THE PROFESSION

The Chimera of
Software Quality

Les Hatton, Kingston University

espite years of computing
progress, today’s systems ex-
perience spectacular and all-
too-frequent crashes, while
many enormously expensive
projects fail to produce anything use-
ful. Of equal importance, and poten-
tially more damaging, are the mis-
leading smaller defects we tend to miss.

From time to time, we must remind
ourselves that the underlying quality
of the software that our results and
progress increasingly depend on will
likely be flawed and even more depen-
dent on independent corroboration
than the science itself. Many scientific
results are corrupted, perhaps fatally
s0, by undiscovered mistakes in the
software used to calculate and present
those results.

COMMERCIAL APPLICATION
AREAS

I’ve spent the past 30 years analyz-
ing the quality of software-controlled
systems. In every area I’ve looked at
or worked in, often previously undis-
covered software defects run rife. In
scientific modeling, these defects can
lead to highly misleading results.
Twelve years ago, with a coauthor, I
published the results of a large study
of high-quality signal-processing soft-

m Computer

ware in the oil industry. Previously
undiscovered defects had effectively
reduced accuracy in this data from six
significant figures to between one and
two. However, this data is used to site
oil wells and must be of at least three-
significant-figure accuracy to perform
this task, effectively randomizing the
decision-making progress.

We could only discover this because
the same software had accidentally
evolved nine different times in differ-
ent companies in commercial competi-
tion. Within five years of this, seven of
these companies had been bought out
or disappeared, so we no longer know
the problem’s scale, although I hardly
think it can have improved simply
because we can no longer measure it.

A parallel experiment suggested that
similar problems afflict other scientific
modeling areas. Sometimes these
defects reveal how smoothed our simu-
lations actually are. Thirty years ago,
when translating to a sigma coordinate
system, I found and corrected an alarm-
ing defect in the standard daily fore-
casting model at the United Kingdom
Meteorological Office. The defect
zeroed the nonlinear terms in the gov-
erning Navier-Stokes equations every
other time step, and these terms gener-
ate the whole of the weather forecast.

When I reran the corrected model,
the differences proved almost impos-
sible to see. Today, we can perform
mutation tests to assess this level of
sensitivity, but they are rarely used.
On too many occasions, an elemen-
tary particle physicist here or a
specialist in anisotropic wave propa-
gation there has forcefully told me
that “our software contains no bugs
because we have tested it.” This atti-
tude troubles me. I am a computa-
tional fluid dynamicist by training,
and I know that verifying the science
part of any model is relatively easy
compared with producing a reliable
computer simulation of that science.
However, I still can’t convince most
scientists of this even though I belong
to the same club.

DEFINING A QUALITY SCALE
Computer science regrettably oper-
ates in a largely measurement-free
zone. Researchers do few experiments,
and even fewer publish their results.
Researchers such as Walter Tichy in
Karlsruhe have noted this over the
years. As a result, software develop-
ment isn’t an engineering industry, but
a fashion industry populated by
unquantifiable statements and driven
by marketing needs. We are exhorted
to develop using JavaBeans, OO, or
UML because these technologies will
supposedly fulfill our wildest dreams.
This is arrant nonsense. Our exper-
iments to date suggest that by far the
biggest quality factor in software
remains the developer’s ability, and, in
most experiments, analysts regularly
record variations of a factor of 10 or
more in the individuals’ performance.
This appears to have little to do with
any technology or even language they
might use. In my experience as an
employer, it doesn’t even appear to
have much to do with their educational
background. The best programmer I
ever employed started as a 16-year-old
with no academic qualifications. Fail-
ures in his programs were as rare as
hen’s teeth. In contrast, one of my
worst programmers had a PhD in
mathematics. I wish I understood why.
Continued on page 102

—
THE PROFESSION

Continued from page 104

Developers still measure software
quality by the number of released
faults that have failed per thousand
executable lines of code during the
software’s life cycle. I refer to these as
defects. The relationship between this
and more conventional engineering
measurements, such as mean time
between failures (MTBF), remains
unknown. However, the best systems
appear to be around 0.1 on this
scale—exhibiting about one fault for
every 10,000 executable lines of code,
measured over the software’s entire
lifetime.

Perfection is not an option, and
these faults’ effect on the program’s
output when they fail is unquantifi-
able. It costs a lot of money to stay this
good. My own and other researchers’
work suggests that it is at least 10
times worse and possibly as much as
100 times worse in typical computer
simulations not subject to the rigor-
ous quality control necessary to stay
as low as 0.1.

Nobody knows how to produce a
fault-free program. Nobody even
knows how to prove it, supposing
one were magically provided. I teach
my students that in their whole
careers, they are unlikely ever to pro-
duce a fault-free program and, if they
did, they wouldn’t know it, could
never prove it, and couldn’t system-
atically repeat it. It provides a use-
fully humble starting point. Some of
my colleagues hold out hope for
truly verifiable programs, but such
methods do not and might never
scale to the size of systems we regu-
larly produce.

Much remains to be done, although
we have made progress in bounding
errors using interval arithmetic.
Formalism appears to help in modest
ways, as Shari Pfleeger and I reported in
a 1997 Computer article (“Investigating
the Influence of Formal Methods” Feb.,
pp- 33-43).

Unless we are in complete denial,
we know the faults are there but have
no methodology to relate the nature
of a fault to its ultimate effect on the
runtime behavior and results a com-
puter simulation produces.

m Computer

COMPUTER SIMULATIONS
AS PROOF?

Even in the world of pure mathe-
matics, we are straying toward an era
when computer programs become
part or indeed all of a proof. The four-
color theorem offers an early example
of this.

However, computer programs are
fundamentally unquantifiable at the
present stage of knowledge, and we
must consider any proof based on
them flawed until we can apply the
same level of verification to a program
as to a theorem.

The open source
community has
demonstrated that

itis possible to produce
extraordinarily reliable
software.

Scientific papers are peer reviewed
with a long-standing and highly suc-
cessful system. The computer pro-
grams we use today to produce those
results generally fly somewhere off the
peer-review radar. Even worse, scien-
tists will swap their programs uncrit-
ically, passing on the virus of
undiscovered software faults.

A widespread problem

In my experience, industry proba-
bly fares better because it uses suc-
cessful test procedures more widely
than does academia, which normally
cannot afford the degree of verifica-
tion necessary to reduce defects to an
acceptable level. Even so, the world is
rife with software failure. My TV set-
top box crashes about every seven
hours, according to my records, shut-
ting itself off in about one in three
cases. It’s a piece of junk.

My PC packages crash frequently as
well. Updating my gas meter reading
on the brand new British Gas tele-
phone entry system failed the first time
and accepted the same reading the sec-
ond time, having successfully repeated

it back to me both times. Even worse,
this system appeared to leave open the
possibility of changing somebody
else’s account details. When trying to

register for the annual British
Computer Society Lovelace award
ceremony, the payment site had acci-
dentally been deployed in test mode,
meaning no money would change
hands.

Looking farther afield, the automo-
bile industry has begun to suffer
extensive recalls based on software
failures affecting all electronically con-
trolled parts of the vehicle, including
but not limited to the brakes, engine
management system, and airbags—
news that made the New York Times
in 2005 (www.nytimes.com/2005/02/
06/automobiles/06 AUTO.html).

The cost of poor quality

Poor software quality affects us in
other ways. If the technological
nations really understood how much
money developers throw at failed soft-
ware projects, they would join in an
international outcry. In 2004, the UK
Royal Academy of Engineering made
an authoritative case in a comprehen-
sive report after interviewing many
experts. Despite this, the initiative—
as far as I can see—stalled, afflicted by
the peculiarly widespread laissez-faire
attitude that attends anything to do
with computers. People simply do not
appear to care enough.

Yet the amount of money wasted
likely falls between £10 to £20 billion
per year in the UK alone. In 2002, the
National Institute for Standards and
Technology produced a hauntingly
similar conclusion in the US. Quite
recently, several of my distinguished
colleagues wrote to the London
Times, stating the case for an inde-
pendent audit of the deeply troubled
$25 billion UK National Health
Service’s Connecting for Health pro-
ject. It was rejected. At the same time,
Iinterviewed 10 disparate members of
the NHS at random and received
unanimous and deep concerns about
this system’s quality and relevance.

I’ve analyzed enough failed systems
in my time to know the two classic

- - o

symptoms of a system on its way to
the fairies. First, no independent audit
is allowed, and, second, talking heads
tell you everything is fine when the
ultimate users tell you the opposite.
Ironically, as T wrote this line, my
word processor crashed, probably in
sympathy. Everybody should have a
law, so here’s mine

The technological societies will col-
lectively trash around $250 per per-
son per year on systems which will
never see the light of day or, if they
do, do not come close to what their
users wanted, assuming they were
asked in the first place. This they
will ignore.

ROOM FOR OPTIMISM

Not all is bleak. Personally, I feel
optimistic. The idea of fully repro-
ducible research, originally proposed
by Jon Claerbout at Stanford, is an
important step in the right direction:
The science and the complete means
to reproduce the computational

results are packaged together to
extend the highly successful peer-
review system to the software as well
as the science.

The Linux kernel is now arguably
the most reliable complex software
application humanity has yet pro-
duced, with an MTBF reported in the
tens and, in some cases, hundreds of
years. Poetically, the Linux develop-
ment environment, which leverages
the contributions of thousands of Web
volunteers who give their spare time
for the public good, breaks just about
every rule that software process
experts hold dear.

Furthermore, Linux is written largely
in programming languages that cause
palpitations in many language experts.
Despite this—or, who knows, even
because of it—the open source com-
munity has demonstrated that it is
perfectly possible to produce extra-
ordinarily reliable software. This same
community has created many other
examples of highly reliable applica-
tions. We really ought to understand

this better than we do if we are to be
worthy heirs to an engineering legacy.

that most software failures and

disasters afflicting us today could
have been avoided using techniques we
already know. They affect everybody
and should not be ignored. In a scien-
tific context, they undermine the very
fabric of our work, so must we really
continue building scientific castles on
software sands when we could do so
much better? T hope not.

T he accumulating evidence shows

Les Hatton is professor of Forensic Soft-
ware Engineering at Kingston Univer-
sity, London. Contact him at L.Hatton@
kingston.ac.uk.

Editor: Neville Holmes, School of
Computing, University of Tasmania;
neville.holmes@utas.edu.au. Links to
further material are at www.comp.utas.
edu.au/users/nholmes/prfsn.

Together
with the IEEE

Computer Society,

you do.

Join a standards working group at

www.computer.org/standards/

August 2007 |[ERETI

