralCompare enables the comparison of record objects based on any of
these parameters.

4.3.2 Field

The Field interface can be found at /search/Field.java. This interface includes a field function that retrieves
a key (a generic type) from a generically typed input object. Similar to GeneralCompare’s compare function,
field is a lambda function. The field interface is used to perform searches in a tree of records that have been
sorted by variable attributes from each record. The lambda function specifies which attribute to access when
searching through the tree.

4.3.3 General Range

The GeneralRange interface can be found at /sort/GeneralRange.java. This interface includes a isInBounds
function returns an integer to describe if a record is member to a subset of the search results. The input has
a generic type, rather than Record type, to satisfy reusability. The lambda function uses the range itself to
perform conditional checks about whether the input object is below, within, or above the range. A return
value of -1 indicates it is below, 0 indicates it is within, and 1 indicates it is above the range.

10

5 Internal Review

5.1 Meeting Functional Requirements

The first challenge in developing this tool was parsing the data. One requirement was to read and clean the
data, then produce a data structure of Record objects. The software tool performed this task as planned,
and even exceeded expectations by using a k-d tree to store the Records in an easily accessible manner.
Another requirement was to accomplish basic searching capabilities based on input criteria. This aspect was
achieved through efficient sorting and searching algorithms, the results were verified using JUnit test cases
of all searching and sorting algorithms.

5.2 Meeting Non-Functional Requirements

In terms of meeting non-functional requirements, the team met expectations. The use of the Worms API
when parsing the dataset improved robustness and algorithmic choices such as Quick Select and k-d trees
improved performance. The final product achieved the requirement of being user-friendly since it is easily
accessible via the Google Cloud server and prevents the user from entering invalid search criteria.

Additional goals included using less than 1 GB of RAM, this was achieved since the TrawlEzpert used
approximately 0.5 GB of RAM. An additional goal was to perform queries in less than 1 second, this was
achieved. A positive team dynamic throughout the development process ensured collaboration and help were
always offered, this was a large contributing factor to the success of the final product.

5.3 Changes During Development

There were some algorithmic changes that were realized during development. Two key algorithmic changes
were the change from Merge Sort to using Quick Select, and changing cluster groups of Connected Com-
ponents. As discussed in Algorithmic Opportunities, the use of Quick Select dramatically improved perfor-
mance.

Another algorithmic change involved the client code for Connected Components when determining fish
clusters. Initially, every node was visited multiple times to determine whether other nodes were within
a given radius. The running time was unacceptable using this approach, and as a result, the algorithm
was changed such that visited nodes were not revisited. This decreased running time significantly and was
considered acceptable by the team.

5.4 Future Changes

While TrawlEzpert met all of its original goals for this stage of its development, there are several points for
improvement and future development of the platform as an all-in-one research tool for watershed research.

5.4.1 Improvements on Development Process

Most of the changes that would benefit the TrawlFxzpert involve its development requirements. The original
goals for this section were quite extensive, however one aspect that was overlooked was file organization.
Although GitLab was used for version control, confusion still occurred over which packages certain classes
belonged to. For example, there were instances in the project where a search class would be located in the
graph package. Adding a requirement for file organization would make the project more easily accessible in
the development process and would also yield more efficient workflow because less time would be dedicated
to searching for a desired class.

5.4.2 Future Functionality

Functionally, there are many future goals in the development of TrawlFExpert. This phase of the development
process was aimed at providing scientists with an effective tool to search and filter data relevant to their
research, as well as some basic statistical tools. However, this only represents the first stage in a larger
scientific research pipeline. Often, more advanced tools such as stratified statistical analysis is needed to

11

properly take into account the many variables in trawl survey expeditions (FIXME: ref). The future work
includes building these tools into TrawlEzpert in order to create an all-in-one research platform for trawl
surveys.

12

References

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., and Wiener,
J. (2000). Graph structure in the web. Computer networks, 33(1-6):309-320.

Kinnunen, R. (2017). Great Lakes prey fish populations declining. http://msue.anr.msu.edu/news/great_
lakes_prey_fish_populations_declining msgl7_kinnunenl?7.

Michigan State University, U. (2018). Michigan sea grant. http://www.miseagrant.umich.edu/.

Toml10 (2012). 2d point clustering. https://stackoverflow.com/questions/3937663/
2d-point-clustering.

United States Geological Survey (2018). USGS Great Lakes Science Center Research Vessel Catch Informa-
tion System Trawl. https://wuwl.usgs.gov/obis-usa/ipt/resource?r=usgs_glsc_rvcat_trawl.

Walsh, S. J. (1997). Efficiency of bottom sampling trawls in deriving survey abundance indices. Oceanographic
Literature Review, 7(44):748.

13

http://msue.anr.msu.edu/news/great_lakes_prey_fish_populations_declining_msg17_kinnunen17
http://msue.anr.msu.edu/news/great_lakes_prey_fish_populations_declining_msg17_kinnunen17
http://www.miseagrant.umich.edu/
https://stackoverflow.com/questions/3937663/2d-point-clustering
https://stackoverflow.com/questions/3937663/2d-point-clustering
https://www1.usgs.gov/obis-usa/ipt/resource?r=usgs_glsc_rvcat_trawl

	Project Scope
	Objective
	Motivation
	Dataset
	Final Product

	Implementation
	Classes and Modules
	Class Organization
	UML State Diagrams
	Main.java
	BioTree.java

	Algorithmic Opportunities
	Quick Select
	kd Tree
	Graphing

	Software Design Principles
	Robustness
	Scalability
	Generality
	General Compare
	Field
	General Range

	Internal Review
	Meeting Functional Requirements
	Meeting Non-Functional Requirements
	Changes During Development
	Future Changes
	Improvements on Development Process
	Future Functionality

