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Administrative Details: Drasil Resources

Learn you a Haskell for Great Good

Drasil on GitHub

Design Language for Code Variabilities in Chapter 6 of
Brook’s thesis

Drasil Generated Examples

Drasil Haddock Documentation

Package Dependency Graph (at the bottom of the page)
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http://learnyouahaskell.com/
https://github.com/JacquesCarette/literate-scientific-software
https://macsphere.mcmaster.ca/handle/11375/25542
https://macsphere.mcmaster.ca/handle/11375/25542
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/docs/index.html
https://jacquescarette.github.io/Drasil/


Admin Details: VnV Presentations

Not everyone will do VnV presentations

Select 1 or 2 of the following:
I Specific functional system test cases
I Specific nonfunctional system test cases, such as

I Performance profile
I Usability testing

I SRS verification plan
I Automated testing and verification tools

I Profiling tools
I Continuous integration
I Code coverage
I Linters

We would like a variety of topics presented

If you are uncertain of your specific presentation plan,
please ask
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Admin Details: Proof of Concept Presentations

Deepen your understanding by jumping into
implementation

Identify a risk with your code and implement enough to
show you can resolve it

Looking for an actual demo with running code

Presentation
I Explicitly identify your risk
I Run your code
I Discuss your implementation

Simplify as much as necessary

Do not use this code in your actual implementation
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Administrative Details: Report Deadlines

System VnV Plan Oct 29
MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written deliverable, please
ask

You should inform your primary and secondary reviewers
of the extension

Two days after each major deliverable, your GitHub issues
will be due
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Admin Details: Presentation Schedule

Syst V&V Plan Present (15 min)
I Thurs, Oct 22: Ting-Yu, Mohamed, Naveen, Liz, Salah

Proof of Concept Demonstrations (15 min)
I Mon, Oct 26: Mohamed, Xuanming, Parsa, Gaby
I Mon, Nov 2: Sid, Shayan, Leila, Xingzhi, Liz
I Thurs, Nov 12: Salah, John

MG Present (10 minutes)
I Thurs, Nov 12: John, Tiago, Leila, Xuanming, Andrea

MIS Present
I Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi

Drasil Project Present (20 min each)
I Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 7/73



Presentation Schedule Continued

Test or Impl. Present (15 min each)
I Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
I Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
I Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago

4 presentations each

If you will miss a presentation, please trade with someone
else
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Questions?

Questions about V&V?

Questions about PoC?
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Goals of Testing

If our code passes all test cases, is it now guaranteed to
be error free?

Are 5000 random tests always better than 5 carefully
selected tests?
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Goals of Testing

To show the presence of bugs (Dijkstra, 1972)

If tests do not detect failures, we cannot conclude that
software is defect-free

Still, we need to do testing - driven by sound and
systematic principles
I Random testing is often not a systematic principle to use
I Need a test plan

Should help isolate errors - to facilitate debugging
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Goals of Testing Continued

Should be repeatable
I Repeating the same experiment, we should get the same

results
I Repeatability may not be true because of the effect of

the execution environment on testing
I Repeatability may not occur if there are uninitialized

variables
I Repeatability may not happen when there is

nondeterminism

Should be accurate
I Accuracy increases reliability
I Part of the motivation for formal specification

Is a successful test case one that passes the test, or one
that shows a failure?
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Test (V&V) Plan

Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?
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Test (V&V) Plan

Testing can uncover errors and build confidence in the
software

Resources of time, people, facilities are limited

Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring
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Description Rather Than Specification

Test cases are often phrased as Expected = Calculated
In scientific software you generally should not test for
equality
I Absolute error within tolerance
I Relative error within tolerance
I If comparing matrices or vectors, consider using norms of

residual

Even a specific tolerance often doesn’t make sense in a
scientific context
Often your plan should be to describe the error rather
than prescribe
I Plot of error versus problem size, or condition number,

or ...
I Consider summarizing multiple tests with the infinity

norm of the relative error (or similar)

Your description plan is part of your V&V plan!
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White Box Versus Black Box Testing

Do you know (or can you guess) the difference between
white box and black box testing?

What if they were labelled transparent box and opaque
box testing, respectively?
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White Box Versus Black Box Testing

White box testing is derived from the program’s internal
structure

Black box testing is derived from a description of the
program’s function

Should perform both white box and black box testing

Black box testing
I Uncovers errors that occur in implementing requirements

or design specifications
I Not concerned with how processing occurs, but with the

results
I Focuses on functional requirements for the system
I Focuses on normal behaviour of the system
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White Box Testing

Uncovers errors that occur during implementation of the
program

Concerned with how processing occurs

Evaluates whether the structure is sound

Focuses on abnormal or extreme behaviour of the system
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Dynamic Testing

Is there a dynamic testing technique that can guarantee
correctness?

If so, what is the technique?

Is this technique practical?
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Dynamic Versus Static Testing

Another classification of verification techniques, as
previously discussed

Use a combination of dynamic and static testing

Dynamic analysis
I Requires the program to be executed
I Test cases are run and results are checked against

expected behaviour
I Exhaustive testing is the only dynamic technique that

guarantees program validity
I Exhaustive testing is usually impractical or impossible
I Reduce number of test cases by finding criteria for

choosing representative test cases
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Static Testing Continued

Static analysis
I Does not involve program execution
I Testing techniques simulate the dynamic environment
I Includes syntax checking
I Generally static testing is used in the requirements and

design stage, where there is no code to execute
I Document and code walkthroughs (including rubber

duck debugging)
I Document and code inspections
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https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging


Manual Versus Automated Testing

What is the difference between manual and automated
testing?

What are the advantages of automated testing?

What is regression testing?
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Manual Versus Automated Testing

Manual testing
I Has to be conducted by people
I Includes by-hand test cases, structured walkthroughs,

code inspections

Automated testing
I The more automated the development process, the

easier to automate testing
I Less reliance on people
I Necessary for regression testing
I Test tools can assist, such as Junit, Cppunit, CuTest etc.
I Can be challenging to automate GUI tests
I Test suite for Maple has 2 000 000 test cases, run on 14

platforms, every night, automated reporting
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Continuous Integration Testing

What is continuous integration testing?
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Continuous Integration Testing

Information available on Wikipedia
Developers integrate their code into a shared repo
frequently (multiple times a day)
Each integration is automatically accompanied by
regression tests and other build tasks
Build server
I Unit tests
I Integration tests
I Static analysis
I Profile performance
I Extract documentation
I Update project web-page
I Portability tests
I etc.

Avoids potentially extreme problems with integration
when the baseline and a developer’s code greatly differ
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Continuous Integration Tools

Gitlab
I Example at Rogue Reborn
I Drasil

I Details of Travis CI steps in .travis.yml file
I Automated case study documentation, code and gen

code documentation
I Automated build of dependency graphs (bottom of

page)

Jenkins

Travis

Docker
I Eliminates the “it works on my machine” problem
I Package dependencies with your apps
I A container for lightweight virtualization
I Not a full VM
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https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/pipelines
https://github.com/JacquesCarette/Drasil
https://github.com/JacquesCarette/Drasil/blob/master/.travis.yml
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://www.docker.com/


Sample Nonfunctional System Testing

Stress testing - Determines if the system can function
when subject to large volumes

Usability testing

Performance measurement
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Sample Functional System Testing

Parallel: Determines the results of the new application are
consistent with the processing of the previous application
or version of the application
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Theoretical Foundations Of Testing: Definitions

P (program), D (input domain), R (output domain)
I P: D → R (may be partial)

Correctness defined by OR ⊆ D × R
I P(d) correct if 〈 d, P(d) 〉 ∈ OR
I P correct if all P(d) are correct

Failure
I P(d) is not correct
I May be undefined (error state) or may be the wrong

result

Error (Defect)
I Anything that may cause a failure

I Typing mistake
I Programmer forgot to test “x=0”

Fault
I Incorrect intermediate state entered by program
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Definitions Questions

A test case t is an element of D or R?

A test set T is a finite subset of D or R?

How would we define whether a test is successful?

How would we define whether a test set is successful?
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Definitions Continued

Test case t: An element of D

Test set T: A finite subset of D

Test is successful if P(t) is correct

Test set successful if P correct for all t in T
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Theoretical Foundations of Testing

Desire a test set T that is a finite subset of D that will
uncover all errors

Determining and ideal T leads to several undecideable
problems

No algorithm exists:
I To state if a test set will uncover all possible errors
I To derive a test set that would prove program

correctness
I To determine whether suitable input exists to guarantee

execution of a given statement in a given program
I etc.
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https://en.wikipedia.org/wiki/Undecidable_problem
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Empirical Testing

Need to introduce empirical testing principles and
heuristics as a compromise between the impossible and
the inadequate

Find a strategy to select significant test cases

Significant means the test cases have a high potential of
uncovering the presence of errors

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 33/73



Complete-Coverage Principle

Try to group elements of D into subdomains D1, D2, ...,
Dn where any element of each Di is likely to have similar
behaviour

D = D1 ∪ D2 ∪ ... ∪ Dn

Select one test as a representative of the subdomain

If Dj ∩ Dk = ∅ for all j 6= k , (partition), any element can
be chosen from each subdomain

Otherwise choose representatives to minimize number of
tests, yet fulfilling the principle

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 34/73



Complete-Coverage Principle
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White-box Testing

Intuitively, after running your test suites, what percentage
of the lines of code in your program should be exercised?
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White-box Coverage Testing

(In)adequacy criteria - if significant parts of the program
structure are not tested, testing is inadequate

Control flow coverage criteria
I Statement coverage
I Edge coverage
I Condition coverage
I Path coverage

Examples that follow are from [1]
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Statement-Coverage Criterion

Select a test set T such that every elementary statement
in P is executed at least once by some d in T

An input datum executes many statements - try to
minimize the number of test cases still preserving the
desired coverage
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Example
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Example
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Weakness of the Criterion
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Weakness of the Criterion
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Edge-Coverage Criterion

Select a test set T such that every edge (branch) of the
control flow is exercised at least once by some d in T

This requires formalizing the concept of the control graph
and how to construct it
I Edges represent statements
I Nodes at the ends of an edge represent entry into the

statement and exit
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Control Graph Construction Rules
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Simplification

A sequence of edges can be collapsed into just one edge
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Example: Euclid’s Algorithm
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Example: Euclid’s Algorithm
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Weakness

Do not discover the error (< instead of ≤)
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Weakness

Do not discover the error (< instead of ≤)
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i f c1 and c2 then
s t ;

e l s e
s f ;

// e q u i v a l e n t to

i f c1 then
i f c2 then

s t ;
e l s e

s f ;
e l s e

s f ;
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Condition-Coverage Criterion

Select a test set T such that every edge of P ’s control
flow is traversed and all possible values of the constituents
of compound conditions are exercised at least once

This criterion is finer than edge coverage
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Weakness
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Path-Coverage Criterion

Select a test set T that traverses all paths from the initial
to the final node of Ps control flow

It is finer than the previous kinds of coverage

However, number of paths may be too large, or even
infinite (see while loops)

Loops
I Zero times (or minimum number of times)
I Maximum times
I Average number of times
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The Infeasibility Problem

Syntactically indicated behaviours (statements, edges,
etc.) are often impossible

Unreachable code, infeasible edges, paths, etc.

Adequacy criteria may be impossible to satisfy
I Manual justification for omitting each impossible test

case
I Adequacy “scores” based on coverage - example 95 %

statement coverage
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Further Problem

What if the code omits the implementation of some part
of the specification?

White box test cases derived from the code will ignore
that part of the specification!
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Testing Boundary Conditions

Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

Some typical programming errors, however, just happen
to be at the boundary between different classes
I Off by one errors
I < instead of ≤
I equals zero
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Criterion

After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

This applies to both white-box and black-box techniques

In practice, use the different testing criteria in
combinations

Use testing tools for coverage metrics
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The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?
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The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe
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The Oracle Problem Continued

Determining what the right answer should be is not
always easy
I Scientific computing
I Machine learning
I Artifical intelligence
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The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 60/73



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output
I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing [5, 4, 6])
I etc.
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Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output
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testing [5, 4, 6])
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Challenges Specific to Scientific Computing

Unknown solution

Approximation of real numbers

Nonfunctional requirements

Parallel computation
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Mutation Testing for SC

Generate changes to the source code, called mutants,
which become code faults

Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

The adequacy of a set of tests is established by running
the tests on all generated mutants

Need to account for floating point approximations

See [3]
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Specific SC V&V Approaches

Summary of most points below in [10]

Compare to closed-form solutions

Method of manufactured solutions [8]

Interval arithmetic [2]

Convergence studies

Compare to other program (parallel testing)

Can also consider using code inspection
I [7, 9]
I Sample checklists
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Specific SC V&V NonFunctional

Installability, consider VMs

Portability, consider VMs, Docker, CI

Describe (rather than specify) impact of changing inputs
I Accuracy
I Performance
I Relative comparison

Usability
I Fairly simple standard survey
I Example
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Validation Testing Report for PMGT

Prepared by Wen Yu (here)

Do not know the correct solution, but know properties of
the correct solution

Automated correctness validation tests
I The area of each element is greater than zero
I The boundary of the mesh is closed
I Vertices in a clockwise order
I nc + nv − ne = 1
I ...

Visual correctness verification tests
I No vertex outside the input domain
I No vertex inside a cell
I No dangling edges
I All cells connected
I The mesh is conformal
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Validation Testing Report for PMGT (Continued)

List and description of test cases

Test cases are labelled and numbered

Traceability to SRS requirements

Traceability to MG

Summary of results

Analysis of results
I Focus on nonfunctional requirements
I Speed

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 67/73



Test Plan From BlankProjectTemplate

Add links to templates

For Unit VnV plan mention tools
I Linters
I Coding standard checkers (like flake8)
I unit testing frameworks
I Performance testing (like Valgrind)
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