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This paper presents a documentation and development method to facilitate the certifica-

tion of scientific computing software used in the safety analysis of nuclear facilities. To

study the problems faced during quality assurance and certification activities, a case study

was performed on legacy software used for thermal analysis of a fuelpin in a nuclear

reactor. Although no errors were uncovered in the code, 27 issues of incompleteness and

inconsistency were found with the documentation. This work proposes that software

documentation follow a rational process, which includes a software requirements speci-

fication following a template that is reusable, maintainable, and understandable. To

develop the design and implementation, this paper suggests literate programming as an

alternative to traditional structured programming. Literate programming allows for doc-

umenting of numerical algorithms and code together in what is termed the literate pro-

grammer's manual. This manual is developed with explicit traceability to the software

requirements specification. The traceability between the theory, numerical algorithms,

and implementation facilitates achieving completeness and consistency, as well as sim-

plifies the process of verification and the associated certification.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

This paper focuses on the certification of scientific computing

(SC) software used for safety analysis in the design of nuclear

facilities. Although this class of software is not considered as

safety-critical, since it does not control the operation of a

nuclear reactor or the associated safety systems, high-quality

SC software is necessary for designing efficient and safe
.S. Smith).
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power plants. Standards and guidelines exist for producing SC

software in a nuclear context, such as the Canadian re-

quirements for quality assurance (QA) of scientific computer

programs [1e3] and the US Department of Energy (DOE)

guidelines for determining the adequacy of software used in

safety analysis and design [4]. These publications list docu-

mentation that is expected for QA activities, including soft-

ware requirements, design specification and verification, and
lf of Korean Nuclear Society. This is an open access article under
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validation reports. The standards and guidelines lay out at a

high (abstract) level of what needs to be achieved by docu-

mentation, but at times they give limited concrete informa-

tion on how to achieve these requirements. This paper fills in

the missing details by proposing a systematic method for

writing complete, consistent, and verifiable documentation

for SC software used in nuclear safety analysis.

For certification to be successful, the documentation and

code should have the qualities of verifiability, validatability,

reliability, usability, maintainability, reusability, and repro-

ducibility. With the exception of reproducibility and validat-

ability, these qualities for general software are defined in a

report by Ghezzi et al. [5, pp. 18e28]. In a SC context, verifi-

cation means “solving the equations right” and validatability

is “solving the right equations” [6, p. 23]. Reproducibility

means being able to rerun the code in the future, possibly

through an independent third party, and obtaining identical

results [7].

Maintainability is necessary in SC, because change through

iteration, experimentation and exploration is inevitable.

Models of physical phenomena necessarily evolve over time

[8,9], as do the numerical techniques used to simulate the

models. QA activities need to take this need for creativity into

account without smothering it [6, p. 352]. Maintainability is of

practical importance because when changes occur after the

initial certification, the recertification process must be

significantly easier and cheaper than the first certification

exercise, or recertification is unlikely to happen. Similarly,

reusability is important for certification, because reuse can

save time and money spent on the certification of similar

products by reusing trusted components [10]. Fortunately, SC

software is well suited for reuse, as program families (sets of

programs where there are nontrivial commonalities and pre-

dictable variabilities) are frequently encountered in SC [11].

Documentation for nuclear safety software [2,4] follows the

typical stages of thewaterfall model of software development,

as shown in Fig. 1. Given the exploratory nature of SC, de-

velopers do not follow this waterfall model [12,13], but this is

not a problem for the documentation. As Parnas and Clements

[14] point out, the most logical way to present the documen-

tation is to “fake” a rational design process. “Software man-

ufacturers can define their own internal process as long as

they can effectively map their products onto the ones that the

much simpler, faked process requires” [15]. To keep the scope
Fig. 1 e Software documentation following a rational

process.
of the current workmanageable, we focus on the threemiddle

stages from Fig. 1: requirements, design, and code

implementation.

To develop, test, and justify the documentation and

development method proposed, we conducted a case study

with existing SC software, for which QA and the associated

documentation are important considerations. The case study

uses legacy nuclear safety analysis software provided by a

power generation company. The software under study per-

forms thermal analysis of a single fuelpin in a nuclear reactor

by simulating simplified reactor physics and fuel manage-

ment calculations. In the discussion that follows, the software

will be referred to as FP. Along with the source code for FP we

also received a theory manual, which includes the re-

quirements, numerical algorithms, assumptions, constraints,

and the mathematical model.

Our approach, which was described by Koothoor [16] and

Smith et al. [17], was to redo the thermal analysis portion of

the original FP code using modern software engineering

techniques. By redoing the previous work, we were able to

judge whether there is room for improvement and then pro-

pose a new and improved process. The design and develop-

ment of the new documentation was done to be consistent

with the Canadian standard for quality assurance of analyt-

ical, scientific, and design computer programs for nuclear

power plants, N286.7, clause 11.2 [2]. Although the conclusions

from this paper are based on the case study, the case study is

considered representative of many other SC programs.

Section 2 provides background on the software engineering

methods that are employed in the documentation, namely,

software requirements specification (SRS) and literate pro-

gramming (LP). This background section also gives an over-

view of the FP case study. Section 3 provides examples for the

SRS for FP, along with an evaluation of the improvements of

the new documentation compared with the old. Section 4

presents the LP excerpts from FP and explains how the

literate programmer's manual (LPM) contributes to the goal of

producing certifiable documentation. The final section, Sec-

tion 5, consists of concluding remarks.
2. Background

How do we create documentation that facilitates achieving

qualities such as verifiability and maintainability? Unfortu-

nately, these qualities are examples of ones that cannot be

measured directly. They must be measured indirectly, since

their measurement depends on interactions with the envi-

ronment [18, p. 109]. Moreover, many of the qualities being

considered, such as reliability and usability, are external

qualities, which means that they are measured by their

impact on the user, as opposed to the software developer [5,

p. 16]. Although the user and the developer in SC are often the

same person, here we aremaking the distinction based on the

role of the individual. With their connection to the end user,

external qualities can only be measured when the software is

complete. We need internal measures that can be assessed as

the software is being built, so that we have confidence that we

are on the right track for success. We also needmeasures that

have a smaller scope, so that their measurement is not so

http://dx.doi.org/10.1016/j.net.2015.11.008
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daunting. The first section below provides a list of the lower-

level qualities that should be targeted for documentation

and code to achieve the higher-level qualities mentioned in

Section 1. Following the overview of the desirable qualities is

background information on the topics of the SRS, LP, and the

FP case study.
2.1. Desirable qualities for documentation

To address the challenges for adequate documentation for

certification of SC software, the qualities described below

need to be a priority. All but the final quality listed (abstrac-

tion) are adapted from the IEEE recommended practice for

producing software requirements [19]. The IEEE guidelines are

for the SRS, but we extend the discussion here when the

quality can also be applied to the code in the LPM document.

From the list below, the DOE guidelines [4] explicitly mention

the qualities of completeness, consistency, correctness,

traceability, and verifiability. The Canadian Standards Asso-

ciation (CSA) standard [2] mentions completeness and verifi-

ability. Neither document explicitly shows how to achieve

these qualities.

Complete: Documentation of the requirements is complete

when each goal, functionality, attribute, design constraint,

value, data, model, symbol, term (with its unit of measure-

ment, if applicable), abbreviation, acronym, assumption, and

performance requirement of the software is defined. The

documentation of the code is complete when sufficient in-

formation is given, including traceability to requirements,

design decisions and proofs for the code to be verified. The

code is complete when every requirement has been

addressed.

Consistent: Documentation is consistent when no subset

of individual statements are in conflict with each other. That

is, a specification of an item made at one place in a document

should not contradict the specification of the same item at

another location, either in the same document, a different

document, or in the code.

Modifiable: The documentation and code should be devel-

oped in such a way that they are easily modifiable so that

likely future changes do not destroy the structure of the

document. The document structure and tool support should

ensure retention of the consistency, traceability and

completeness when the changes are made. This is done in

part by using cross-referencing for traceability and avoiding

manual repetition, as opposed to automatically generated

repetition.

Traceable: Documentation should be traceable, as this fa-

cilitates maintenance and review. If a change is made to the

design or code, then all documentation relating to those seg-

ments has to be modified. This property is also important to

minimizing the costs of recertification. Additional advantages

of traceability include program comprehension, requirement

tracing, impact analysis, and reuse [20].

Unambiguous: Documentation of the requirements and

design decisions are said to be unambiguous only when every

specification has a unique interpretation. The documentation

should be unambiguous to all audiences, including de-

velopers, users, and reviewers.
Correct: Each requirement should accurately capture the

scientific model the stakeholders and experts desire, and

every decision for the numerical algorithmand code should be

appropriate for the model. To build confidence in correctness,

reviewers should be able to inspect and investigate every

component of the requirements, design, and implementation.

Success on this quality requires maintaining traceability,

consistency, and unambiguity.

Verifiable: This quality is repeated from the list of qualities

in Section 1, but where the term has been previously applied

at a high level to all of the documentation in the current

context, the term refers to each individual requirement,

design decision, and line of code. All of these must be clear,

unambiguous, and testable, so that a person or a machine can

verify whether the software product meets the requirements.

Correct and verifiable are different qualities. A requirement

can be correct and yet not verifiable. For instance, the

requirement for solving any linear system of equations

(Ax ¼ b) is mathematically correct, but it is only verifiable if an

error tolerance is allowed and some limits are placed on the

range of acceptable inputs.

Abstract: Documented requirements are abstract if they

state what the software must do and the properties it must

possess, but do not speak about how these are to be achieved.

For example, a requirement can specify that an ordinary dif-

ferential equation (ODE) must be solved, but it should not

mention, for example, that Euler's method should be used to

solve it. How to accomplish the requirement is a design de-

cision, which is documented during the design phase.

Abstraction is also used in code development as a technique to

deal with complexity [5, p. 40].

2.2. Software requirements specification

Upon determination of the problem to be solved, the first

significant document in a rational design process (Fig. 1) is the

requirements document. Requirements record all of the ex-

pected characteristics and behavior of the system. The docu-

ment that records the requirements is called the SRS. This

document describes the functionalities, expected perfor-

mance, goals, context, design constraints, external interfaces,

and other quality attributes of the software [19].

An SRS provides many advantages for software develop-

ment [14,21]. For instance, an SRS improves the understand-

ability of the problem to be solved by acting as an official

statement of the system requirements for the developers,

stakeholders, and end users. Creating an SRS allows for earlier

identification of errors and omissions. In SC, the requirements

document contributes to improved usability by providing

explicit statements of the expected user characteristics,

modeling assumptions, definitions, and the range of applica-

bility of the code. It improves the maintainability in the early

stages of development, as fixing errors at the beginning is

much cheaper than finding and fixing them later. As an

additional quality benefit, the reliability and performance of

the software cannot be properly verified without a standard

against which they should be judged. A further advantage of

an SRS is that it aids inmaking decisions regarding design and

coding of the software, by serving as a starting point for the

software design phase. Moreover, the SRS aids the software

http://dx.doi.org/10.1016/j.net.2015.11.008
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lifecycle by facilitating incremental development. That is, a

new version of the software can inherit (reuse) features of the

previous version to upgrade the system by improving the

features. This last advantage is important for SC software,

where the changes are frequent, as developers explore the

problem domain. Also important in SC is reproducibility,

which requires a clear statement of the problem being solved

if the solution is to be reproduced in the future.

Validation of the scientific model via comparison of the

software output against empirical data has to wait for com-

plete implementation, but SC practitioners sometimes appear

to forget that verification is possible early in the process.

Remmel et al. [22] surveyed the literature on SC software

development and concluded that the steps for verification and

validation are code verification, algorithm verification, and

scientific validation. The important step of model verification

seems to be neglected in the characterization of the SC

development process. The SRS specifies the model [23];

therefore, verification of the underlying science can begin as

soon as the first draft of the SRS is complete. This is especially

true if the SRS, like the example shown in Section 3, is

designed for verifiability. An SRS can also help with verifica-

tion via testing, since it manages the cognitive complexity of

SC software [24], so that people other than domain experts

have hope of designing black-box test cases.

To write an SRS, a common approach is to use a re-

quirements template, which gives guidelines for documenting

the requirements. The template provides a framework that

suggests an order for filling in details. There are many ad-

vantages of using a template in writing an SRS [21,23]. One

advantage is that a template increases the adequacy of an SRS

by providing a predefined organization that aids in achieving

completeness, consistency, andmodifiability. A templatewith

a well-organized format acts like a checklist for the writer,

thus improving completeness by reducing the chances of

missing information. Breaking the information into manage-

able units and using cross-referencing facilitates traceability

and verifiability. Following the template provides structure

and rigor, which improves communication between stake-

holders, developers, and maintenance staff. A template aids

in achieving information hiding through specific guidelines on

the appropriate level of abstraction and makes the document

more understandable by showing the connections between

different sections.

There are several existing templates that have been

designed for business and real-time applications. These

templates contain suggestions on how to avoid complications

and how to develop an SRS to achieve qualities of good

documentation, such as verifiability, maintainability, and

reusability [19,25,26]. There is no universally accepted tem-

plate for an SRS. The current research adapts the SRS template

developed for SC software in the report of Smith et al. [23].

This template fits the needs of SC software similar to FP

because of its hierarchical structure, which shows the

decomposition from abstract goals to concrete instance

models. This natural refinement from general to specific im-

proves understandability. The hierarchical structure, together

with the traceability matrix, facilitates reusability and main-

tainability. (Maintainability is particularly important in SC,

since many requirements are discovered and modified over
the course of a typical project [8].) The template also explicitly

addresses nonfunctional requirements for accuracy of the

input data, the sensitivity of the model, the tolerance of the

solution, and the solution verification and validation strate-

gies [27].

The requirements document suggested in this paper does

not exactly match the outline given in Clause 11.2.4 [2]. The

SRS given here also includes elements of the theory manual

(Clause 11.3.3) [2], such as the mathematical equations, as-

sumptions, and constraints. The theorymodel is incorporated

into the requirements because the theory is needed to express

the input/output requirements. A further change to the

documentation [2] is that the proposed template is more ab-

stract, as described in Section 2.1. To leave different design

decisions open, unlike in the previous case [2], the SRS is silent

on the data structures and data flow requirements and pro-

gramming language selection. These items are design de-

cisions that are postponed until the design documentation.

2.3. Literate programming

LP was introduced by D. Knuth as a programming methodol-

ogy [28]. Its essence can be captured as follows: “…instead of

imagining that ourmain task is to instruct a computer what to

do, let us concentrate rather on explaining to human beings

what we want a computer to do” ([29], p. 99). LP provides

flexibility so that concepts are introduced “…in an order that is

best for human understanding, using a mixture of formal and

informal methods that reinforce each other” ([29], p. 99).

When developing a literate program, we break down an

algorithm into smaller, easy-to-understand parts, and

explain, document, and implement each of them in an order

that is more natural for human comprehension, versus an

order that is suitable for compilation. In a literate program,

documentation and code are in one source. The program is an

interconnected “web” of pieces of code, referred to as sections

[28,29] or chunks [30,31], which can be presented in any

sequence. They are assembled into a compilable program in a

tangle process, which extracts the source code from the LP

source. Extracting the documentation so that it may be

properly typeset [29,32] is called aweaving process. Developing

a literate program thus becomes a task that resembles writing

an article or a book: we present the program in an order that

follows our thought process and strive to explain our ideas

clearly in a document that should be of publishable quality.

This also produces high-quality code that is impeccably

documented.

Smith and Samadzadeh [33] provided an annotated bibli-

ography of LP, up until 1991. Two significant examples of LP

applied to SC were given by Nedialkov [34] and Pharr and

Humphreys [35].

Moore and Payne [36] used LP to facilitate the verification of

a network security device. They proposed that LP techniques

be used to “document the entire assurance argument.” Ac-

cording to their experience, rigorous arguments, including

machine-generated proofs of theory and implementation,

“did not significantly improve the certifier's confidence” in

their validity. One of the main reasons for this lack is that

specifications and proofs were documented to facilitate

acceptance by mechanical tools rather than by humans.

http://dx.doi.org/10.1016/j.net.2015.11.008
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Essentially, the authors conclude that LP greatly facilitates the

development of assurance arguments, since (human) certi-

fiers more naturally understand LP than they do descriptions

ofmachine-generated proofs. This idea is also whatmotivates

the current work that proposes LP to improve QA and to

facilitate certification.

In the terminology of Section 1, LP can improve the quality

of certification efforts. The improvements start with the

quality of understandability. Improvements to understand-

ability facilitates reviews, which in turn improves verifiability

and the associated quality of reliability. (This improvement is

particularly relevant in SC, in which verification by testing is

challenging because of the lack of a test oracle [37].) Under-

standability also contributes to an improvement in maintain-

ability, since maintainers need to be able to understand the

code tomakemodifications.Whether scientists decide to even

maintain or to reuse a program is strongly related to the un-

derstandability of codeand itsdocumentation.Asexplainedby

Roache ([6], p. 362), “User acceptance is also highly dependent

on documentation. In my experience, code documentation is

second to no other factor in user acceptance, not even ease of

use.” Finally, LP contributes to reproducibility, since many

believe that “successful communication and verification of

research results requires that … code is distributed together

with results and explanatory prose” [38].

2.4. FP case study

The purpose of FP is to perform thermal analysis of a single

fuelpin in a nuclear reactor. Each fuelpin includes the

following elements, as presented in Fig. 2: a fuel pellet con-

sisting of uranium dioxide (UO2), the clad material (zircaloy)

covering the pellet, and coolant surrounding the cladmaterial.

The definitions for the symbols in 2, along with their units of

measurement, are given in Fig. 3.

The software is used for running safety analysis cases. The

analysis of one fuelpin by FP is used to obtain insight into the

use of multiple pins. The goals of FP are as follows:
Fig. 2 e Fuel pellet representation (not to scale).
G1: Given fuel power versus time as input, predict transient

reactor fuel and clad temperatures.

G2: Given the neutron flux versus time as input, predict

transient reactor fuel and clad temperatures.

G3: Given the reactivity transient as input, predict transient

reactor fuel and clad temperatures.

G4: Given the trip set points, number of trips to initiate

shutdown, shutdown reactivity transient as inputs, simu-

late reactor trip and shutdown.

FP performs thermal analysis using point neutron kinetics,

decay heat equations, lumped-parameter fuel-modeling

techniques, temperature-dependent thermodynamic proper-

ties, a metalewater reaction model, fuel stored energy, inte-

grated fuel power calculations, and trip parameter modeling.

Themodel for the thermal analysis is based on an electrical

circuit analogue of the fuelpin, as given by Fig. 4. A summary

of the variables for Fig. 4 can be found in Fig. 3.
3. SRS for fuelpin thermal analysis

We borrowed the template developed by Smith et al. [23] for

engineering mechanics and adapted it through addition of a

fewnew sections to suit the nuclear physics domain. The table

of contents for the requirements template provided in Fig. 5

shows how the problem is systematically decomposed into

more concrete models. Specifically, we start with the high-

level problem goals and then we determine the appropriate

theoretical models to achieve the goals. The theoretical

models are then refined intowhat are termed instancemodels,

which provide the equations needed to solve the original

problem. During this refinement from goals to theory to

mathematical models, we apply different assumptions, build

general definitions, and create data definitions. The proposed

template aids in documenting all the necessary information,

as each section has to be considered. This facilitates the

http://dx.doi.org/10.1016/j.net.2015.11.008
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achievement of completeness by providing a checklist for the

questions that are to be askedand for the information that is to

be filled in. Having a standard template also helps when

comparing betweendifferentprojects. Besidesfilling in section

headings, the template also requires that every equation either

has a supporting external reference or a derivation. Further-

more, every symbol, general definition, data definition, and

assumption needs to be used at least once.

The most important sections of (Fig. 5) for improving the

desired qualities of an SRS are explained in Sections 3.1e3.6

below, which use subsections for motivation and content, as

done in a previous work [23]. The full SRS is presented by

Koothoor [16]. Following the excerpts, we evaluate the SRS

against the original theory manual, using the desirable

documentation qualities given in Section 2.1.
3.1. Goals

Motivation: To collect and to document the high-level ob-

jectives of the software.

Content: A goal statement should specify the target of the

system. The goal must be abstract. That is, it should be a

specification indicating what the system is expected to

perform, but not theways of achieving the objective. The goals

for FP (G1eG4) are listed at the beginning of Section 2.4.
Fig. 5 e Table of contents for software requirements

specification for fuelpin analysis.
3.2. Assumptions

Motivation: To record the assumptions that have to be

made, or have been made, while developing the software.

Content: An assumption is a specification showing the

approximation to be made while solving a problem. We sug-

gest that, when appropriate, assumptions are documented

with the forward references made to the data using them. An

example assumption from the SRS for FP is given below:

A8: The spatial effects are neglected in the reactor kinetics

formulations [IM5].

The notation IM5 is a forward reference to indicate that

this assumption is relevant to the derivation of Instance

Model 5, which is the label used for the point neutron kinetics

model.
3.3. Theoretical models

Motivation: To develop an understanding of the theory or

principles relevant to the problem [23].

Content: The theoretical models are sets of governing

equations or axioms that are used to model the problem

described in the problem definition section. In the context of

nuclear physics, the theoretical models can be physical laws

(including relevant equations), constitutive equations, and so

forth. Given below is an example of a theoretical model from

our case study.
Number T1

Label Conservation of energy

Equation �V$qþ q
000 ¼ rC

vT
vt

Description The above equation gives the

conservation of energy for time

varying heat transfer in a

material of specific heat capacity

C and density r, where q is the

thermal flux vector, q
000
is the

volumetric heat generation, T is

the temperature, V is the del

operator, and t is the time.
The equation for conservation of energy is the most

important theoretical model in our case study, as it forms the

foundation for the derivation of the mathematical models of

FP. The theory is given abstractly, without reference to a

http://dx.doi.org/10.1016/j.net.2015.11.008
http://dx.doi.org/10.1016/j.net.2015.11.008


Number DD19

Label hg

Units Mt�3T�1

SI equiv.
kW
m2oC

Equation hg ¼ 2kchp

2kc þ tchp
Description hg is the gap conductance

tc is the clad thickness

hp is the initial gap film conductance

kc is the clad conductivity

Sources FP theory manual and FP code

Number DD11

Label R1

Units ML3Tt�3

SI equivalent
moC
kW

Equation R1 ¼ f
8pkAV

þ 1
2prf hg

Description R1 is the thermal resistance between

the average fuel temperature (T1)

and clad temperature (T2) (see

Fig. 4); f is the average flux

depression factor; kAV is the

average thermal conductivity

through the fuel; rf is the fuel

radius; hg is the effective heat-
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specific coordinate system, to make it reusable for other

problems. The theory is later refined to instance models by

applying assumptions and definitions. For example, the co-

ordinate system needs to be selected. In the current case

study, a cylindrical coordinate system is used, but the general

notation means that T1 can be used in a different context, say

with a Cartesian coordinate system. How the symbolic equa-

tion of conservation of energy is used in deriving the instance

models for FP is shown in Koothoor [16].

3.4. General definitions

Motivation: This sectionwas added to the original template

of Smith et al. [23] as a convenient way to gather and docu-

ment all the necessary data that are repetitively used in

deriving different data definitions.

Content: General definitions constitute the laws and

equations that are used indirectly in developing the mathe-

matical models. That is, general definitions are those that do

not directly used to model the problem, but are used to derive

the data definitions, which in turn are used to build the

instance models. The general definitions are documented by

using tabular and textual descriptions. An example of a gen-

eral definition is given below.
Number GD1

Label Cylindrical coordinate system

Equation V ¼ ber
v

vr
þ beq

1
r

v

vq
þ bez

v

vz
where ber,

beq, and bez form the natural basis

of a cylindrical coordinate

system.

Description The location in a cylindrical

coordinate system is given by

ðr; q; zÞ. Unlike in a Cartesian

coordinate system, the basis

vectors, except for bez, change as

the position changes. The

gradient operator is defined

above.

Source FP theory manual, Malvern ([39], p.

667)

transfer coefficient between the

clad and fuel surface (see DD19).

Sources FP theory manual and FP code

Number IM1

Label Rate of change of average fuel

temperature

Equation C1
dT1

dt
¼ q0N � T1 � T2

R1
Description T1 e average fuel temperature

T2 e clad temperature

R1 e effective resistance between

fuel and clad

C1 e thermal capacitance of the

fuel

q0N e linear element power

t e time

Sources FP Theory Manual
3.5. Data definitions

Motivation: To collect and organize all physical data

needed to solve the problem [23].

Content: All the symbols that are used in developing the

mathematicalmodels of the systemare defined using a tabular

representation. The symbol should be defined with the mean-

ing of the physical data they represent and should be given a

unique label to support traceability. If anyequation isdefined in

this section, then the derivation of that equation is given under

the table. Two examples, which are referenced in Section 3.7,

are given below: the effective heat-transfer coefficient between

the clad and fuel surface (hg) and the effective thermal resis-

tance (R1) between T1 and T2. Details on the derivation of the

associated equations are given by Koothoor [16], as part of the

full SRS.
3.6. Instanced model

Motivation: The mathematical model has to become more

concrete before it can be solved by using a numerical algo-

rithm implemented in code.

Content: The theoretical model is refined to an instanced

model using the general definitions, data definitions, and as-

sumptions. An example instanced model, which gives the

governing ODE defining the average fuel temperature (T1), is

given below.
3.7. Evaluation of the SRS

The documentation (theory manual) accompanying the case

study software was completed by highly qualified domain

experts with the goal of fully explaining the theory behind FP

http://dx.doi.org/10.1016/j.net.2015.11.008
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for the purpose of QA. Presentation of the theory followed a

format similar to that in a scientific or engineering journal or

in a technical report. Notwithstanding our understanding of

the importance of the documentation, our development of the

new SRS uncovered 27 issues in the previous documentation,

ranging from trivial to substantive. Using the qualities from

Section 2.1 as a reference point, we describe below some

quality issues with the original documentation.

Incompleteness and Ambiguity: As per the definition of

completeness in Section 2.1, every term in the document

should be defined. However, the term RGAP, as shown in Fig. 4

and used in several equations in the original documentation,

was not defined. The lack of a definition led to ambiguity,

which, in turn, led to considerable confusion, since some of

the equations suggest that the actual intentionmay have been

to apply T2 to the surface of the clad, instead of to the centre of

the clad, as shown in Figs. 2 and 4. This problem was com-

pounded by a lack of an explanation of the electric-circuit

analogy for thermal “circuits.” The omission was likely

because the domain experts understood the analogy so well.

However, for completeness, explanation is necessary in order

for QA activities to properly judge whether the analogy holds.

Inconsistency: In some cases, the same concept was

referenced with different symbols, such as fuel radius, which

at times was symbolized by r and at other times by r0. In other

cases, the same symbol was used for different concepts, such

as the term hg (DD19), which was used to represent gap

conductance in one instance (in the current documentation,

this is represented by hp), as well as to represent the effective

heat transfer coefficient between clad and fuel surface in

another.

Correctness and Verifiability Concerns: As per the defini-

tion of verifiability in Section 2.1, every specification in the

document must be the one fulfilled by the software. However,

an equation that was seemingly different from the equation in

the original documentation solved the effective thermal

resistance R1 in the original source code, suggesting that one

of the equations was incorrect. Unlike what is shown in DD11,

which matches what was implemented in the code, the

equation for R1 in the theory manual is

R1 ¼ f
8pkAV

þ 1
2prfhg

þ tc

4prf kc
: (1)

The apparent disagreement between the theory manual

and the code was eventually tracked to an inconsistency in

the documentation andnot to a fault in the code. The equation

in the code, as represented by DD11, is actually equivalent to

Equation (1), as long as one corrects the mistake that hg in

Equation (1) should be hp, as given in DD19. As shown in DD11,

hg combines the heat transfer from hp and kc into one term.

Similar mismatches between the original theory manual and

the source code occurred with the equations for R2 and T2. In

each case, the issue was found to be inconsistencies between

the code and documentation caused by different groupings of

terms. Determining the cause of the problem was com-

pounded by the use of the same symbols, albeit with different

meanings, in the code versus the documentation. This prob-

lem may be avoided by using LP, as discussed in the next

section.
Modifiability Concerns and Lack of Traceability: Unfortu-

nately, the original documentation had traceability issues. For

instance, there was no reference to the figure representing the

electrical circuit analogue (Fig. 4) and the derivation of R1. A

lack of traceability leads to modifiability problems, since

managing changes requires knowledge of the impact of the

changes.

Abstraction Concerns: The original theory manual did not

always meet the recommended goal of having abstract re-

quirements, as discussed in 2.1. In some cases, design de-

cisions were made in the theory manual. For instance, the

theory manual included the numerical algorithm for solving

the system of ODEs. In the revision of the documentation, the

numerical algorithm choice is included in the LPM to facilitate

managing complexity through separation of concerns. This

improves maintainability, because future changes to the nu-

merical algorithm do not require any changes to the SRS. As

shown in Section 4.1, including the numerical algorithm in the

LPM improves verifiability, since the algorithm and the asso-

ciated code are given together.

The SRS proposed in this paper is intended to avoid the

above problems with the previous documentation. To achieve

the qualities of a good SRS, the template applies the principle

of “separation of concerns” by including different sections in

order to allow focus on one thing at a time. By dividing the

problem into smaller steps and by considering each section

simplifies complete and correct documentation of all the

necessary information. Sections such as Theoretical Models,

General Definitions, and Data Definitions are included before

the Instance Models section to systematically solve the prob-

lem in a hierarchical manner. This approach of developing

concrete models from abstract ones helps in achieving

completeness, consistency, traceability, and verifiability in

the documentation. The purpose of including these sections is

to document all the background information, physical laws,

constitutive equations, rules, principles, and physical data

required to solve the problem. This documentation helps

domain experts to determinewhether the stated assumptions

and derivations are realistic and correct.

To tackle the inconsistency problem, the template includes

a section called “Table of Symbols,” where all the symbols

used in the document are summarized along with their units.

There is also a requirement that every symbol in the table is

used in the documentation somewhere. To address the

problems with traceability and modifiability, we use cross

referencing between the components. The template requires

the use of a unique label for each component and the devel-

opment of the models in a hierarchical manner.

To solve the problems with completeness and correctness,

the template uses the Assumptions, Theoretical Models,

General Definitions, and Data Definitions sections. These

sections collect all the necessary information needed to build

the instanced models. This way of developing the concrete

models from the abstract ones while maintaining traceability

between them aids in achieving correctness. Inclusion of the

derivations of the equations in these sectionsmakes checking

correctness easier. Correctness requires documenting every

equation, assumption, definition, and model in the respective

sections. Every equation includedmust have a source listed or

a derivation provided. Every general definition, data

http://dx.doi.org/10.1016/j.net.2015.11.008
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definition, and assumption should be used by at least one

other component of the document. Complete and correct

specification of all parts, while maintaining traceability

between them, makes the task of verification easier. The next

step is to continue this systematic, methodical, and traceable

approach in the documentation of the design and code, as

discussed in the next section.
4. Literate programmer's manual for fuelpin

The stage in software development after complete docu-

mentation of the requirements, as shown in Fig. 1, is design.

The design phase starts with decomposition of the program

into modules, with the recommended decomposition having

each module encapsulate a likely change in the software [40].

This division of the program intomodules beyond the scope of

the current work. (An example of a modular decomposition

for SC can be found in a work by Smith and Yu [41]). Instead,

we focus on the incremental approach of reimplementing one

subroutine from the modules given in the original FORTRAN

program. Our goal is to replace the original subroutine and

thus to have the numerical outputs of the new literate pro-

gram match the output of the original FP code. If we were to

make a larger change to the original code, then comparison of

the two approaches would become unclear. Moreover, if we

were to make larger, non-incremental changes, then the

explanation for any disagreements on the numerical results

would be difficult to track.

The selected subroutine, which was renamed fuel_temp_,

solves for the time histories of the reactor fuel and clad tem-

peratures. The source code, written in C, was developed along

with the logic behind it using LP and implemented with CWEB

[32]. The document recording the logic and the source code is

termed the LPM. The table of contents of the LPM for fuel_-

temp_ is given in Fig. 6. To assist with the navigation of later

sections, this figure includes the mapping (shown in italics)

between the LPM sections and the corresponding figures in

this report. The LPM begins with an abstract view, which is

explicitly traced to the SRS. This view is then refined into a

concrete implementation, which becomes the code. Tests

comparing the original code and the literate code arematched

according to their numerical output.
Fig. 6 e Table of contents for the literate programmer's
manual.
In this section, we give excerpts from the LPM outlined in

Fig. 6. The full LPM for fuel_temp_ is presented by Koothoor [16].

The cross-references shown in the LPM excerpts refer to the

numbering in the full LPM document. The subsections 4.1e4.5

below explain the important items from Fig. 6. The first sub-

section (Section 4.1) shows an overview of the numerical al-

gorithm, using the notation from the SRS, with additional

details related to the selected time-stepping algorithm. Sec-

tion 4.2 presents a top-down view of the interface for fuel_-

temp_, with an emphasis on what it calculates, without giving

the details on how the calculations are done. To connect the

code to the SRS, Section 4.3 shows the traceability between the

variable names. The trend from abstract to concrete is

continued in Section 4.4, where the details from the initiali-

zation section for fuel_temp_ are given. These details are

further refined in Section 4.5, where the code corresponding to

the chunks shown in Section 4.4 is given. The final section

(Section 4.6) evaluates the qualities of LPM against the goals

originally outlined in Section 2.1.

4.1. Algorithm in the notation of the SRS

Section 3.6 shows the ODE that represents one of the instance

models (IM1) for FP. In addition to this ODE, FP is required to

solve two other ODEs (IM2 and IM3). Fig. 7 is an excerpt from

the LPM, which gives the time-stepping algorithm for solving

these ODEs. All the ODEs, termed Equations 1.1e1.3 in Fig. 7,

are solved by using the same generic framework developed in

the original theory manual. As mentioned previously, given

the goal of abstraction, the numerical algorithm is not pre-

sented in the SRS, but rather in the LPM. The algorithm uses

the subscript k to indicate the current time step. Full details of

the instanced models can be found in the work of Koothoor

[16].

The ODEs are solved in function fuel_temp_, a high-level

view of which is given in Fig. 8. This figure is written by

using the familiar notation of the SRS, but subscripts are

added to reflect the numerical algorithm given in Fig. 7. The

list of arguments for fuel_temp_ is long because of the

requirement of passing common block variables for the orig-

inal FORTRAN subroutine as input arguments to the C code

implementation of fuel_temp_.

The overall control structure of fuel_temp_ is divided into

two sections depending on the value of the input init_flag:

1. Initialization section (�init flag ¼¼ 1): In this section, the

initial steady-state values of the variables are found.

2. Dynamic section (�init flag ¼¼ 0): In this section, the tran-

sient values of the variables are determined.
4.2. Function fuel_temp_

The view of the function in the previous section shows the

connection to the SRS and the numerical algorithm decisions,

but it is not in the notation of the implementation language

(C). Fig. 9 shows the translation of the function interface from

Fig. 8 into C. To make it easier for the reviewer to understand

the code, we present the C function using stepwise refinement

[42]. That is, first, the overall function is developed with the

http://dx.doi.org/10.1016/j.net.2015.11.008
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details abstracted out and replaced by chunks. As shown in

Fig. 9, the chunks are the initialization section (chunk 15) and

the dynamic section (chunk 53). In the next refinement,

shown in Section 4.4, we provide further details of these

chunks, with the details themselves including additional

chunks, whenever appropriate. The refinement is complete

when all of the bottom level chunks are written in C code.

Fig. 9 shows how the SRS notation of the variables is

changed to programming notation. Unlike the SRS, in which a

wide variety of mathematical symbols and subscripts can be

used, the C code is limited to the ASCII character set. We pass

the input parameters for fuel_temp_ by reference, since this is

the C equivalent of how we handled the variables in the

original FORTRAN code.

4.3. Naming conventions and traceability back to SRS

Comparing Figs. 8 and 9 implicitly shows how mathematical

symbols such as Dt are translated into C code variables such as

�delta. However, this information is important enough that the

traceability between representations in the SRS and the C

code needs to be made explicit. As Kelly [12] observed, for

scientists to have confidence that their implementation

matches their theory, they want variable names that are

clearly “tied to the science they represent.” Fig. 10 shows a
sample of the explicit mapping between the SRS symbols and

their C representation for FP. Items under the parameter col-

umn give the variables used in the computer code, while items

under the store column give the mathematical notation for

the respective variables.

Some of the variables that are passed as arguments to the

fuel_temp_ function are input variables, while the others act as

both inputs and output. The interpretation of the meaning of

the variable is given by the status of init_flag. The first vari-

ables listed at the top of the input lists in Fig. 10, such as �r f

and �h p (seen in DD11 and DD19 from Section 3.5), represent

numerical algorithm parameters, physical quantities, and

material properties that are constant for the duration of the

simulation; they are the same each time fuel_temp_ is run. The

interpretation of variables at the bottom of the input lists,

such as �h g and �t 1, changes depending on the context. As

their value on the first run through the algorithm (*init flag≡1)
does not matter, Fig. 10 shows it as “arbitrary.” After initiali-

zation, these variables are input as their values at the current

time step (k). The meaning of the output variables in Fig. 10

also changes depending on the status of init_flag. When the

output comes after the first run (*init flag≡1), it corresponds to
the value at the first time step (k ¼ 0). After the initialization,

the values correspond to the next time step (kþ 1).

http://dx.doi.org/10.1016/j.net.2015.11.008
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4.4. Initialization section

Fig. 11 shows the expansion of the initialization section chunk

identified by number 15, which is first mentioned in the high-

level view of function fuel_temp_ in Fig. 9. As was mentioned

previously, the details of the algorithm and the code are

described in a stepwise manner. Chunk 15 gives the details of

the initialization section using a mix of code, such as the

initialization of �n and pi, and further chunks. The main body

of the initialization shows the steps in the initialization as

chunks, which is later refined to code.
4.5. Refinement into chunks

Fig. 12 shows an example of the expansion of one of the

chunks from the initialization section chunk from Fig. 11. In
Fig. 9 e High-level view of fuel_temp_ function.
this case, the C code is given for calculating the heat-transfer

coefficient (hc) and the gap conductance (hg), identified as

chunk 21. The data definition for hg is given in Section 3.5 as

DD19. Fig. 12 shows that when a concept is introduced in the

LPM, the data definition equation from the SRS is repeated.

This is intended to make verification easier. When the equa-

tions of the data definitions and the code implementing them

are presented together, the lines of code can be compared to

the definition and the correctness of the implementation can

be checked.
Fig. 10 e Example of the mapping between SRS names and

the code. SRS, software requirements specification.
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4.6. Evaluation of the LPM

LP makes the design and logic behind the code understand-

able to a human reader. The LPM achieves the qualities of

good documentation (mentioned in Section 2.1), as described

below:

Complete: While developing the LP source file, we divided

the main algorithm of the program into smaller parts, which

contain explanation, definitions, and implementation. As all

the theory and numerical algorithms necessary for the

implementation are presented before the coding is done, the

quality of completeness can be achieved. The LPMmay also be

verified to ensure that every instanced model from the SRS is

addressed.

Consistent: To improve consistency, the naming conven-

tions of the variables have been given during the design of the

algorithm. As we developed the code following the naming

conventions, the probability of inconsistencies is lower. Con-

sistency is also improved since each termwas developed as an

individual chunk only once and then reused wherever

necessary. As shown in Fig. 12, chunk 21 is used in both
Fig. 12 e Excerpt from LPM showin
chunks 15 and 60. As Section 4.3 shows, consistency between

the SRS symbols and the code can be explicitly documented.

Modifiable: As implementation of each term is only once,

the task of modification becomes easier. If in the future, the

implementation has to be changed, then only that chunk

consisting of the code has to be modified. As repetition is

avoided, consistency is not affected by the modification.

Furthermore, as traceability and consistency are maintained,

the modifiability is enhanced.

Traceable: For traceability between the components of the

LPM, each equation, definition, and table has been labeled and

referenced wherever necessary in the document. In LP, the

program is developed as a web of interconnected chunks. The

LP tools automatically assign a number to each chunk.When a

chunk is used somewhere in the development of an algorithm

or in the implementation of an instance model, the LP tools

automatically generate a hyperlink to the place where the

chunk is being used. Additionally, at the place where the

chunk is being called, the LP tools generate a reference to the

number of the chunk that gives the code for the definition. For

traceability between the LPM and the SRS, cross referencing is

extensively used between the two documents.
g the calculation of hc and hg.
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Unambiguous: As we developed each term or model only

once as a chunk and reused wherever necessary, there is little

chance of having two different interpretations for the same

definition. Because everything behind the implementation is

provided in detail, the chances of having two different in-

terpretations through QA reviews can be reduced.

Correct: Because we developed LP in connection with the

SRS, checking for correctness becomes easier. Before imple-

menting each term, the definition of the term is taken from

the SRS and is given again in the LP document, as shown in

Fig. 12. This way of implementing each term as a chunk in

connection with SRS aids in checking whether the program is

implementing each component of the SRS correctly. Confi-

dence in correctness is built by verifying that every line of

code traces back to one of the following: a description of the

numerical algorithm (in the LPM), a data definition, an

instance model, an assumption, or a value from the auxiliary

constants table in the SRS.

Verifiable: The quality of verifiability is improved because

all the necessary information behind the implementation,

such as the development of numerical algorithms, solution

techniques, assumptions, and the program flow is given. As

traceability between the SRS and LPM has been maintained,

compliance of the design and implementation with re-

quirements can be checked. Because documentation of both

the design and code is in the same document, it is sufficient

for the verifier to have the SRS and LPM to confirm the cor-

rectness of the software. Code reading is a key activity for

scientists verifying their code [12]. The understandability of LP

is a great benefit for code-reading activities.

Abstract: The complexity of the code is managed via

abstraction. Because of stepwise refinement, the amount of

code that needs to be understood and verified at any step is

small. This provides a separation of concerns so that re-

viewers can just focus on the details in front of them.

Achieving the above qualities implies that the LPM assists

in achieving reliability, usability, maintainability, reusability,

understandability, and reproducibility, as outlined in Section

1. As a final note on the LPM, the quality of reproducibility is

also improved through the use of a makefile for the build

system for FP [16]. Themakefile explicitly records the FORTAN

compilation option -fno-automatic, which is necessary so that

variables used within a subroutine maintain their values be-

tween successive calls. Without the make file to record this

information, a future user would find it difficult to reproduce

our results. We know this because this information was

lacking in the original documentation we received; therefore,

we could not proceed with the project until we rediscovered

the compiler switch for ourselves.
5. Concluding remarks

The importance of SC software for nuclear safety analysis has

been recognized by the creation of standards and guidelines

related to QA. However, standards specifying SC software

need to provide more detail. It is not enough to say that a

document should be complete, consistent, correct, and

traceable; the practitioners need guidance on how to achieve

these qualities. This paper provides this guidance in the form
of an SRS template and an LPM. The value of the new approach

is seen through a case study in which 27 issues of incom-

pleteness and inconsistency were uncovered in the previous

documentation. These issues mean that the previous docu-

mentation was not verifiable and that it had inadequate

traceability to the implementation.

Although some of the problems in the original documen-

tation for the case study would likely have been found with

any effort to redo the documentation, the systematic and

rigorous process proposed here is intended to build confi-

dence that the methodology itself improves quality. The pro-

posed SRS template assists in systematically developing the

requirements document. The template helps in achieving

completeness, as sections of it act as a checklist for the

developer and force him or her to fill in the necessary infor-

mation. As the template is developed by following the prin-

ciple of separation of concerns, each section can be dealt with

individually, and the document can be developed in detail by

refining from goals to instanced models. In this way, the

proposed template provides guidelines for documenting the

requirements by suggesting an order for filling in the details,

thus reducing the chances of missing information. Verifica-

tion of the documentation involves checking that every

symbol is defined; that every symbol is used at least once; that

every equation either has a derivation, or a citation to its

source; that every general definition, data definition, and

assumption is used by at least one other component of the

document; and, that every line of code either traces back to a

description of the numerical algorithm (in the LPM), to a data

definition, to an instance model, to an assumption, or to a

value from the auxiliary constants table in the SRS.

In all software projects, there is a danger of the code and

documentation getting out of sync, which seems to have been

a problem in the original version of FP. LP, together with a

rigorous change-management policy, mitigates this danger.

LPM develops the code and design in the same document

while maintaining traceability between them and back to the

SRS. As changes are proposed, their impact can be determined

and assessed. This implies that the cost of recertification can

be made reasonable when LP is employed.

The current project documents an existing project, but the

same quality of improvementsmay be achievable for a project

developed from “scratch.” The templates are designed for

maintainability and reusability; therefore, they will support

themigration of the project over time. Although requirements

in SC software tend to emerge over the course of the project

[8], a commonality analysis usually shows that the re-

quirements fit within the same program family [11]. Moreover,

onemust remember that here we are faking a rational process

[14]. The development processmay go down some false paths,

but the final documentation and implementation can appear

to follow a straight line.

One potential shortcoming of the proposed approach is its

reliance on human beings. Following the SRS template and

keeping the LP code and documentation in sync should pro-

duce high-quality software, but there is a burden on the de-

velopers and reviewers to pay attention to details. To reduce

the burden on the human users, future work is planned.

Additional tool support beyond just the LP tools can be

incorporated into the process. Just as a compiler can check
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that all variables have been initialized, the new tools can

check the SRS for completeness and consistency and verify

that rules, such as the one that requires that all symbols are

defined, is enforced. Code-generation techniques can be used

to generalize the idea of LP from the code to cover all software

artifacts. A domain-specific language can be designed for

capturing mathematical knowledge for families of SC soft-

ware to reduce the burden on developers. For instance, any

repetition of the SRS material in the LPM, such as that shown

in Section 4.5, can automatically be generated, rather than

relying on a manual process. Ideally, code generation can be

used to transform portions of the SRS requirements directly

into code. Furthermore, generation techniquesmay be used to

generate documentation to suit the needs of a particular user.

For instance, details on the proof or derivation of equations

can be removed for viewers using the software for mainte-

nance purposes, but added back in for reviewers verifying the

mathematical model. The user can specify the “recipe” for

their required documentation using the developed domain-

specific language.

Tool supportwillmake the process easier, but practitioners

should not wait. The document-driven methods presented

here are feasible today and should be employed now to facil-

itate the certification of SC software used for nuclear safety

analysis and design. If an approach such as that described in

this paper becomes standard, then thework loadwill decrease

over time with reuse of documentation and as practitioners

become familiar with the templates, rules, and guidelines.
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