Commonality and Requirements Analysis for Mesh Generating Software

Spencer Smith and Chien-Hsien Chen

Computing and Software Department, McMaster University
E-mail: smiths@mcmaster.ca

Abstract several interesting challenges during the predesign step for
mesh generators that make this analysis different from the
Mesh generation has been a mature subject for over aanalysis of other types of software. The details of the com-
decade, and the procedure of generating meshes has longnonality and requirements analyzes for mesh generators are
been automated to become mainly the responsibility of soft-presented in Sections 5 and 6, respectively. The final sec-
ware. However, like other scientific software, mesh genera-tion, Section 7, contains concluding remarks and mentions
tors are mostly developed by domain experts who are lack-directions for future work.
ing the training of proper software development methodolo-
gies. As a result, this type of software is often observed to be
difficult to verify, hard to maintain, inflexible, inextensible,
and consequently hard to reuse.
Presented in this work is our proposed solution to im- 2. Mesh Generating Software
prove the software quality by applying software engineer-
ing methodologies, in particular commonality and require-
ments analysis. The significance of a useful documentation
system is also emphasized in our work. Hence, the designs

of each documentation, produced during a design stage, A Mesh is a discretization of a geometric domain into
will also be presented. small simple shapes, such as line segments in 1D, trian-

gles or quadrilaterals in 2D, tetrahedral or hexahedra in 3D.
Meshes are popular in many application areas. For instance,
in geography and cartography, meshes are used to give com-
pact and precise representations of terrain data [4]. In com-
puter graphics, most objects are first reduced to meshes be-
Software engineering methodologies have been gainingfore being rendered to the screen. The principal application
acceptance for many different types of software, such asof interest for the current study is the finite element method,
business applications, real-time systems and safety criticalvhere meshes are essential in the numerical solution of par-
systems. Unfortunately, scientific computing software has tial differential equation arising in physical simulation [4].
not yet received all of the benefits from the latests advances
in software engineering. This paper will show that the de- A simple 2D mesh of quadrilateral elements, which
velopment of scientific software, in particular mesh generat- could be used for analysis of a solid mechanics problem,
ing software, can greatly benefit from the use of such soft- is illustrated in Figure 1. The files created by a mesh gen-
ware engineering methodologies as commonality analysiserator must describe the following: how the domain is de-
and requirements analysis. Moreover, research in the fieldcomposed into quadrilateral cells; the boundary conditions
of software engineering will also benefit by tackling some on the domain, with respect to applied tractiongy(7..),
of the unique challenges that come up during an analysis ofprescribed displacements.§. A,) and fixity (e.g. roller
scientific software. versus pinned versus free); and the material properties. The
Section 2 provides an overview of mesh generating sys-mesh shown in Figure 1 is an example of a structured mesh
tems that provides the background for later discussion offor a rectangular domain. In many practical problems the
the system. In Section 3 the question of why common- domain does not have such a simple geometry and the cell
ality and requirements analysis benefit mesh generators igopology is no longer regular, which means an unstructured
addressed. Research in the field of software engineeringnesh must be adopted. More detail on meshes can be found
benefits as well because, as Section 4 discusses, there amsewhere [4].

1. Introduction

¥ iy i, (I;—» job once, do it well, and let future developers benefit from
L ¥ ¥ - i the expertise of their predecessors.
2 Y ¥ o T Although there are many examples of mesh generating
3 . * T systems, following different design paradigms, there is little
6 7 i 15 1" indication of anyone using standard and systematic methods

to elicit, document, classify and analyze requirements. Soft-
ware engineers generally advocate gathering and analyzing
requirements in advance of building any software system

w Z] 3 H 11

@ G i) (& (i)

] . g ¥ ¥ because it is much easier and cheaper to correct mistakes
= 71; 8, € ifli :i;?i = and misconceptions at the beginning of the process than it
i 2L haa 4 is to try and fix things during implementation and main-

tenance. The ultimate success of any project depends on
the quality of the requirements. During the process of re-

In the majority of cases, the tedious preparation and quirement gathering, the requirements identified need to be
checking of a mesh are too demanding to do manually, es-Specified in a document, called a software requirement spec-
pecially when the model description contains several thou-ification (SRS). In terms of contents, a SRS should include
sand or more elements. Therefore, automatic generatiorthe external behavior of the system, the constraints placed
of meshes, using a mesh generator, is of obvious practi-on the implementation, the forethought about the life cycle
cal value for reducing the workload. As a result, the user of the system, and the acceptable response of the undesired
will only need to concentrate on a few input parameters events [7]. In terms of quality, a SRS should be correct,
and rely on a mesh generator to produce a corresponding/nambiguous, complete, consistent, modifiable, verifiable,
mesh. The occurrence of human errors can thus be greatlyand traceable [3]. In the case of mesh generating systems
diminished [11]. Given the importance of mesh generators, there is apparently no examples of SRS documentation. The
careful thought should occur before one proceeds to the im-absence of such documentation has the following conse-
plementation of the system. quences:

Fig 1.1.4b - Physical Attributes

e Practitioners argue over the relative merits of different
designs based on their own implicit requirements. A
developer may criticize a design because it is not effi-
cient, but this criticism would not be justified if the de-
signer clearly started out with requirements that clearly
stated that precision, maintainability and portability
are more important than efficiency. Design inevitably
involves tradeoffs between different requirements, but

3. Why is Predesign Analysis Necessary?

The predesign analysis that is advocated here consists
of a commonality analysis and a requirements analysis. A
commonality analysis is conducted to answer the question
of whether the software should be designed as a program
family. A program family is defined in [8] as a “set of pro-

grams whose common properties are so extensive that it is
advantageous to study the common properties of the pro-
grams before analyzing individual members”. Most useful
software exists in many versions. The contributing factors
may be the variation in application demands, the continu-
ing improvement of technologies, the varieties of different
algorithms, and so on. Instead of building those similar pro-
grams in the ignorance of their existence of one another, one
should take the advantage of developing them as a family.
The detailed analysis of why mesh generating software
is well suited to development as a program family is post-
poned until Section 5.1. However, the idea has intuitive ap-
peal when one considers the proliferation of mesh generat-
ing software. The software systems have much in common
as they all produce mesh data, but they differ in the shape

because the requirements are not documented, anyone
can criticize any design by “picking on” a requirement
that it was not designed to address.

¢ Verification and validation (V & V) are important top-

ics in scientific computing, but how can an implemen-
tation be verified or validated without knowing what it

is being verified and validated against? Clear require-
ments are necessary to know what the system should
be inspected and tested for. Moreover, current V & V
efforts focus on functional requirements, but it is the
nonfunctional requirements, like accuracy, efficiency,
portability etc., that often separate one design from an-
other.

of the original domain, in the types of elements used, in 4- Challenges for Predesign Analysis of Mesh

the field of application of the resulting mesétc. Rather
than have many independent programmers working on very

Generators

similar problems, it makes sense to investigate where the The previous section explained how mesh generating
commonalities lie, extract that information, and then do the systems can benefit from software engineering methodolo-

gies. This benefit actually goes in both directions, as re-
search in software engineering can benefit by tackling the
challenges presented by mesh generating systems that are
less present in other types of software systems. Some ex-
amples of these challenges include the following:

e Software engineers often advocate the use of formal
methods, which consist of using mathematical tech-
nigues and notations to specify qualities and attributes
of the software. Mesh generators are based on the field
of computational geometry, which also advocates the
use of mathematics. The challenge is to bridge the
gap of communication between these fields, but the ex-
citing thing is that both disciplines already “talk” in a
common language, the language of mathematics.

e A goal that many software engineers hope to reach
is the ability to proceed directly from specification to
code in an automatic manner. In general this is an ex-
ceedingly difficult problem to solve, but if the domain
of application is restricted, the problem may become
feasible. The field of scientific computation is a good
test bed or these kind of theories, because it consists of
well-defined problems.

e Most software engineering methodologies rely on the
use of discrete mathematics, but scientific computing,
including mesh generating, are problems that are de-
scribed using continuous mathematics. The challenge
of adopting methodologies to handle continuous data
is an interesting one.

5. Commonality Analysis

The first section below considers whether mesh gener-
ators should be developed as program families, by consid-
ering three hypotheses. The second section describes the
actual commonality analysis document and provides exam-
ples.

5.1. Program Family Hypotheses

As indicated in [10], there are three basic assumptions
underlying the production strategies of program families.
In other words, to see if we should adopt the strategy of de-
veloping a program family for this type of systems, we need
to see if what we are building meet the three hypotheses:

e The Redevelopement Hypothesis
This hypothesis requires that most software develop-
ment involved in producing the family should be rede-
velopement, which means that there should be a signif-
icant portion of the requirements, design, and codes in

common among the family members. For mesh gen-
erators, some members vary in their user interfaces or
output formats, while other parts of their systems are

very much alike. In some other cases when two mesh
generators have less in common, for example, when
they are used to generate different types of meshes
(e.g. structured mesh, unstructured mesh, or block-

structured mesh), one can still find common require-

ments, designs, and codes between them.

The Oracle Hypothesis

This hypothesis requires that the types of changes that
are likely to occur during the system’s lifetime be pre-
dictable. This is certainly the case for a mesh gener-
ator. The topic of mesh generation has long been ex-
plored, so there now exist many different variations for
this type of systems. Domain experts in this field can
help contribute in predicting the user’s requirements,
the types of the physical problems that we wish the
system to handle, the types of meshes to be produced,
and so on. One can also learn from other previously
implemented mesh generators to discover other possi-
ble variabilities.

The Organizational Hypothesis

According to the organizational hypothesis, the pro-
gram to be developed using the program family pro-
duction approach should be one that allow designers
and developers to organize the software, as well as the
development effort, in a way that the predicted changes
can be made independently. If this assumption holds,
then a predicted change will require changing only a
few modules in the system. Consequently, the effort in
producing the next version of the software can be min-
imized, which is the central goal of the program family
concept. This hypothesis, however, is more challeng-
ing for our system.

For some of the likely changes, such as the changes
in user interface, visualization, and output format, the
changes can be dealt with in an elegant way. How-
ever, for some other type of the changes, like the use
of different mesh generating algorithms and the use
of different optimization algorithms, the goal of re-
stricting the change within one module would be dif-
ficult to meet. A mesh-generating algorithm creates
the mesh, and the optimization algorithms modify the
mesh. They all assume, to an extensive level, the type
of mesh they create/modify. If we have the mesh infor-
mation stored in a module, many aspects of the mod-
ule, for example the mesh information it contains or
even the abstract data type it represents, are inevitably
assumed by these algorithms. So when a different al-
gorithm is used, it is often the case that the data stor-
age module will be the next immediate thing to change.

Beside the mesh data, different algorithms may require variability in Figure 3, we can see that it was discovered by
different user input information. So, a replacement of considering the proposed commonality in Figure 2.

an algorithm, in our case, can resultin massive changes

in many other modules.

The difficulty in organizing the system so that the pred- =m# 320 _
. . . Description Different MGG, may generate meshes of different elements.
icated changes can be made independently will be ONe refated Commenalicy | 150,
i i i i _ Related Parameter 460
pf the_mz_ijor obstacles in apply|_ng software engineer oy S st = G 933003
ing principles to mesh generating systems. The re-

search on this topic has begun [5]. Fig 3.1.1b - a Variability

5.2. The Document Parameter of Variations

The organization of the document basically follows the This section further specifies variabilities by quantifying
template proposed ir?[. We will look closely into some of them. Each item in this section specifies the range of the
the more interesting sections: commonality, variability, and values for one variability, and is presented in the standard
parameter of variations. form shown in Figure 4. As an example, the item in Figure

Each one of the commonalities, the variabilities, and the 4 gives the concrete information on the possible variation
parameters of variation has its unique item identification for its corresponding variability in Figure 3. The binding
number, so cross-referencing is possible. Also, the itemtime marks the date when the decision is made.
numbers were made purposely disperse to make easy future The structure in this section is identical with the one in
addition or deletion of any item. the variability section.

Another important point to note: the commonalities, the
variabilities, and the parameters of the variations were all
stated in terms of external behavior instead of the internal

.) A) ltem # 460
design and implementation, as stressed in [10]. Corresponding Var abilicy | 330
Range of Parameters Triangles, Quadrilateral
Binding Time Qe 23, 2002

Commonality Section

Fig 3.1.1c - a Parameter of Uariation

This section lists the assumptions that are true for all the
members in the family. To make the list accessible, every
commonality is organized into its relevant category, and to Relationship among Items from Different Sections
make the category easy to find, we list all the categories of
the commonalities at the beginning of the section.

Each commonality is presented in a uniform table as
shown in Figure 2. Some commonalities have correspond-
ing variability while some others do not.

The relationship between commonality, variability, and the
parameter of variation are:

1. Commonality vs. Variability - Some commonalities
have their variabilities, while some do not. Some vari-
abilities have corresponding commonalities and some

Trern # TZ0 other do not. However, while a commonality may have
Description A mesZshould have anly ane element type throughout its more than one Variabi”ty' ohe Vanab'“ty can have On'y
antire domain. .
Related Variability | 320, one commonality.
History Created — Qer, 21, 2002
Fig $.1.1a -~ a Comnonality 2. Variability vs. Parameter of variation - The relation-

ship between variability and parameter of variation is
Variability Section one-t(_)-o_ne. That is, given a var_iability, one parameter
of variation can be found, and vice versa.
This section contains all the changes expected in the capa-
bility of the family. This section also has structure, as in the
commonality section, and since most variabilities are de-
rived from certain commonalities, the structure found here
is usually very similar to the commonality section. The first section below summarizes the characteristics of
Each variability is presented in a standard form, as the system. Following this section the design decisions or
shown in Figure 3. If we take a closer look at this particular the example SRS for mesh generators are discussed.

6. Requirements Analysis

6.1. Characteristics of the system 6.2. Design Decisions of the SRS

The purpose of a SRS is to describe a proposed sys- I this section, major design decisions made in creating
tem appropriate'y_ Every System has its Characteristics_the SRS will be discussed. We will fiI’St diSCUSS the structure

When designing a SRS, these System_speciﬁc Characterisof the SRS for our mesh generator. Detail desigl’l decisions

tics should be taken into account so that the resulting SRSWill be discussed in the subsequent subsection.

is better suited for the system it describes. The characteris-

tics listed below are found for most of mesh generators andstryctural Design Decisions

would be taken into consideration in making design deci-
sions for our SRS.

The structure of the SRS will be discussed section by sec-

tion below.

Provision of the background concept/information is im-
portant

A mesh generator is a type of system that is not commonly
seen by majority of program developers whose technical
backgrounds are within Computer Science. Unless the do-
main experts are hired to do the programming jobs for this
type of system, the provision of its background information

is essential to facilitate the readers’ understanding about the
system requirements. Therefore for a mesh generator, a sec-
tion that introduces this information should constitute a ma-
jor part of the SRS.

There are many rules and conventions

For the type of system like a mesh generator, there are many
rules and conventions involved in preparing a correct mesh.
So a section including this information should be made ex-
plicit and placed appropriately in the SRS to facilitate a
readers’ frequent access.

System features can be used to categorize system'’s func-
tionalities

If well designed, a mesh generator can have each of its sys-
tem features in a well-defined boundary that does not over-
lap with other features. That is, each system feature can be
viewed as a process, since only one feature can be executed
at a time. So, every one of a mesh generator’s functional-
ities can easily fall into only one system feature. For this
reason, all of its functional requirements can be naturally
organized into the system features that they belong to.

User interfaces are major system capacities/features

For a mesh generator, its user interfaces such as user’s speci-
fication of input parameters and the generation of the output
files are major parts of the system features. So, it follows
that user interfaces for this type of system can be discussed
in terms of functional requirements.

e Section One - Introduction

Most formal documents begin with an introduction.
But what should the introduction of the SRS discuss?
In [1] and [9], the approach was taken to introduce
the system right from the beginning in a SRS, without
mentioning the purpose of the documents. Whereas
in [2] and [3], both the document and the system are
introduced together in the first section.

As for the SRS of the mesh generator, the general
aspect of the system information would definitely be
found in the later section. To keep the principle of
separation of concerns, it was decided that the intro-
duction on the system should be delayed to the section
on the general system information, and the first section
would only introduce the document.

Section Two - General System Description

After the introduction on the document, the next sen-
sible step is to introduce the system. The purpose of
the section is to provide background knowledge about
the system to help readers understand specific system
requirements. The information contained in this sec-
tion is meant to be stated at high enough level so that
other similar system can borrow this section with only
minor changes.

In [9], the general information about the system is scat-
tered in various different sections, which offers a less
compact organization and violates the separation of
concern principle. In [2] and [3], their overall system
description sections have confusing and/or redundant
subsections so that it is hard to distinguish between
subsections in terms of their contents.

Also, in many templates ([1, 2, 3]), major system
constraints are discussed in this section. Constraints
are one type of requirement, and would be address
later in system requirement section. To avoid redun-
dancy, constraints should be stated once in the SRS,
and should be in the system requirement section.

As the result, the SRS for the mesh generator takes
the skeleton of the general system description section

from [1] and removes the subsection where constraintsstated requirements. The usefulness of software engineer-
are discussed. ing methodologies does not end at the predesign stages. A
mesh generator can also benefit from methodologies for de-
e Section Three - Specific System Requirements composing the system into modules and for documenting
After the general system information section comes the interfaces of these modules [6].

the specific system requirement section. This is the

major section of the SRS, and all system requirement38 Acknowledgements

should be here and they should be easily found un-
der their relevant subsection. There are three types of
requirements, system constraints, functional require-
ment, and non-functional requirements. System con-
straints are more restrictive and are more stable in
comparison with other types of requirements. Rules
and conventions for preparing a mesh should fall into
this category.

The SRS of the mesh generator takes some of ideas
from [2] and [3]. In addition to system constraints,
there is one subsection for all the functional re-
quirements and one for non-functional requirements. [2]
The functional requirements section has its template
from [3] as those requirements are grouped into system
features. Note that the user interfaces are discussed asl[3l
system features.

[1]

[4]

e Section Four - Other System Issues
The idea of including some other supporting informa-
tion relevant to the system development in a SRS is
proposed in [9]. Examples of the materials included
in this section are open issue, off-the-shelf solution,
project risk, project cost and so on.

[5]

The SRS of the mesh generator adopts this practice
but only chooses some of the subsections that are
closely related to the process of developing the system.
To be consistent with the program family developing
methodology, we have a subsection named “Our Pro-
gram Family”. It was added here to provide a blueprint
of how the system will be extended. It delineates the
subset of the current requirements, and it also contains
projections on the future versions of the system.

[6]

[7]

7. Conclusions Remarks and Future Work [8]

This paper presented a case study where software engi-
neering methodologies were applied to a mesh generating [9]
system. The results of the commonality and requirements
analyzes highlight how valuable these exercises are to mesh
generating software. By identifying commonalities, much
of the redundant effort that occurs today could by elimi- [10]
nated. Moreover, an understanding of the requirements for
the system would end many arguments about the relative
merits of any one system. In the future, any mesh gener-
ator can be considered to be of high quality, if it meets its

The financial support of the Natural Sciences and En-
gineering Research Council (NSERC) and of Material and
Manufacturing Ontario (MMO) are gratefully acknowl-
edged.

References

IEEE Std. 1233|EEE guide for developing system re-
quirements specification$996.

ESA PSS-05-0 Issue 2ESA software engineering
standards issue,2991.

IEEE Std. 830JEEE recommended practice for soft-
ware requirements specificatiqri998.

Marshall Bern and Paul Plassmartesh generation
Handbook of Computational Geometry, Elsevier Sci-
ence, 2000.

Guntram Berti and Georg BadeBesign principles
of reusable software components for the numerical
solution of pde problemspresented at the the 14th
GAMM-Seminar Kiel on Concepts of Numerical Soft-
ware (January 23rd to 25th, 1998).

Chien-Hsien ChenA software engineering approach
to developing mesh generatoprslasters thesis, Mc-
Master University, Hamilton, Ontario, Canada, 2003.

Kathryn L. HeningerSpecifying software requirement
for complex system: New techniques and their appli-
cation IEEE Transactions on Software Engineering,
vol. 6, no. 1, pp. 2-13 (January 1980).

David ParnasOn the design and development of pro-
gram families IEEE Transaction on Software Engi-
neering, vol. 5, no. 2, pp. 1-9 (March 1976).

James & Suzanne RobertsoNplere requirements
specification template edition §.Atlantic Systems
Guild, 2000.

David M. Weiss and M. ArdisDefining families: The
commonality analysjsProceedings of the Nineteenth
International Conference on Software Engineering,
pp. 649-650 (1997).

