
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

10 Verification and Validation
Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

October 16, 2017



Verification and Validation Continued

Administrative details

Questions?

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 2/44



Administrative Details

GitHub issues for colleagues
I Assigned 1 colleague (see Repos.xlsx in repo)
I Provide at least 5 issues on their SRS

Reading week, no 741 classes

V&V template updated in repo

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 3/44



Administrative Details: Deadlines

SRS Issues Reading week Oct 10
V&V Present Week 06 Week of Oct 16
V&V Plan Week 07 Oct 25
MG Present Week 08 Week of Oct 30
MG Week 09 Nov 8
MIS Present Week 10 Week of Nov 13
MIS Week 11 Nov 22
Impl. Present Week 12 Week of Nov 27
Final Documentation Week 13 Dec 6

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 4/44



Administrative Details: Presentation Schedule

V&V Present
I Tuesday: Steven, Alexandre P., Alexander S.
I Friday: Geneva, Jason, Yuzhi

MG Present
I Tuesday: Xiaoye, Shusheng, Devi, Keshav, Alex P, Paul
I Friday: Yuzhi, Jason, Geneva, Alex S, Isobel, Steven

MIS Present
I Tuesday: Isobel, Keshav, Paul
I Friday: Shusheng, Xiaoye, Devi

Impl. Present
I Tuesday: Alexander S., Steven, Alexandre P.
I Friday: Jason, Geneva, Yuzhi

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 5/44



Questions?

Questions about SRS?

Questions about V&V?

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 6/44



White-box Testing

Intuitively, after running your test suites, what percentage
of the lines of code in your program should be exercised?

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 7/44



White-box Coverage Testing

(In)adequacy criteria - if significant parts of the program
structure are not tested, testing is inadequate

Control flow coverage criteria
I Statement coverage
I Edge coverage
I Condition coverage
I Path coverage

Examples that follow are from [1]

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 8/44



Statement-Coverage Criterion

Select a test set T such that every elementary statement
in P is executed at least once by some d in T

An input datum executes many statements - try to
minimize the number of test cases still preserving the
desired coverage

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 9/44



Example

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 10/44



Example

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 11/44



Weakness of the Criterion

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 12/44



Weakness of the Criterion

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 13/44



Edge-Coverage Criterion

Select a test set T such that every edge (branch) of the
control flow is exercised at least once by some d in T

This requires formalizing the concept of the control graph
and how to construct it

I Edges represent statements
I Nodes at the ends of an edge represent entry into the

statement and exit

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 14/44



Control Graph Construction Rules

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 15/44



Simplification

A sequence of edges can be collapsed into just one edge

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 16/44



Example: Euclid’s Algorithm

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 17/44



Example: Euclid’s Algorithm

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 18/44



Weakness

Do not discover the error (< instead of ≤)

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 19/44



Weakness

Do not discover the error (< instead of ≤)

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 19/44



i f c1 and c2 then
s t ;

e l s e
s f ;

// e q u i v a l e n t to

i f c1 then
i f c2 then

s t ;
e l s e

s f ;
e l s e

s f ;

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 20/44



Condition-Coverage Criterion

Select a test set T such that every edge of P ’s control
flow is traversed and all possible values of the constituents
of compound conditions are exercised at least once

This criterion is finer than edge coverage

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 21/44



Weakness

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 22/44



Path-Coverage Criterion

Select a test set T that traverses all paths from the initial
to the final node of Ps control flow

It is finer than the previous kinds of coverage

However, number of paths may be too large, or even
infinite (see while loops)

Loops
I Zero times (or minimum number of times)
I Maximum times
I Average number of times

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 23/44



The Infeasibility Problem

Syntactically indicated behaviours (statements, edges,
etc.) are often impossible

Unreachable code, infeasible edges, paths, etc.

Adequacy criteria may be impossible to satisfy
I Manual justification for omitting each impossible test

case
I Adequacy “scores” based on coverage - example 95 %

statement coverage

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 24/44



Further Problem

What if the code omits the implementation of some part
of the specification?

White box test cases derived from the code will ignore
that part of the specification!

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 25/44



Testing Boundary Conditions

Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

Some typical programming errors, however, just happen
to be at the boundary between different classes

I Off by one errors
I < instead of ≤
I equals zero

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 26/44



Criterion

After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

This applies to both white-box and black-box techniques

In practice, use the different testing criteria in
combinations

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 27/44



The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 28/44



The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 29/44



The Oracle Problem Continued

Determining what the right answer should be is not
always easy

I Scientific computing
I Machine learning
I Artifical intelligence

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 30/44



The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 31/44



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing [5, 4, 6])
I etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 32/44



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output

I Examples?
I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing [5, 4, 6])
I etc.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 32/44



Challenges Specific to Scientific Computing

Unknown solution

Approximation of real numbers

Nonfunctional requirements

Parallel computation

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 33/44



Mutation Testing for SC

Generate changes to the source code, called mutants,
which become code faults

Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

The adequacy of a set of tests is established by running
the tests on all generated mutants

Need to account for floating point approximations

See [3]

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 34/44



Specific SC V&V Approaches

Summary in [10]

Compare to closed-form solutions

Method of manufactured solutions [8]

Interval arithmetic [2]

Convergence studies

Compare to other program (parallel testing)

Can also consider using code inspection [7, 9]

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 35/44



Specific SC V&V NonFunctional

Installability, consider VMs

Portability, consider VMs, Docker, CI

Describe (rather than specify) impact of changing inputs
I Accuracy
I Performance
I Relative comparison

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 36/44



Validation Testing Report for PMGT

Prepared by Wen Yu

Do not know the correct solution, but know properties of
the correct solution

Automated correctness validation tests
I The area of each element is greater than zero
I The boundary of the mesh is closed
I Vertices in a clockwise order
I nc + nv − ne = 1
I ...

Visual correctness validation tests
I No vertex outside the input domain
I No vertex inside a cell
I No dangling edges
I All cells connected
I The mesh is conformal

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 37/44



Validation Testing Report for PMGT (Continued)

List and description of test cases

Test cases are labelled and numbered

Traceability to SRS requirements

Traceability to MG

Summary of results

Analysis of results
I Focus on nonfunctional requirements
I Speed

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 38/44



Test Plan From BlankProjectTemplate

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 39/44



References I

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Timothy Hickey, Qun Ju, and Maarten H. Van Emden.
Interval arithmetic: From principles to implementation.
J. ACM, 48(5):1038–1068, September 2001.

Daniel Hook and Diane Kelly.
Testing for trustworthiness in scientific software.
In Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering,
SECSE ’09, pages 59–64, Washington, DC, USA, 2009.
IEEE Computer Society.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 40/44



References II

U. Kanewala and J. M. Bieman.
Techniques for testing scientific programs without an
oracle.
In Software Engineering for Computational Science and
Engineering (SE-CSE), 2013 5th International Workshop
on, pages 48–57, May 2013.

Upulee Kanewala, James M. Bieman, and Asa Ben-Hur.
Predicting metamorphic relations for testing scientific
software: A machine learning approach using graph
kernels.
Software Testing Verification and Reliability, preprint,
2015.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 41/44



References III

Upulee Kanewala and Anders Lundgren.
Automated metamorphic testing of scientific software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
Chapman & Hall/CRC Computational Science, chapter
Examples of the Application of Traditional Software
Engineering Practices to Science, pages 151–174. Taylor &
Francis, 2016.

Diane Kelly and Terry Shepard.
Task-directed software inspection technique: an
experiment and case study.
In CASCON ’00: Proceedings of the 2000 conference of
the Centre for Advanced Studies on Collaborative
research, page 6. IBM Press, 2000.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 42/44



References IV

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Terry Shepard and Diane Kelly.
How to do inspections when there is no time.
In Proceedings of the 23rd International Conference on
Software Engineering, page 718. IEEE Computer Society,
2001.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 43/44



References V

W. Spencer Smith.
A rational document driven design process for scientific
computing software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
chapter Section I – Examples of the Application of
Traditional Software Engineering Practices to Science,
pages 33–63. Taylor & Francis, 2016.

Dr. Smith CAS 741, CES 741 Fall 2017: 10 Verification and Validation Continued 44/44


