
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2018

18 MIS Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

November 8, 2018

MIS Continued

Administrative details

Feedback on System VnV Plan

Questions?

Exceptions

Quality criteria

Modules with external interaction, enviro variables

GUI modules

ADTs

Generic modules

OO design spec

Examples

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 2/43

Administrative Details

GitHub issues for colleagues
I Assigned 1 colleague (see Repos.xlsx in repo)
I Provide at least 2 issues on their MG
I Grading as before
I Due by yesterday (Thursday), Nov 8 at 11:59 pm

MIS template in CAS 741 repo

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 3/43

Administrative Details: Deadlines

MIS Present Week 10 Week of Nov 12
MIS Week 11 Nov 19
Unit VnV or Impl. Present Week 12 Week of Nov 26
Unit VnV Plan Week 13 Dec 3
Final Doc Week 14 Dec 10

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 4/43

Administrative Details: Presentation Schedule

MIS Present
I Wednesday: Malavika, Robert
I Friday: Hanane, Jennifer

Unit VnV Plan or Impl. Present
I Wednesday: Brooks, Vajiheh
I Friday: Olu, Karol

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 5/43

MIS Presentations and Documentation

For each module
I Module or Template Module or Generic Template

Module or Inheritance
I Syntax, especially access programs
I State variables, environment variables

Do not need a formal spec for everything

Goal is communication with a developer or maintainer

Clarifying comments in the MIS are helpful

Use notation from SRS wherever possible

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 6/43

Questions?

Questions about MIS presentations?

Questions about MIS documentation?

Other questions?

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 7/43

Feedback on System VnV Plan

LATEX
I Rules for spacing after a period
I “quotation marks”
I Spell check and proof read

Template
I Can remove Section 6: “Static Verification Techniques”
I Explain why there is no validation plan
I Measuring error in vectors
I Include rationale for test cases
I Include information on how expected output was

calculated
I Don’t forget parallel testing

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 8/43

Exception Signalling

Useful to think about exceptions in the design process

Will need to decide how exception signalling will be done
I A special return value, a special status parameter, a

global variable
I Invoking an exception procedure
I Using built-in language constructs

Caused by errors made by programmers, not by users

Write code so that it avoid exceptions

Exceptions will be particularly useful during testing

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 9/43

Assumptions versus Exceptions

The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

Assumptions are expressed in prose

Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

Interface design should provide the programmer with a
means to check so that they can avoid exceptions

When an exceptions occurs no state transitions should
take place, any output is don’t care

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 10/43

Quality Criteria

Consistent
I Name conventions
I Ordering of parameters in argument lists
I Exception handling, etc.

Essential - omit unnecessary features

General - cannot always predict how the module will be
used

As implementation independent as possible

Minimal - avoid access routines with two potentially
independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 11/43

Modules with External Interaction

In general, some modules may interact with the
environment or other modules

Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.

Sometimes the interaction is informally specified using
prose (natural language)

Can introduce an environment variable
I Name, type
I Interpretation

Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 12/43

External Interaction Continued

Some external interactions are hidden
I Present in the implementation, but not in the MIS
I An example might be OS memory allocation calls

External interaction described in the MIS
I Naming access programs of the other modules
I Specifying how the other module’s state variables are

changed
I The MIS should identify what external modules are used

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 13/43

MIS for GUI Modules

Could introduce an environment variable

window: sequence [RES H][RES V] of pixelT
I Where window[r][c] is the pixel located at row r and

column c, with numbering zero-relative and beginning at
the upper left corner

I Would still need to define pixelT

Could formally specify the environment variable
transitions

More often it is reasonable to specify the transition in
prose

In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 14/43

Display Point Masses Module Syntax

Exported Access Programs

Routine name In Out Exc
DisplayPointMassesApplet DisplayPointMassesApplet
paint

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 15/43

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()
ListPointMasses.add(0, PointMassT(20, 20, 10))
ListPointMasses.add(1, PointMassT(120, 200, 20))
...

paint():

transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 16/43

Specification of ADTs

Similar template to abstract objects

“Template Module” as opposed to “Module”

“Exported Types” that are abstract use a ?
I pointT = ?
I pointMassT = ?

Access routines know which abstract object called them

Use “self” to refer to the current abstract object

Use a dot “.” to reference methods of an abstract object
I p.xcoord()
I self .pt.dist(p.point())

Similar notation to Java

The syntax of the interface in C is different

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 17/43

Syntax Line ADT Module

Template Module

lineADT

Uses

pointADT

Exported Types

lineT = ?

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 18/43

Syntax Line ADT Module Continued
Routine name In Out Exceptions
new lineT pointT, pointT lineT
start pointT
end pointT
length real
midpoint pointT
rotate real

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 19/43

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant

None

Assumptions

None

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 20/43

Access Routine Semantics Line ADT Module

new lineT (p1, p2):

transition: s, e := p1, p2

output: out := self

exception: none

start:

output: out := s

exception: none

end:

output: out := e

exception: none

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 21/43

Access Routine Semantics Continued

length:

output: out := s.dist(e)

exception: none

midpoint:

output: out :=

new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

exception: none

rotate (ϕ):
ϕ is in radians

transition: s.rotate(ϕ), e.rotate(ϕ)

exception: none

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 22/43

Line ADT Local Functions

Local Functions

avg: real × real → real
avg(x1, x2) ≡ x1+x2

2

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 23/43

Generic Modules

What if we have a sequence of integers, instead of a
sequence of point masses?

What if we want a stack of integers, or characters, or
pointT, or pointMassT?

Do we need a new specification for each new abstract
object?

No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities

Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)
Advantages

I Eliminate chance of inconsistencies between modules
I Localize effects of possible modifications
I Reuse

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 24/43

Generic Stack Module Syntax

Generic Module

Stack(T)

Exported Constants

MAX SIZE = 100

Exported Access Programs

Routine name In Out Exceptions
...

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 25/43

Stack Module Syntax

Exported Access Programs

Routine name In Out Exceptions
s init
s push T FULL
s pop EMPTY
s top T EMPTY
s depth integer

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 26/43

Semantics

State Variables

s: sequence of T

State Invariant

|s| ≤ MAX SIZE

Assumptions

s init() is called before any other access routine

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 27/43

Access Routine Semantics

s init():

transition: s :=<>

exception: none

s push(x):

transition: s := s|| < x >

exception: exc := (|s| = MAX SIZE⇒ FULL)

s pop():

transition: s := s[0..|s| − 2]

exception: exc := (|s| = 0⇒ EMPTY)

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 28/43

Access Routine Semantics Continued

s top():

output: out := s[|s| − 1]

exception: exc := (|s| = 0⇒ EMPTY)

s depth():

output: out := |s|
exception: none

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 29/43

Stack Module Properties

{true}
s init()

{|s ′| = 0}

{|s| < MAX SIZE}
s push(x)

{|s ′| = |s|+ 1 ∧ s ′[|s ′| − 1] = x ∧ s ′[0..|s| − 1] = s[0..|s| − 1]}

{|s| < MAX SIZE}
s push(x)
s pop()

s ′ = s

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 30/43

Object Oriented Design

One kind of module, ADT, called class

A class exports operations (procedures) to manipulate
instance objects (often called methods)

Instance objects accessible via references

Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a
type)

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 31/43

Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
I B inherits from A
I Conversely, A generalizes B

A is a superclass of B

B is a subclass of A

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 32/43

Template Module Employee
Routine name In Out Except
Employee string, string, moneyT Employee
first Name string
last Name string
where siteT
salary moneyT
fire
assign siteT

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 33/43

Inheritance Examples

Template Module Administrative Staff inherits Employee

Routine name In Out Exception
do this folderT

Template Module Technical Staff inherits Employee

Routine name In Out Exception
get skill skillT
def skill skillT

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 34/43

Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

A subclass defines a subtype

A subtype is substitutable for the parent type

Polymorphism - a variable referring to type A can refer to
an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative Staff and Technical Staff
are instances of Employee

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 35/43

Dynamic Binding

Many languages, like C, use static type checking

OO languages use dynamic type checking as the default

There is a difference between a type and a class once we
know this

I Types are known at compile time
I The class of an object may be known only at run time

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 36/43

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 37/43

Point ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc : real
yc : real

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 38/43

Point Mass ADT Module

Template Module

PointMassT inherits PointT

Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 39/43

Point Mass ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointMassT real, real, real PointMassT NegMassExcep
mval real
force PointMassT real
fx PointMassT real

Semantics

State Variables

ms: real

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 40/43

Point Mass ADT Module Semantics

new PointMassT(x , y ,m):

transition: xc , yc ,ms := x , y ,m

output: out := self

exception: exc := (m < 0⇒ NegativeMassException)

force(p):

output:

out := UNIVERAL G
self .ms × p.ms

self .dist(p)2

exception: none

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 41/43

Examples

Solar Water Heating System

Example Point Line and Circle

Example Robot Path

Example Vector Space

Example Othello Program

Example Maze Formal Specification (Dr. v.
Mohrenschildt)

Mustafa ElSheikh Mesh Generator [1]

Wen Yu Mesh Generator [2]

Sven Barendt Filtered Backprojection

Sanchez sDFT

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 42/43

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf

References I

Jacques Carette, Mustafa ElSheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53–62,
January 2011.

W. Spencer Smith and Wen Yu.
A document driven methodology for improving the quality
of a parallel mesh generation toolbox.
Advances in Engineering Software, 40(11):1155–1167,
November 2009.

Dr. Smith CAS 741, CES 741 Fall 2018: 18 MIS Continued 43/43

