
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

10 Verification and Validation
Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

November 27, 2020



Verification and Validation Continued

Start recording

Administrative details

Questions?

Nonfunctional software testing

Theoretical foundations of testing

Complete coverage principle

White box testing

Oracle problem

SCS Specific Ideas

Overview of template

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 2/73



Administrative Details: Drasil Resources

Learn you a Haskell for Great Good

Drasil on GitHub

Design Language for Code Variabilities in Chapter 6 of
Brook’s thesis

Drasil Generated Examples

Drasil Haddock Documentation

Package Dependency Graph (at the bottom of the page)

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 3/73

http://learnyouahaskell.com/
https://github.com/JacquesCarette/literate-scientific-software
https://macsphere.mcmaster.ca/handle/11375/25542
https://macsphere.mcmaster.ca/handle/11375/25542
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/docs/index.html
https://jacquescarette.github.io/Drasil/


Admin Details: VnV Presentations

Not everyone will do VnV presentations

Select 1 or 2 of the following:
I Specific functional system test cases
I Specific nonfunctional system test cases, such as

I Performance profile
I Usability testing

I SRS verification plan
I Automated testing and verification tools

I Profiling tools
I Continuous integration
I Code coverage
I Linters

We would like a variety of topics presented

If you are uncertain of your specific presentation plan,
please ask

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 4/73



Admin Details: Proof of Concept Presentations

Deepen your understanding by jumping into
implementation

Identify a risk with your code and implement enough to
show you can resolve it

Looking for an actual demo with running code

Presentation
I Explicitly identify your risk
I Run your code
I Discuss your implementation

Simplify as much as necessary

Do not use this code in your actual implementation

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 5/73



Administrative Details: Report Deadlines

System VnV Plan Oct 29
MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written deliverable, please
ask

You should inform your primary and secondary reviewers
of the extension

Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 6/73



Admin Details: Presentation Schedule

Syst V&V Plan Present (15 min)
I Thurs, Oct 22: Ting-Yu, Mohamed, Naveen, Liz, Salah

Proof of Concept Demonstrations (15 min)
I Mon, Oct 26: Mohamed, Xuanming, Parsa, Gaby
I Mon, Nov 2: Sid, Shayan, Leila, Xingzhi, Liz
I Thurs, Nov 12: Salah, John

MG Present (10 minutes)
I Thurs, Nov 12: John, Tiago, Leila, Xuanming, Andrea

MIS Present
I Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi

Drasil Project Present (20 min each)
I Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 7/73



Presentation Schedule Continued

Test or Impl. Present (15 min each)
I Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
I Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
I Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago

4 presentations each

If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 8/73



Questions?

Questions about V&V?

Questions about PoC?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 9/73



Goals of Testing

If our code passes all test cases, is it now guaranteed to
be error free?

Are 5000 random tests always better than 5 carefully
selected tests?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 10/73



Goals of Testing

To show the presence of bugs (Dijkstra, 1972)

If tests do not detect failures, we cannot conclude that
software is defect-free

Still, we need to do testing - driven by sound and
systematic principles
I Random testing is often not a systematic principle to use
I Need a test plan

Should help isolate errors - to facilitate debugging

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 11/73



Goals of Testing Continued

Should be repeatable
I Repeating the same experiment, we should get the same

results
I Repeatability may not be true because of the effect of

the execution environment on testing
I Repeatability may not occur if there are uninitialized

variables
I Repeatability may not happen when there is

nondeterminism

Should be accurate
I Accuracy increases reliability
I Part of the motivation for formal specification

Is a successful test case one that passes the test, or one
that shows a failure?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 12/73



Test (V&V) Plan

Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 13/73



Test (V&V) Plan

Testing can uncover errors and build confidence in the
software

Resources of time, people, facilities are limited

Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 14/73



Description Rather Than Specification

Test cases are often phrased as Expected = Calculated
In scientific software you generally should not test for
equality
I Absolute error within tolerance
I Relative error within tolerance
I If comparing matrices or vectors, consider using norms of

residual

Even a specific tolerance often doesn’t make sense in a
scientific context
Often your plan should be to describe the error rather
than prescribe
I Plot of error versus problem size, or condition number,

or ...
I Consider summarizing multiple tests with the infinity

norm of the relative error (or similar)

Your description plan is part of your V&V plan!
Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 15/73



White Box Versus Black Box Testing

Do you know (or can you guess) the difference between
white box and black box testing?

What if they were labelled transparent box and opaque
box testing, respectively?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 16/73



White Box Versus Black Box Testing

White box testing is derived from the program’s internal
structure

Black box testing is derived from a description of the
program’s function

Should perform both white box and black box testing

Black box testing
I Uncovers errors that occur in implementing requirements

or design specifications
I Not concerned with how processing occurs, but with the

results
I Focuses on functional requirements for the system
I Focuses on normal behaviour of the system

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 17/73



White Box Testing

Uncovers errors that occur during implementation of the
program

Concerned with how processing occurs

Evaluates whether the structure is sound

Focuses on abnormal or extreme behaviour of the system

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 18/73



Dynamic Testing

Is there a dynamic testing technique that can guarantee
correctness?

If so, what is the technique?

Is this technique practical?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 19/73



Dynamic Versus Static Testing

Another classification of verification techniques, as
previously discussed

Use a combination of dynamic and static testing

Dynamic analysis
I Requires the program to be executed
I Test cases are run and results are checked against

expected behaviour
I Exhaustive testing is the only dynamic technique that

guarantees program validity
I Exhaustive testing is usually impractical or impossible
I Reduce number of test cases by finding criteria for

choosing representative test cases

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 20/73



Static Testing Continued

Static analysis
I Does not involve program execution
I Testing techniques simulate the dynamic environment
I Includes syntax checking
I Generally static testing is used in the requirements and

design stage, where there is no code to execute
I Document and code walkthroughs (including rubber

duck debugging)
I Document and code inspections

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 21/73

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging


Manual Versus Automated Testing

What is the difference between manual and automated
testing?

What are the advantages of automated testing?

What is regression testing?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 22/73



Manual Versus Automated Testing

Manual testing
I Has to be conducted by people
I Includes by-hand test cases, structured walkthroughs,

code inspections

Automated testing
I The more automated the development process, the

easier to automate testing
I Less reliance on people
I Necessary for regression testing
I Test tools can assist, such as Junit, Cppunit, CuTest etc.
I Can be challenging to automate GUI tests
I Test suite for Maple has 2 000 000 test cases, run on 14

platforms, every night, automated reporting

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 23/73



Continuous Integration Testing

What is continuous integration testing?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 24/73



Continuous Integration Testing

Information available on Wikipedia
Developers integrate their code into a shared repo
frequently (multiple times a day)
Each integration is automatically accompanied by
regression tests and other build tasks
Build server
I Unit tests
I Integration tests
I Static analysis
I Profile performance
I Extract documentation
I Update project web-page
I Portability tests
I etc.

Avoids potentially extreme problems with integration
when the baseline and a developer’s code greatly differ

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 25/73

https://en.wikipedia.org/wiki/Continuous_integration


Continuous Integration Tools

Gitlab
I Example at Rogue Reborn
I Drasil

I Details of Travis CI steps in .travis.yml file
I Automated case study documentation, code and gen

code documentation
I Automated build of dependency graphs (bottom of

page)

Jenkins

Travis

Docker
I Eliminates the “it works on my machine” problem
I Package dependencies with your apps
I A container for lightweight virtualization
I Not a full VM

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 26/73

https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/pipelines
https://github.com/JacquesCarette/Drasil
https://github.com/JacquesCarette/Drasil/blob/master/.travis.yml
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://www.docker.com/


Sample Nonfunctional System Testing

Stress testing - Determines if the system can function
when subject to large volumes

Usability testing

Performance measurement

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 27/73



Sample Functional System Testing

Parallel: Determines the results of the new application are
consistent with the processing of the previous application
or version of the application

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 28/73



Theoretical Foundations Of Testing: Definitions

P (program), D (input domain), R (output domain)
I P: D → R (may be partial)

Correctness defined by OR ⊆ D × R
I P(d) correct if 〈 d, P(d) 〉 ∈ OR
I P correct if all P(d) are correct

Failure
I P(d) is not correct
I May be undefined (error state) or may be the wrong

result

Error (Defect)
I Anything that may cause a failure

I Typing mistake
I Programmer forgot to test “x=0”

Fault
I Incorrect intermediate state entered by program

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 29/73



Definitions Questions

A test case t is an element of D or R?

A test set T is a finite subset of D or R?

How would we define whether a test is successful?

How would we define whether a test set is successful?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 30/73



Definitions Continued

Test case t: An element of D

Test set T: A finite subset of D

Test is successful if P(t) is correct

Test set successful if P correct for all t in T

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 31/73



Theoretical Foundations of Testing

Desire a test set T that is a finite subset of D that will
uncover all errors

Determining and ideal T leads to several undecideable
problems

No algorithm exists:
I To state if a test set will uncover all possible errors
I To derive a test set that would prove program

correctness
I To determine whether suitable input exists to guarantee

execution of a given statement in a given program
I etc.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 32/73

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Undecidable_problem


Empirical Testing

Need to introduce empirical testing principles and
heuristics as a compromise between the impossible and
the inadequate

Find a strategy to select significant test cases

Significant means the test cases have a high potential of
uncovering the presence of errors

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 33/73



Complete-Coverage Principle

Try to group elements of D into subdomains D1, D2, ...,
Dn where any element of each Di is likely to have similar
behaviour

D = D1 ∪ D2 ∪ ... ∪ Dn

Select one test as a representative of the subdomain

If Dj ∩ Dk = ∅ for all j 6= k , (partition), any element can
be chosen from each subdomain

Otherwise choose representatives to minimize number of
tests, yet fulfilling the principle

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 34/73



Complete-Coverage Principle

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 35/73



White-box Testing

Intuitively, after running your test suites, what percentage
of the lines of code in your program should be exercised?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 36/73



White-box Coverage Testing

(In)adequacy criteria - if significant parts of the program
structure are not tested, testing is inadequate

Control flow coverage criteria
I Statement coverage
I Edge coverage
I Condition coverage
I Path coverage

Examples that follow are from [1]

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 37/73



Statement-Coverage Criterion

Select a test set T such that every elementary statement
in P is executed at least once by some d in T

An input datum executes many statements - try to
minimize the number of test cases still preserving the
desired coverage

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 38/73



Example

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 39/73



Example

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 40/73



Weakness of the Criterion

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 41/73



Weakness of the Criterion

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 42/73



Edge-Coverage Criterion

Select a test set T such that every edge (branch) of the
control flow is exercised at least once by some d in T

This requires formalizing the concept of the control graph
and how to construct it
I Edges represent statements
I Nodes at the ends of an edge represent entry into the

statement and exit

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 43/73



Control Graph Construction Rules

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 44/73



Simplification

A sequence of edges can be collapsed into just one edge

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 45/73



Example: Euclid’s Algorithm

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 46/73



Example: Euclid’s Algorithm

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 47/73



Weakness

Do not discover the error (< instead of ≤)

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 48/73



Weakness

Do not discover the error (< instead of ≤)

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 48/73



i f c1 and c2 then
s t ;

e l s e
s f ;

// e q u i v a l e n t to

i f c1 then
i f c2 then

s t ;
e l s e

s f ;
e l s e

s f ;

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 49/73



Condition-Coverage Criterion

Select a test set T such that every edge of P ’s control
flow is traversed and all possible values of the constituents
of compound conditions are exercised at least once

This criterion is finer than edge coverage

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 50/73



Weakness

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 51/73



Path-Coverage Criterion

Select a test set T that traverses all paths from the initial
to the final node of Ps control flow

It is finer than the previous kinds of coverage

However, number of paths may be too large, or even
infinite (see while loops)

Loops
I Zero times (or minimum number of times)
I Maximum times
I Average number of times

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 52/73



The Infeasibility Problem

Syntactically indicated behaviours (statements, edges,
etc.) are often impossible

Unreachable code, infeasible edges, paths, etc.

Adequacy criteria may be impossible to satisfy
I Manual justification for omitting each impossible test

case
I Adequacy “scores” based on coverage - example 95 %

statement coverage

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 53/73



Further Problem

What if the code omits the implementation of some part
of the specification?

White box test cases derived from the code will ignore
that part of the specification!

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 54/73



Testing Boundary Conditions

Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

Some typical programming errors, however, just happen
to be at the boundary between different classes
I Off by one errors
I < instead of ≤
I equals zero

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 55/73



Criterion

After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

This applies to both white-box and black-box techniques

In practice, use the different testing criteria in
combinations

Use testing tools for coverage metrics

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 56/73



The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 57/73



The Oracle Problem

Given input test cases that cover the domain, what are
the expected outputs?

Oracles are required at each stage of testing to tell us
what the right answer is

Black-box criteria are better than white-box for building
test oracles

Automated test oracles are required for running large
amounts of tests

Oracles are difficult to design - no universal recipe

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 58/73



The Oracle Problem Continued

Determining what the right answer should be is not
always easy
I Scientific computing
I Machine learning
I Artifical intelligence

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 59/73



The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 60/73



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output
I Examples?

I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing [5, 4, 6])
I etc.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 61/73



Strategies Without An Oracle

Using an independent program to approximate the oracle
(pseudo oracle)

Method of manufactured solutions

Properties of the expected values can be easier than
stating the expected output
I Examples?
I List is sorted
I Number of entries in file matches number of inputs
I Conservation of energy or mass
I Expected trends in output are observed (metamorphic

testing [5, 4, 6])
I etc.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 61/73



Challenges Specific to Scientific Computing

Unknown solution

Approximation of real numbers

Nonfunctional requirements

Parallel computation

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 62/73



Mutation Testing for SC

Generate changes to the source code, called mutants,
which become code faults

Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

The adequacy of a set of tests is established by running
the tests on all generated mutants

Need to account for floating point approximations

See [3]

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 63/73



Specific SC V&V Approaches

Summary of most points below in [10]

Compare to closed-form solutions

Method of manufactured solutions [8]

Interval arithmetic [2]

Convergence studies

Compare to other program (parallel testing)

Can also consider using code inspection
I [7, 9]
I Sample checklists

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 64/73

http://www.cs.nott.ac.uk/~pszcah/G53QAT/fi.pdf


Specific SC V&V NonFunctional

Installability, consider VMs

Portability, consider VMs, Docker, CI

Describe (rather than specify) impact of changing inputs
I Accuracy
I Performance
I Relative comparison

Usability
I Fairly simple standard survey
I Example

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 65/73

https://measuringu.com/sus/
https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/blob/master/Doc/TestPlan/TestPlan.pdf


Validation Testing Report for PMGT

Prepared by Wen Yu (here)

Do not know the correct solution, but know properties of
the correct solution

Automated correctness validation tests
I The area of each element is greater than zero
I The boundary of the mesh is closed
I Vertices in a clockwise order
I nc + nv − ne = 1
I ...

Visual correctness verification tests
I No vertex outside the input domain
I No vertex inside a cell
I No dangling edges
I All cells connected
I The mesh is conformal

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 66/73

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/Examples/MeshGenToolbox/doc/testingApp.pdf


Validation Testing Report for PMGT (Continued)

List and description of test cases

Test cases are labelled and numbered

Traceability to SRS requirements

Traceability to MG

Summary of results

Analysis of results
I Focus on nonfunctional requirements
I Speed

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 67/73



Test Plan From BlankProjectTemplate

Add links to templates

For Unit VnV plan mention tools
I Linters
I Coding standard checkers (like flake8)
I unit testing frameworks
I Performance testing (like Valgrind)

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 68/73



References I

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Timothy Hickey, Qun Ju, and Maarten H. Van Emden.
Interval arithmetic: From principles to implementation.
J. ACM, 48(5):1038–1068, September 2001.

Daniel Hook and Diane Kelly.
Testing for trustworthiness in scientific software.
In Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering,
SECSE ’09, pages 59–64, Washington, DC, USA, 2009.
IEEE Computer Society.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 69/73



References II

U. Kanewala and J. M. Bieman.
Techniques for testing scientific programs without an
oracle.
In Software Engineering for Computational Science and
Engineering (SE-CSE), 2013 5th International Workshop
on, pages 48–57, May 2013.

Upulee Kanewala, James M. Bieman, and Asa Ben-Hur.
Predicting metamorphic relations for testing scientific
software: A machine learning approach using graph
kernels.
Software Testing Verification and Reliability, preprint,
2015.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 70/73



References III

Upulee Kanewala and Anders Lundgren.
Automated metamorphic testing of scientific software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
Chapman & Hall/CRC Computational Science, chapter
Examples of the Application of Traditional Software
Engineering Practices to Science, pages 151–174. Taylor &
Francis, 2016.

Diane Kelly and Terry Shepard.
Task-directed software inspection technique: an
experiment and case study.
In CASCON ’00: Proceedings of the 2000 conference of
the Centre for Advanced Studies on Collaborative
research, page 6. IBM Press, 2000.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 71/73



References IV

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Terry Shepard and Diane Kelly.
How to do inspections when there is no time.
In Proceedings of the 23rd International Conference on
Software Engineering, page 718. IEEE Computer Society,
2001.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 72/73



References V

W. Spencer Smith.
A rational document driven design process for scientific
computing software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
chapter Section I – Examples of the Application of
Traditional Software Engineering Practices to Science,
pages 33–63. Taylor & Francis, 2016.

Dr. Smith CAS 741, CES 741 Fall 2020: 10 Verification and Validation Continued 73/73


