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Acronyms and Abbreviations

2-D/3-D: Two-dimensional/three-dimensional; refers to the dimension of the coordinate
system used to solve the problem.

DynSWS: Dynamic model of Soil-Water-Structure interaction; the software product de-
scribed herein.

MG: Module guide; the document that presents the high-level design of the software product
(see reference [1] as well).

MIS: Module interface specification; the name of the document that specifies the syntax for
interaction between modules (see reference [2] as well).

PDE: Partial differential equation. Models of physical phenomena are typically stated math-
ematically as systems of this type of equation that must be integrated in order to obtain the
solution. Initial and/or boundary conditions are also required for a given problem.

SRS: Software requirements specification; the document that specifies the requirements for
a software product (see reference [3] as well).
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1 Introduction

This section introduces the SRS, MG, and MIS for the PDE Solver module within the
DynSWS software product. Readers not yet acquainted with DynSWS should see reference
[3], which is the software requirements specification for the software product described herein.
Section 1.1 describes the purpose of this document. Section 1.2 explains the transition from
the high-level design of the MG for DynSWS [1] to the internal design presented herein;
in particular, the reasoning for creating this additional document is summarized. Section
1.3 relates the scope of DynSWS presented in this document to the scope of the software
requirements specification (if there is any difference). Section 1.4 identifies the intended
audience for this document. Section 1.5 outlines the organization of the document.

1.1 Purpose

This document presents the internal design and specification of the PDE Solver module
within DynSWS (see reference [1] for how this module fits into the external design). The
internal modularization is based on the principle of information hiding (see references [1]
and [4] for more information). Note that while the syntax of internal modules is specified
within this document, the top-level syntax and behaviour of the PDE Solver module must
satisfy the MIS for DynSWS (see reference [2]).

1.2 Bridge Between High-Level Design and Internal Design and
Specification

The MG for DynSWS specifies the high-level design of the software product. Referring to
AC28 in the MG, the algorithm for solving systems of PDEs is an anticipated change for
DynSWS. Therefore, one of the key modules in the design of DynSWS is the PDE Solver.
The selection, design, and implementation of a numerical algorithm for solving PDEs is non-
trivial in itself and may involve a number of anticipated internal changes that ultimately do
not influence the rest of the design of DynSWS. As such, the author has seen fit to prepare
this document so that the PDE Solver module benefits from internal modularization without
cluttering the MG for DynSWS with anticipated changes and modules that pertain only to
the PDE Solver.

1.3 Scope

The scope of the design of DynSWS presented in this document is reduced from that of the
SRS and the MG. While the SRS and MG document the complete end goal for DynSWS,
this document will focus on the numerical algorithm for the structural subdomain in 2-D
only. As a quick reminder, the structural subdomain is an impermeable, single phase, solid
domain governed by small strain theory and a linear elastic plane strain constitutive model
(see reference [3] for further details).

Ver. DynSWS-PDE-1.0 1
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1.4 Intended Audience

The three main groups that this document is intended for use by are:

UG1. Developers. Users in this group are involved in the actual implementation of the
requirements of DynSWS. This will certainly include the author, but may include
others in the future if the software product proves useful and the functionality continues
to be extended over time. This group can use this document as a reference to the
internal design of the PDE Solver , which presents the selected numerical algorithm,
its modularization, and its syntax. If users from this group modify the internal design
of the PDE Solver, they must always satisfy the behaviour specified in the MG and the
top-level syntax specified in the MIS; developers should also update this document to
reflect any modifications to the internal design and syntax of the PDE Solver module.

UG2. Maintainers. Users in this group maintain the software product over time. This may
include activities such as performing tests, fixing bugs, and reorganizing the module
hierarchy to reflect design modifications. Again, this will initially be just the author,
but in the future may include others. If the design is modified by users in this group,
changes should be documented herein.

UG3. Reviewers. Users in this group have the task of ensuring that DynSWS meets all
requirements and that the results produced by the software product are correct (insofar
as correctness can be determined). This includes the author, but also the author’s
supervisory committee as they will be responsible for verifying the correctness and
accuracy of the model contained in DynSWS. This document will be useful for this
group in understanding the numerical algorithm used to solve PDEs, which is a key
component in the overall design of DynSWS.

It should be noted that this document is not necessarily intended for end users of the
software product. This document presents the internal design and syntax of the PDE Solver
without going into detail on the requirements or the high-level design of DynSWS. Readers
interested in the requirements specification and the high-level design of DynSWS should see
references [3] and [1], respectively.

1.5 Organization of the Document

This document is essentially a combined SRS, MG, and MIS at a level internal to the PDE
Solver module. For more details on the organization of these documents, see references [3], [1],
and [2], respectively. Section 2 picks up from the instanced models presented in the SRS and
develops the numerical algorithm selected to solve them, presenting additional background
theory and instanced models as necessary. Section 3 outlines the internal module guide and
Section 4 provides the internal module interface specification for the PDE Solver.

Ver. DynSWS-PDE-1.0 2
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2 Numerical Algorithm

This section presents the models required to implement the numerical algorithm for the PDE
Solver in DynSWS. Section 2.1 provides terminology definitions relevant to the numerical
algorithm. Section 2.2 lists any assumptions made for the numerical models (beyond the
assumptions presented in the SRS). Section 2.3 presents the instanced models required to
solve the PDEs over both space and time.

2.1 Terminology

Constitutive: Refers to the manner in which a material behaves when undergoing stress
and strain.

Determinant: A scalar property of a matrix. Useful in computing areas and transforming
coordinate systems.

Discretization/Discretized/Discrete: Discretization in the context of DynSWS refers to
the process of dividing a continuous domain (of space or time) into finite segments. Once
the process is complete, the domain is referred to as discretized. A discrete point is a node
within the discretized domain.

Element: A finite segment of a discretized domain. Includes body elements and surface
elements.

Gaussian Quadrature: A numerical integration technique that approximates the value of
an integral by a sum of the values of the function at a set of “integration points” multiplied
by appropriate weighting constants. Named after Carl Friedrich Gauss.

Global/Local Coordinates: Refer to the sets of coordinates useful for describing the
overall domain and the domain of an individual element, respectively.

Interpolation: The process of determining the value of a function between two points where
the value is known through an assumed set of functions.

Jacobian of Transformation: Name given to both the matrix and its determinant that
are used in transforming a function from one coordinate system to another. Named after
mathematician Carl Gustav Jacob Jacobi.

Kinematic: Within the context of continuum mechanics and the FEM, refers to the rela-
tionship between an appropriate field variable and strain (or strain rate). For solid mechanics,
this is the strain-displacement relationship.

Linear Differential Operator: An operator that is a linear function of the differentiation
operator. The function takes a (possibly vector valued) function and returns another function.

Node/Nodal: A point (in space or time) within a discretized domain. Node is a noun, nodal
is an adjective.

Ver. DynSWS-PDE-1.0 3
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Newmark Time Integration: A parametric family of numerical integration techniques for
solving differential equations. Named after civil engineer Nathan M. Newmark.

Rayleigh Damping: A technique for estimating the viscous damping properties of a system
by taking a linear combination of the mass and stiffness. Named after physicist John William
Strutt, 3rd Baron Rayleigh (sometimes shortened to Lord Rayleigh).

Spatial Domain: The domain of space (geometry).

Taylor Series: An infinite series that represents the value of a function at a point based
on the value of the function (and its derivatives) at another point, the distance between the
points, and constant coefficients. Named after mathematician Brook Taylor.

Temporal Domain: The domain of time.

Time-step: A finite period of time defining the discretized temporal domain.

Traction: A distributed surface stress.

Virtual Work: A virtual quantity obtained by moving a set of forces through an arbitrary
displacement (or other appropriate term). Systems at equilibrium have the property that the
sum of virtual work contributions from all terms will vanish.

Weak Form of Equilibrium: A modified expression of equilibrium that involves integrating
the contributions of virtual work over the solution domain. It is referred to as “weak” because
it no longer guarantees equilibrium at every point within the domain. The consequence is
that equilibrium will be satisfied for each element in the discretized domain, but not at every
point within each element.

2.2 Assumptions

This following is a list of assumptions made in developing the numerical algorithm for the
PDE Solver:

A1. The errors in the solution caused by discretization of the spatial and tem-
poral domains are small compared to errors due to the approximation of
nature by mathematical models and the estimation of material properties.
Discretization is necessary to solve the PDEs that describe the model contained in
DynSWS for all but the simplest of geometric and loading configurations. As such,
one does not often have a choice of whether or not to use a discretized approximation.
However, it is prudent to make this assumption explicit so that there is no ambiguity
with regard to the expected capability of the numerical model.

A2. The values of field variables may be obtained by direct interpolation be-
tween a set of discretized nodal values. This is a key assumption in the develop-
ment of the spatial discretization technique.
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A3. The distribution of the displacement, velocity, and acceleration fields within
a body element is linear. This assumption is associated with the constant stress
triangular body element.

A4. The stress and strain within a body element is constant. This assumption is
associated with the constant stress triangular body element.

A5. The distribution of applied tractions a traction element is linear. This as-
sumption is associated with the linear interpolation line traction element.

A6. The material density within a body element is constant. This simplifies the im-
plementation of the integration scheme for the mass matrix and body force component
of the load vector. Given the assumptions of material homogeneity and isotropy, the
domain may always be discretized in a manner that accommodates this assumption.

A7. The elastic material properties within a body element are constant. This
assumption is made for similar reasons to those described in A6.

A8. The applied acceleration field is constant within a body element for a given
point in time. This assumption is made for convenience. Considering that the source
of applied accelerations will be seismic ground movement, the applied acceleration field
will, in fact, be constant over the entire domain for a given point in time.

A9. The structural subdomain exhibits viscous damping that may be deter-
mined as a linear combination of mass and stiffness terms. Since the true
nature of damping in structural systems is difficult to determine, this is a common
technique used to estimate the influence of damping, which is sometimes referred to as
Rayleigh damping [5].

A10. The change in the discretized displacement over a time-step may be ap-
proximated by the first four terms in its Taylor series expansion. This is a
key assumption in the Newmark family of time-stepping techniques.

A11. The change in the discretized velocity field over a time-step may be approx-
imated by the first three terms in its Taylor series expansion. Similar reasons
as those described in A10.

A12. The discretized acceleration field varies linearly over a time step. Similar
reasons as those described in A10.

A13. A constant time-step is used for the input data. This includes boundary condi-
tions and body accelerations.

2.3 Internal Instanced Models

This section presents the instanced mathematical models required to implement the PDE
Solver module. Section 2.3.1 presents the preliminary formulation necessary to prepare the
equilibrium expression for the structural subdomain for discretization. Section 2.3.2 presents

Ver. DynSWS-PDE-1.0 5
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the selected spatial discretization element and derives the equilibrium expression for the dis-
cretized domain. Section 2.3.3 gives the algorithm for stepping through the temporal domain.
Section 2.3.4 summarizes the input and output variables for the PDE Solver module. Note
that both the spatial and temporal discretization techniques solve the problem by dividing
the solution domain into segments and solving for the numerical values at discrete points
(with assumed interpolation between these points). Consequently, the solution obtained us-
ing these algorithms include error due to the discretization process. Referring to A1, it is
assumed that the discretization errors are small compared to other sources of error such as
approximation of natural processes with mathematical models and estimation of material
properties.

2.3.1 Weak (or Integrated) Form of Equilibrium

The numerical technique selected for solving the PDEs involved in DynSWS over the spatial
domain for a given point in time is the finite element method (FEM). In order to derive
the necessary terms for the FEM formulation, the equilibrium expression for the structural
subdomain must be converted to the weak (or integrated) form.

As stated in Section 1.3, the scope has been limited to the solution of the instanced
models for the structural subdomain in 2-D at this time. Recalling IM1 of the SRS, the set
of dynamic equilibrium equations for the structural subdomain are given by:

IIM1. Dynamic Equilibrium of Structural Subdomain

ρsüs = ∇ · σs + ρsf (2.1)

where ρ is the material density, u is the displacement vector field, σ is the stress tensor
field, f is the body acceleration vector field, ∇· is the divergence operator, subscript s refers
to the structural subdomain, bold-face indicates a vector or tensor, and superimposed dots
indicate derivatives with respect to time. Since the model scope is currently limited to 2-D,
the displacement vector field is defined, as in IM10 of the SRS, as:

IIM2. Displacement Vector

us =

{
ux
uy

}
(2.2)

where subscripts x, y refer to the global coordinate axis directions. Similarly, the body ac-
celeration field vector is defined as:

IIM3. Body Acceleration Vector

f =

{
fx
fy

}
(2.3)

Owing to isotropy of materials (A7 of the SRS), the stress field tensor is symmetric and may
be defined in compact vector form, as in IM8 of the SRS, as:

Ver. DynSWS-PDE-1.0 6
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IIM4. Stress Tensor in Compact Vector Form

σs =


σxx
σyy
σxy

 (2.4)

where subscripts xx, yy indicate normal stress in the global coordinate directions and sub-
script xy indicates shear stress. Note that, although IIM4 is written as a vector, it is un-
derstood that any coordinate transformations of σs must still follow the rules for a second
order tensor. Applying the principle of virtual work, at equilibrium the work done by the
inertial forces (left hand side of IIM1) through a virtual displacement, δus, must equal the
work done by the internal forces and the applied forces (right hand side of IIM1) through
the same virtual displacement. Mathematically, this is expressed as:

IIM5. Virtual Work Expression for Structural Subdomain

δuTs ρsüs = δuTs (∇ · σs) + δuTs ρsf (2.5)

where superscript T indicates the transpose operation. Since the principle of virtual work
must be true at all points in the spatial domain, one may integrate IIM5 over the domain
to yield: ∫

V

δuTs ρsüsdV =

∫
V

δuTs (∇ · σs)dV +

∫
V

δuTs ρsfdV (2.6)

where V indicates volume integration. Integrating equation (2.6) by parts using the diver-
gence theorem yields:∫

V

δuTs ρsüsdV = −
∫
V

∇δuTsσsdV +

∫
S

δuTsσs · nsdS +

∫
V

δuTs ρsfdV (2.7)

where S indicates integration over a boundary surface and ns represents the outward unit
normal from the boundary of the structural subdomain at a point. Recognizing that the
gradient of a virtual displacement field is a virtual strain field and defining ts = σs · ns as
the surface traction vector field for the structural subdomain gives:∫

V

δuTs ρsüsdV = −
∫
V

δεTsσsdV +

∫
S

δuTs tsdS +

∫
V

δuTs ρsfdV (2.8)

The strain vector is defined, as in IM8 of the SRS, as:

IIM6. Strain Tensor in Compact Vector Form

εs =


εxx
εyy
γxy

 (2.9)

where the subscripts have the same meaning as in IIM4 and εs must still transform as
a second order tensor. The traction vector, which is defined only over the surface of the
structural subdomain, is given by:

Ver. DynSWS-PDE-1.0 7
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IIM7. Traction Vector

ts =

{
tx
ty

}
(2.10)

where the subscripts have the same meaning as in IIM2 and IIM3. In general, the do-
main may have a non-zero initial stress and strain field, so the stress-strain (constitutive)
relationship is:

IIM8. Stress-Strain (Constitutive) Relationship

σs = Ds(εs − ε0) + σ0 (2.11)

where σ0 and ε0 are the initial stress and strain fields, respectively. The constitutive matrix,
Ds, which defines the stress-strain relationship, as in IM8 of the SRS, is:

IIM9. Constitutive Matrix for the Structural Subdomain

Ds =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1

2
(1− 2ν)

 (2.12)

where E and ν are the elastic modulus and Poisson’s ratio of the material, respectively. Com-
bining equation (2.8) with IIM8, the weak form of equilibrium for the structural subdomain
is given by:

IIM10. Weak Form of Equilibrium for the Structural Subdomain∫
V

δuTs ρsüsdV +

∫
V

δεTsDsεsdV

=

∫
S

δuTs tsdS +

∫
V

δuTs ρsfdV −
∫
V

δεTsσ0dV +

∫
V

δεTsDsε0dV

(2.13)

2.3.2 Spatial Discretization

This section begins with the weak form of equilibrium and very briefly develops the instanced
models for the spatial domain using the FEM. This section certainly does not serve as an
exhaustive treatise on the underlying theory of the FEM. Readers interested in learning
more about the theory and application of the FEM should see references [6] and [7] for an
introduction.

It is useful to rewrite the weak form of equilibrium as a summation of integrations
over discrete elements. Two element types are adopted in the present formulation: a body
element (denoted by subscript e) and a traction element (denoted by subscript t). The weak
form of equilibrium presented in IIM10 is therefore equivalent to:
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IIM11. Weak Form of Equilibrium (Summation over Elements)

Nele∑
e=1

(∫
Ve

δuTe ρeüedVe +

∫
Ve

δεTeDeεedVe

)

=
Ntrc∑
t=1

(∫
St

δuTt ttdSt

)

+

Nele∑
e=1

(∫
Ve

δuTe ρefedVe

−
∫
Ve

δεTeσ0edVe +

∫
Ve

δεTeDeε0edVe

)
(2.14)

whereDe is the same asDs and the parametersNele andNtrc are the number of body elements
and traction elements, respectively. Note that the summations of these vector expressions
must take into account the connectivity between elements as only values at corresponding
nodes may be added together.

Within the context of the FEM, the displacement, velocity, and acceleration solution is
obtained for discrete nodal values with the field between nodes being defined by interpolation
functions. For a body element, these interpolation functions have the following functional
form:

ue = Neae (2.15)

u̇e = Neȧe (2.16)

üe = Neäe (2.17)

δue = Neδae (2.18)

where Ne is a vector of interpolation functions for the body element, ae is a vector of
discretized displacement field values at the nodes of the body element, and other operations
are as defined previously. Similarly, the interpolation functions for the traction element have
the following functional form:

ut = Ntat (2.19)

δut = Ntδat (2.20)

where Nt is a vector of interpolation functions for the traction element and at is a vector
of discretized displacement field values at the nodes of the traction element. Note that the
form of Ne and Nt will change depending on the type of element selected.

Recalling IM10, the linear differential operator that relates the strain field and the
displacement field in the 2-D model is:
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IIM12. Linear Differential Operator (Strain-Displacement)

L =

 ∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

 (2.21)

Combining equation (2.15) with IM10 from the SRS allows the strain field for a body
element to be written in terms of the discretized element displacement field:

IIM13. Discretized Strain-Displacement (Kinematic) Relationship

εe = LNeae = Beae (2.22)

where Be = LNe is sometimes referred to as the kinematic matrix.
The body element selected to facilitate the spatial discretization of the PDEs involved

in DynSWS is the constant stress triangular element (see Figure 2.1).

Figure 2.1: Constant stress triangular element

The element shown in Figure 2.1 has three nodes, which implies linear interpolation of the
displacement, velocity, and acceleration fields as well as constant stress and strain in an
element (as the name suggests). The discretized displacement field vector for the element is
defined as:

IIM14. Element Displacement Field Vector

ae =



u1

v1

u2

v2

u3

v3


(2.23)
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where ui and vi represent the displacements in the global x and y directions at each of the
nodes, respectively. Interpolation within the element is most efficiently achieved using the
area coordinates {L1, L2, L3}. These coordinates are related to the nodal coordinates by [7]:

IIM15. Area Coordinates L1

L2

L3

 =
1

2Ae


A23 b1 c1

A31 b2 c2

A12 b3 c3


1
x
y

 (2.24)

where Ae is the area of the element, given by [7]:

IIM16. Element Area

Ae =
1

2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ (2.25)

and Aij, bi, and ci are defined as [7]:

IIM17. Element Parameters

Aij = xiyj − xjyi for {i, j} ∈ {1, 2, 3} (2.26)

bi = yj − yk for {i, j, k} = {{1, 2, 3} , {2, 3, 1} , {3, 1, 2}} (2.27)

ci = xk − xj for {i, j, k} = {{1, 2, 3} , {2, 3, 1} , {3, 1, 2}} (2.28)

The interpolation functions for the element are defined as [7]:

IIM18. Element Interpolation Functions

Ne =

[
L1 0 L2 0 L3 0
0 L1 0 L2 0 L3

]
(2.29)

Combining IIM13 with IIM18 gives the kinematic matrix for the element as:

IIM19. Element Kinematic Matrix

Be = LNe =
1

2Ae

b1 0 b2 0 b3 0
0 c1 0 c2 0 c3

c1 b1 c2 b2 c3 b3

 (2.30)

The traction element selected to facilitate solution of the PDEs in DynSWS is a linear
interpolation line element (see Figure 2.2).
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Figure 2.2: Linear interpolation line element

The element shown in Figure 2.2 has two nodes with a local coordinate s running from s = 0
at node 1 to s = 1 at node 2. The local tractions may be written as:

IIM20. Element Traction Interpolation

t′t = Ntt̄t
′

=

[
(1− s) 0 s 0

0 (1− s) 0 s

]
p1
nt

p1
nn

p2
nt

p2
nn

 (2.31)

where pint and pinn represent shear and normal tractions at node i, respectively. Referring to
IIM11, it is convenient to rewrite the traction element integral as:∫

St

δ(ut)
T ttdSt =

∫
St

δ(u′
t)
T t′tdSt (2.32)

where u′
t represents the element displacement field in local coordinates. This equivalence

is due to the fact that equation (2.32) represents the virtual work done by the tractions
for a traction element, which is a scalar quantity that is independent of coordinate system.
The displacement field in local coordinates may be transformed back to global coordinates
through:

u′
t = Tut (2.33)

where T is the transformation matrix, which is defined as:

IIM21. Transformation Matrix

T =

[
cos θ sin θ
− sin θ cos θ

]
(2.34)

and θ is given by:
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tan θ =
y2 − y1

x2 − x1

(2.35)

as shown in Figure 2.2. Substituting equations (2.19) and (2.33) along with IIM20 into
equation (2.32) and performing a change of coordinates gives the traction term as:∫

St

δ(ut)
T ttdSt = δaTt

∫ 1

0

NT
t T

TNtt̄
′
tltds (2.36)

where it is noted that the discretized virtual element displacements, δat, may be factored
out of the integral since they are constant for a given point in time and the Jacobian of
transformation is lt, which is the length of the traction element.

Combining IIM11, IIM13, IIM19, and equation (2.36) yields the summation of the
weak form of equilibrium over the elements in discretized form as:

Nele∑
e=1

(
δaTe

∫
Ve

NT
e ρeNeäedVe + δaTe

∫
Ve

BT
eDeBeaedVe

)

=
Ntrc∑
t=1

(
δaTt

∫ 1

0

NT
t T

TNtt̄
′
tltds

)

+

Nele∑
e=1

(
δaTe

∫
Ve

NT
e ρefedVe

−δaTe
∫
Ve

BT
e σ0edVe + δaTe

∫
Ve

BT
eDeε0edVe

)
(2.37)

When the summations in equation (2.37) are performed, accounting for element connectivity
appropriately, the equilibrium expression can be written as:

δaTs (Mäs +Kas) = δaTsF (2.38)

where M is the global mass matrix, K is the global stiffness matrix, and F is the global
load vector. Note that the subscript s indicates that the equation now refers to the entire
structural subdomain, as is also implied by the term “global” for the mass, stiffness, and
load terms. The global mass matrix is given by:

IIM22. Global Mass Matrix

M =

Nele∑
e=1

(∫
Ae

NT
e ρeNedAe

)
(2.39)

where the volume integral is equivalent to an area integral for a unit thickness. Owing to the
fact that the matrices Be and De are constant the constant stress triangular body element,
the global stiffness matrix simplifies to:
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IIM23. Global Stiffness Matrix

K =

Nele∑
e=1

(
BT

eDeBeAe
)

(2.40)

The global load vector for a given point in time is:

IIM24. Global Load Vector

F =
Ntrc∑
t=1

(∫ 1

0

NT
t T

TNtt̄
′
tltds

)
+

Nele∑
e=1

(∫
Ae

NT
e ρefedAe −BT

e σ0eAe +BT
eDeε0eAe

)
(2.41)

One may observe that M and K are constant since they depend only on material properties
and element geometry, while F may vary with time since both the boundary tractions, t̄′t,
and the body acceleration field, fe, may vary over time. Since equation (2.38) must hold
true for an arbitrary virtual displacement field, the undamped equation of motion is:

Mäs +Kas = F (2.42)

Finally, it is common to include a viscous damping term, which gives a force component that
is proportional to the velocity field [5]. As such, the form of the equation of motion adopted
for the PDE Solver module is:

IIM25. Equation of Motion for the Structural Subdomain

Mäs +Cȧs +Kas = F (2.43)

where C is the damping matrix. Since the nature of damping in dynamic structural systems
is not well understood, the most common method for estimating the damping matrix is by
writing it as a linear combination of the mass matrix and the stiffness matrix [5]:

IIM26. Damping Matrix for Structural Subdomain (Rayleigh Damping)

C = αM + ξK (2.44)

where α and ξ are scalar constants. This form of damping is sometimes referred to as Rayleigh
damping [5]. This damping model will be adopted in the PDE Solver module, but with the
caveat that selection of the terms α and ξ will be left to the user as they are problem
dependent and require engineering judgement. Reference [5] provides an excellent overview
on how to select reasonable values for structural systems.

2.3.3 Temporal Discretization

The numerical technique selected for solving the PDEs involved in DynSWS over the tem-
poral domain is the Newmark family of time-stepping techniques. This section provides an
overview of the instanced models for the temporal domain solver, but does not delve into
the implications of some of the details of the technique. Readers interested in learning more
should see the original paper by Newmark [8]. Reference [9] and [10] provide an excellent
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summary of various time-integration schemes used in structural dynamics using similar nota-
tion for easier comparison (the Newmark family is presented in reference [10]). In addition,
references [9] and [10] provide practical advice on the implementation of time-integration
schemes in scientific computing, as does reference [5]. The reader should note regardless of
the time-integration scheme adopted, IIM1 and, by extension, IIM25 must be satisfied at
all points in time.

The Newmark family of time-integration schemes begins by writing the truncated Tay-
lor series for the displacement and velocity fields (truncated after the time derivative of
acceleration) as:

at+∆t
s = ats + ∆tȧts + 1

2
∆t2äts + β∆t3 ˙̈a

t

s (2.45)

ȧt+∆t
s = ȧts + ∆täts + γ∆t2 ˙̈a

t

s (2.46)

where β and γ are scalar coefficients, ∆t is the time-step, superscript t and t + ∆t indicate
the value at the current time and the value after one time-step, respectively, and all other
terms are as defined previously. Next, it is assumed that acceleration varies linearly over a
time step, which may be written as a forward difference:

˙̈a
t

s =
ät+∆t
s − äts

∆t
(2.47)

Substituting equation (2.47) into equations (2.45) and (2.46) yields the equations for updat-
ing displacement and velocity over a time-step:

IIM27. Update Equations for Displacement and Velocity Fields

at+∆t
s = ats + ∆ats (2.48)

ȧt+∆t
s = ȧts + ∆ȧts (2.49)

where the incremental changes in displacement and velocity are given by:

IIM28. Incremental Displacement and Velocity Fields

∆ats = ∆tȧts + 1
2
∆t2

[
(1− 2β)äts + 2βät+∆t

s

]
(2.50)

∆ȧts = ∆t
[
(1− γ)äts + γät+∆t

s

]
(2.51)

The stress and strain at the next time step are given by:

IIM29. Update Equations for Stress and Strain Fields

σt+∆t
s = σts + ∆σts (2.52)

εt+∆t
s = εts + ∆εts (2.53)

where, making use of IIM13, the incremental strain in an element is:
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IIM30. Incremental Strain Field

∆εts =

Nele∑
e=1

∆εte =

Nele∑
e=1

(
Be∆ate

)
(2.54)

and, making use of IIM8, the incremental stress is:

IIM31. Incremental Stress Field

∆σts =

Nele∑
e=1

(
De∆εte

)
(2.55)

Note that, for implementation purposes, the stress and strain increments must be evaluated
at the spatial discretization element level and summed over all element taking into account
the connectivity between elements to obtain the incremental stress and strain for the total
structural subdomain.

Writing the equation of motion (IIM25) at time t+ ∆t gives:

Mät+∆t
s +Cȧt+∆t

s +Kat+∆t
s = F t+∆t (2.56)

Substituting IIM27 into equation (2.56) and rearranging gives the update equation for the
acceleration field:

IIM32. Update Equation for Acceleration Field

M ′ät+∆t
s = P t+∆t (2.57)

where M ′ and P t+∆t are given by:

IIM33. Modified Mass Matrix and Load Vector

M ′ = M + γ∆tC + β∆t2K (2.58)

P t+∆t = F t+∆t −C
[
ȧts + ∆t(1− γ)äts

]
−K

[
ats + ∆tȧts + 1

2
∆t2(1− 2β)äts

]
(2.59)

The reader should note that the modified mass matrix is constant in time provided that a
constant time-step is adopted. Also note that selection of the parameters β and γ has impli-
cations for the accuracy and stability of the technique. In terms of accuracy, the Newmark
family of time-stepping algorithms is second order accurate if γ = 1

2
[8, 10]. Unconditional

stability is guaranteed for 2β ≥ γ ≥ 1
2

[10], otherwise, the family of techniques is condition-
ally stable at best. Two popular members of the Newmark family are those for which γ = 1

2
,

β = 1
4

(implicit, unconditionally stable) and γ = 1
2
, β = 1

6
(implicit, conditionally stable) [10].

In addition, the Newmark formulation reduces to the central difference time-stepping scheme
for γ = 1

2
, β = 0 [10].

In broad strokes, the time-stepping algorithm based on the Newmark family proceeds
as follows (note that superscript 0 refers to the value at t = 0, not raising to the power of
0):
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1. Select ∆t, β, and γ.

2. Begin with initial conditions a0
s and ȧ0

s.

3. Solve Mä0
s = F 0 −Cȧ0

s −Ka0
s for ä0

s.

4. Compute M ′.

5. Compute P t+∆t.

6. Solve M ′ät+∆t
s = P t+∆t for ät+∆t

s .

7. Compute ∆ats and ∆ȧts.

8. Compute ∆εts and ∆σts.

9. Compute at+∆t
s , ȧt+∆t

s , εt+∆t
s , and σt+∆t

s .

10. Update the values of t, ats, ȧ
t
s, ä

t
s, ε

t
s, and σts.

11. Repeat steps 5–10 until the end of the analysis period.

2.3.4 Summary of Inputs and Outputs

Table 2.1 provides a summary of the input data for the PDE Solver. Table 2.2 provides a
summary of the output data from the PDE Solver.
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Table 2.1: Summary of input data

Symbol Name Units Type

Nnod Number of nodes unitless N

Nele Number of body elements unitless N

Ntrc Number of traction elements unitless N

nodes Geometry nodes L set of tuples of R
elements Connectivity of body elements unitless set of tuples of N
tractions Connectivity of traction elements unitless set of tuples of N

ρ Density M · L−3 set of R
E Elastic modulus M−1 · L · T−2 set of R
ν Poisson’s ratio unitless set of R

∆t Time step T R

β Time-stepping coefficient unitless R

γ Time-stepping coefficient unitless R

a0
s Initial displacement field L vector of R
ȧ0
s Initial velocity field L · T−1 vector of R
σ0

s Initial stress field M−1 · L · T−2 vector of R
ε0s Initial strain field unitless vector of R
fe Time varying applied acceleration L · T−2 set of vectors of R
t̄′t Time varying tractions M−1 · L · T−2 set of vectors of R

Table 2.2: Summary of output data

Symbol Name Units Type

as Time varying displacement field L set of vectors of R
ȧs Time varying velocity field L · T−1 set of vectors of R
äs Time varying acceleration field L · T−1 set of vectors of R
σs Time varying stress field M−1 · L · T−2 set of vectors of R
εs Time varying strain field unitless set of vectors of R
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3 Module Guide for PDE Solver

3.1 Potential Changes

This section lists changes that may occur in the design. It is important to consider potential
changes at this stage since they will have an important influence on the module decomposi-
tion. In particular, Section 3.1.1 lists changes that are likely to occur and that the module
decomposition will specifically aim to accommodate. Section 3.1.2 lists changes that are pos-
sible, but not very likely to occur; although this second list of changes will be kept in mind,
the design will not specifically target the ability to easily make the changes that are deemed
unlikely.

3.1.1 Anticipated Changes

This section lists changes that are likely to be made to the PDE Solver for DynSWS, which
will guide its design, chiefly, the module decomposition. The first set of anticipated changes
relate to relate to the theoretical and instanced models (some of which are repeated from
the MG):

AC1. Homogeneity of materials. Natural materials such as soil and rock often exhibit
properties that vary over space (e.g. increasing stiffness with depth). In researching
the behaviour of these materials, it is likely that a material model accounting for such
variation may be required.

AC2. Isotropy of materials. Natural materials can also exhibit properties that vary with
direction (e.g. due to preferred orientation caused by sedimentation). Similar to AC1,
material models accounting for anisotropy may also be incorporated in DynSWS.

AC3. Consideration of large deformations and large strains. The first implementation
of DynSWS will not account for large strains, but for analysis of conditions approaching
and exceeding failure it is likely that this assumption will need to be modified.

AC4. The material model for the structural subdomain. Initially, the structural sub-
domain will be modelled as linear elastic. Materials such as concrete, of which the type
of structures that DynSWS is intended to model are often constructed, only behave
in this manner for small strains. Coinciding with AC3, the material model for the
structural subdomain is likely to change.

AC5. The use of a Cartesian coordinate system. As mentioned in the SRS for Dyn-
SWS, certain types of geometry for soil-water-structure interaction problems are best
represented in coordinate systems other than the Cartesian system (e.g. cylindrical
coordinates).

AC6. The plane strain assumption for the 2-D model. Along with modification of the
coordinate system, as mentioned in AC5, the assumptions of the 2-D model are likely
to change (e.g. to axisymmetric conditions).
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The second set of anticipated changes relate to the numerical algorithm that will im-
plement the services of the PDE Solver module:

AC7. The top-level algorithm for solving the systems of partial differential equa-
tions representing each subdomain. It is foreseeable that certain techniques for
solving partial differential equations may be more amenable to one type of subdomain
than others, or that changing the formulation from small strain to large strain (see
AC3) may require a different algorithm.

AC8. The algorithm for solving for linear systems of equations. Most algorithms for
solving partial differential equations involve setting up a system of linear equations that
must be solved. Depending on the characteristics of the partial differential equation
solver, certain types of linear solver may be more efficient than others.

AC9. The technique used to discretize the system in the spatial domain for a
given point in time. The technique currently selected for the structural subdomain
is the finite element method, but this may change for different subdomains and/or for
analysis approaching and post-failure.

AC10. The form of the stress-strain (constitutive) matrix. This item is likely to change
with the material model and the dimension of the spatial domain.

AC11. Interpolation functions for body element. This item will change depending on
the type and shape of discretization element.

AC12. Interpolation functions for traction element. This item will change for similar
reasons to those described in AC11.

AC13. The form of the linear differential operator relating strains and displace-
ments. This will change depending on the dimension of the solution domain.

AC14. The kinematic matrix relating discretized displacements to discretized str-
ains. This will change along with AC11 and AC13.

AC15. The algorithm for computing the area of a body element. This involves com-
puting a determinant.

AC16. The algorithm for computing the kinematic matrix of a body element. This
involves building a matrix.

AC17. The form of the mass matrix. The form currently documented is referred to as the
“consistent” mass matrix. It is possible that this will be changed to a “lumped” mass
matrix, which has the desirable property of being a diagonal matrix.

AC18. The algorithm for integrating the mass matrix. This will always involve in-
tegrating at the element level and summing over the elements taking into account
connectivity. However, it is foreseeable that the integration at the element level may
switch between possible options of closed-form integration and Gaussian quadrature
for performance reasons.
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AC19. The algorithm for integrating the stiffness matrix. This is likely to change in a
similar fashion to that described in AC18.

AC20. The algorithm for integrating the traction term in the load vector. This is
likely to change in a similar fashion to that described in AC18.

AC21. The algorithm for integrating the body force term in the load vector. This
is likely to change in a similar fashion to that described in AC18.

AC22. The algorithm for integrating the initial stress term in the load vector. This
is likely to change in a similar fashion to that described in AC18.

AC23. The algorithm for integrating the initial strain term in the load vector. This
is likely to change in a similar fashion to that described in AC18.

AC24. The technique for computing the damping matrix. This involves computing a
linear combination of the mass and stiffness matrices.

AC25. The algorithm used to solve the problem in the temporal domain. The cur-
rently selected technique is the Newmark family of time-stepping algorithms. It is
foreseeable that other techniques, such as the Runge-Kutta family, may be adopted in
the future for performance comparison.

AC26. The values of the constants used in the time-stepping scheme. This is likely
to change in order to optimize the performance of the time-stepping component.

AC27. The algorithm for computing the initial acceleration field. This involves setting
up and solving a linear system of equations based on the initial displacement and
velocity fields, the initial load vector, the mass matrix, the damping matrix, and the
stiffness matrix.

AC28. The algorithm for computing the load vector for the next time step. This is
likely to change in a similar fashion to that described in AC18.

AC29. The algorithm for computing the updated acceleration field. This involves
setting up and solving a linear system of equations based on the modified mass matrix
and the load vector for the next time step.

AC30. The algorithm for updating the displacement and velocity fields. This involves
computing the incremental changes in these field variables and updating the global field
variables.

AC31. The algorithm for updating the stress and strain fields. This involves computing
the incremental changes in these field variables and updating the global field variables.
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3.1.2 Unlikely Changes

This section lists changes that are not considered likely to occur. The design of the PDE
Solver for DynSWS will not necessarily ensure that these changes are easy to make. The
first set of unlikely changes relate to the theoretical and instanced models (some of which
are repeated from the MG):

UC1. Time dependency of load input. Since static loading may be considered as a special
case of dynamic loading (where the frequency of the loading is zero), there is no reason
to modify the code specifically for the case of static loading.

UC2. The types of subdomain that make up the problem domain: structure, fluid,
and soil. Although the details of the modelling of these subdomains may change, it is
not expected that additional types of subdomain will need to be accomodated.

UC3. The functional goals, which are to compute the displacement, velocity, and
acceleration response of the system and to compute the stress and strain
fields. These are the basic goals for any model of the response of physical objects to
dynamic loading.

UC4. The assumption that the domain is isothermal. Temperature gradients within
the problem domain are not expected to have a significant influence on the model.

UC5. The assumption that there are no sources or sinks of material internal to
the domain. DynSWS is intended to deal with problems where the materials are
either present in the model or entering and exiting from the boundaries. It should not
be difficult to construct any soil-water-structure interaction problem to accommodate
this assumption.

UC6. The neglect of relativistic effects. It is inconceivable that the materials modelled
using DynSWS would approach even a small fraction of the speed of light.

UC7. Continuum mechanics modelling framework. Molecular level interactions are not
likely to influence the model.

The second set of unlikely changes relate to the numerical algorithm that will implement
the services of the PDE Solver module:

UC8. The use of a damping matrix that is linearly proportional to the mass and
stiffness matrices (Rayleigh damping) for the structural subdomain. This
technique for estimating the damping is common for dynamic analysis of structures [5].
Since the true nature of damping in structures is difficult to ascertain and this is not
the focus of the author’s studies, it is unlikely that the model implemented in DynSWS
will change the form of damping to a more complicated model.

UC9. The use of a direct time-stepping algorithm to obtain the solution in the
temporal domain. Another option is to reformulate the problem and obtain the solu-
tion in the frequency domain. From the frequency domain, the solution in the temporal
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domain may be obtained through a discrete Fourier transform (DFT). However, this
type of analysis is more appropriate for periodic loading. Since one of the primary
loading types that will be of interest is that due to seismic activity, it is unlikely that
frequency domain analysis will be appropriate since this type of loading tends to be
impulsive and/or non-periodic in nature.

Ver. DynSWS-PDE-1.0 23



SRS, MG, MIS for PDE Solver
DynSWS

Brandon Karchewski
McMaster University - Dept. of Civil Engineering

3.2 Module Specification

This section presents the modular decomposition of the PDE Solver for DynSWS. Section
3.2.1 summarizes the modular decomposition in tabular form. Section 3.2.2 lists each module
and provides the secret, the service, and (optionally) the prefix for each of the modules at
the lowest level.

3.2.1 Module Hierarchy

Typical of modular decomposition based on the principle of information hiding are three
modules at the highest level: machine hiding, behaviour hiding, and software decision hiding.
The machine hiding module involves the interaction between the virtual realm of software
and the physical realm of hardware; Table 3.1 shows the machine hiding module decompo-
sition for DynSWS modules used by the PDE Solver module. The behaviour hiding module
is concerned with items such as output formatting and text messages; Table 3.2 shows the
behaviour hiding module decomposition for DynSWS modules used by the PDE Solver mod-
ule. The software decision hiding module includes items such as internal data structures and
important algorithms; Table 3.3 shows the software decision hiding module decomposition
DynSWS modules used by the PDE Solver module and Table 3.4 shows the software deci-
sion hiding module decomposition within the PDE Solver module. Note that the services of
some of the modules (particularly in the machine hiding module) may not be implemented
in DynSWS as they are provided by the programming language or the operating system, but
they are listed here nonetheless for completeness as well as awareness of the dependencies
of DynSWS on outside systems. In addition, some of the modules listed here are already
documented in the MG for DynSWS; these items are marked with an asterisk (*) and are
only listed here because the PDE Solver uses these modules.

Table 3.1: Decomposition of the machine hiding module of the DynSWS system
(showing components used by PDE Solver)

Level 1 Level 2 Level 3

Machine Hiding Physical Data Operations *Integer Operations

*Floating Point Operations
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Table 3.2: Decomposition of the behaviour hiding module of the DynSWS system
(showing components used by PDE Solver)

Level 1 Level 2 Level 3

Behaviour Log Message *Log Message
Hiding Handling Control

Table 3.3: Decomposition of the software decision hiding module of the DynSWS system
(showing components used by PDE Solver)

Level 1 Level 2 Level 3

Software Decision *System
Hiding Constants

Data Structures *Domain Data

*Boundary Data

*Material
Property Data

PDE Solver
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Table 3.4: Decomposition of the software decision hiding module of the PDE Solver

Level 1 Level 2 Level 3 Level 4

Software Decision PDE Solver
Hiding Control

PDE Solver
Constants

Data Structures Dense Matrix

Banded Symmetric Matrix

Vector

Integration Body Element
Algorithms Integration

Traction Element
Integration

Interpolation Body Element
Interpolation

Traction Element
Interpolation

Material Model Linear Elastic Model

Constitutive Matrix

Kinematic Matrix

Linear Algebra Linear Solver
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3.2.2 Module Decomposition

This section details each of the lowest level modules (“leaf” modules) in the design of the
PDE Solver of DynSWS. In accordance with the design principle of information hiding,
each leaf module has one secret and provides one service. The goal is to keep the scope of
each leaf module relatively small and self-contained so that each can be viewed as a work
assignment. The fact that each module maintains a secret allows different modules to be
worked on in parallel, provided that the interface to the module is specified. That is, the
implementation details of the module’s service are isolated. This type of design also facilitates
future changes to the software product as an individual change is ideally isolated to a single
leaf module (provided that it comes from the list of anticipated changes in Section 3.1.1).
Finally, some leaf modules are assigned a naming convention prefix to avoid naming conflicts
in the implementation.

3.2.2.3 Software Decision Hiding

3.2.2.3.3 PDE Solver Control

Secret: The algorithm for solving a system of partial differential equations.

Service: Compute the solution to a system of partial differential equations.

Prefix: pde

3.2.2.3.4 PDE Solver Constants

Secret: The values of constants involved in the PDE Solver algorithm.

Service: Return the values of constants involved in the PDE Solver algorithm.

Prefix: N/A

3.2.2.3.5 Data Structures

3.2.2.3.5.1 Dense Matrix ADT

Secret: The data structure for a dense (not banded or sparse) matrix.

Service: Provide access routines for dense matrix data type.

Prefix: dm

3.2.2.3.5.2 Banded Symmetric Matrix ADT

Secret: The data structure for a banded symmetric matrix.

Service: Provide access routines for banded symmetric matrix data type.
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Prefix: bsm

3.2.2.3.5.3 Vector ADT

Secret: The data structure for a vector.

Service: Provide access routines for vector data type.

Prefix: vec

3.2.2.3.6 Integration Algorithms

3.2.2.3.6.1 Body Element Integration

Secret: The algorithm for integrating properties over body elements.

Service: Integrate a quantity over a body element.

Prefix: bodyint

3.2.2.3.6.2 Traction Element Integration

Secret: The algorithm for integrating properties over traction elements.

Service: Integrate a quantity over a traction element.

Prefix: tracint

3.2.2.3.7 Interpolation

3.2.2.3.7.1 Body Element Interpolation

Secret: The interpolation algorithm for body elements.

Service: Compute the value of a quantity within a body element.

Prefix: bodyinterp

3.2.2.3.7.2 Traction Element Interpolation

Secret: The interpolation algorithm for traction elements.

Service: Compute the value of a quantity within a traction element.

Prefix: tracinterp
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3.2.2.3.8 Material Models

3.2.2.3.8.1 Linear Elastic Model

Secret: The algorithm for computing stress and strain in a linear elastic material.

Service: Update the stress and strain at a point.

Prefix: N/A

3.2.2.3.8.2 Constitutive Matrix

Secret: The algorithm for computing the constitutive matrix.

Service: Compute the constitutive matrix.

Prefix: N/A

3.2.2.3.8.3 Kinematic Matrix

Secret: The algorithm for computing the kinematic matrix.

Service: Compute the kinematic matrix.

Prefix: N/A

3.2.2.3.9 Linear Algebra

3.2.2.3.9.1 Linear Solver

Secret: The algorithm for solving a system of linear equations.

Service: Compute the solution to a system of linear equations (i.e. given [A] {x} = {b}
where [A] is constant, find {x}).

Prefix: N/A

3.2.3 Uses Hierarchy

This section shows how the various modules in the PDE Solver of DynSWS are interrelated.
Figure 3.1 shows the uses hierarchy for the PDE Solver system. Note that only leaf modules
are shown as these are the only modules that will actually be implemented (or used from
an external source). Also, note that while the uses hierarchy implies the control flow of the
program, it does not explicitly display the order in which the modules are called; the uses
hierarchy simply shows which modules use other modules. It is important to observe that
there are no “closed loops” in the uses hierarchy. This is important as such situations make
both implementation and change difficult due to the circular nature of the dependencies.
Note that some modules in Figure 3.1 at the lower level of the hierarchy (such as data
structures and basic mathematical operations) are used by essentially all other modules. To
simplify the presentation of the uses hierarchy, such modules have been surrounded with
dashed boxes.
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Figure 3.1: Uses hierarchy for modular decomposition of PDE Solver
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3.3 Traceability Matrices

Figure 3.2: Traceability matrix for anticipated changes, part 1 of 3
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Figure 3.3: Traceability matrix for anticipated changes, part 2 of 3
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Figure 3.4: Traceability matrix for anticipated changes, part 3 of 3
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Figure 3.5: Traceability matrix for unlikely changes
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Figure 3.6: Traceability matrix for goal statements
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Figure 3.7: Traceability matrix for non-functional requirements, part 1 of 2
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Figure 3.8: Traceability matrix for non-functional requirements, part 2 of 2
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4 Module Interface Specification for PDE Solver

4.3.3 PDE Solver Control

Uses

Modules:
Banded Symmetric Matrix ADT
Boundary Data
Body Element Integration
Dense Matrix ADT
Field Data
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
Material Property Data
PDE Solver Constants
System Constants
Traction Element Integration
Vector ADT

Syntax

Exported Constants
N/A

Exported Types
N/A
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Exported Functions

Table 4.1: Exported function interfaces for PDE Solver Control module

Name Input Output Exceptions

pde init
pde clean

pde buildMassMatrix
pde buildStiffMatrix
pde buildDampMatrix real, real
pde buildModMassMatrix
pde buildLoadVector integer

pde initAcc
pde incAcc
pde incDisp
pde incVel
pde incStrain
pde incStress

pde updateAcc
pde updateDisp
pde updateVel
pde updateStrain
pde updateStress
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Semantics

State Variables

hbw : integer
nnod : integer
nel : integer
nelb : integer
ndof : integer
mass : bandSymMatrixT
modMass : bandSymMatrixT
stiff : bandSymMatrixT
damp : bandSymMatrixT
initStress : vectorT
initStrain : vectorT
body : vectorT
trac : vectorT
load : vectorT
prevDisp : vectorT
incDisp : vectorT
newDisp : vectorT
prevVel : vectorT
incVel : vectorT
newVel : vectorT
prevAcc : vectorT
newAcc : vectorT
prevStress : vectorT
incStress : vectorT
newStress : vectorT
prevStrain : vectorT
incStrain : vectorT
newStrain : vectorT

State Invariants
N/A

Assumptions

1. The function pde init() will be called before all other functions in this module.
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Access Routine Semantics

pde init():

transition: ndof := fld numDof()

hbw := compute hbw()
nel := fld numElem()
nnod := fld numNode()
mass := new bandSymMatrixT(ndof ,hbw)
stiff := new bandSymMatrixT(ndof ,hbw)
initStress := new vectorT(ndof )
initStrain := new vectorT(ndof )
body := new vectorT(ndof )
trac := new vectorT(ndof )
load := new vectorT(ndof )
prevDisp := new vectorT(ndof )
incDisp := new vectorT(ndof )
newDisp := new vectorT(ndof )
prevVel := new vectorT(ndof )
incVel := new vectorT(ndof )
newVel := new vectorT(ndof )
prevAcc := new vectorT(ndof )
newAcc := new vectorT(ndof )
∀i ∈ [1..ndof ]
{

(∀j ∈ [1..nnod ]
{
∀k ∈ [1..NDIM]
{

i = fld getDof(j,k) →
prevDisp.vec set( i, fld getDisp(j,k) )
prevVel .vec set( i, fld getVel(j,k) )

}
} )

}
prevStress := new vectorT(nel× NTNS)
incStress := new vectorT(nel× NTNS)
newStress := new vectorT(nel× NTNS)
prevStrain := new vectorT(nel× NTNS)
incStrain := new vectorT(nel× NTNS)
newStrain := new vectorT(nel× NTNS)
∀i ∈ [1..nel ]
{

j := (i− 1)× NTNS
prevStress .vec set(j + 1, fld getStressElem(i, 11) )
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prevStress .vec set(j + 2, fld getStressElem(i, 22) )
prevStress .vec set(j + 3, fld getStressElem(i, 12) )
prevStrain.vec set(j + 1, fld getStrainElem(i, 11) )
prevStrain.vec set(j + 2, fld getStrainElem(i, 22) )
prevStrain.vec set(j + 3, fld getStrainElem(i, 12) )

}

exception: none

pde clean():

transition: nnod := 0
nel := 0
nelb := 0
ndof := 0
hbw := 0
mass .bsm clean()
modMass .bsm clean()
stiff .bsm clean()
damp.bsm clean()
initStress .vec clean()
initStrain.vec clean()
body .vec clean()
trac.vec clean()
load .vec clean()
prevDisp.vec clean()
incDisp.vec clean()
newDisp.vec clean()
prevVel .vec clean()
incVel .vec clean()
newVel .vec clean()
prevAcc.vec clean()
newAcc.vec clean()
prevStress .vec clean()
incStress .vec clean()
newStress .vec clean()
prevStrain.vec clean()
incStrain.vec clean()
newStrain.vec clean()

exception: none
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pde buildMassMatrix():

transition: nel := fld numElem()

∀i ∈ [1..nel ]
{

emass := bint emass(i)
ind := ind(i)
massMat .bsm mappedAdd(emass ,ind)

}

exception: none

pde buildStiffMatrix():

transition: nel := fld numElem()

∀i ∈ [1..nel ]
{

estiff := bint estiff(i)
ind := ind(i)
stiffMat .bsm mappedAdd(emass ,ind)

}

exception: none

pde buildDampMatrix(a,b):

transition: factMass := massMat .bsm scalMul(a)
factStiff := stiffMat .bsm scalMul(b)
dampMat := factMass .bsm add(factStiff )

exception: none

pde buildModMassMatrix():

transition: dt := fld timeStep()
factDamp := dampMat .bsm scalMul(GAMMA × dt)
factStiff := stiffMat .bsm scalMul(BETA × dt2)
modMassMat := massMat .bsm add(factDamp)
modMassMat := modMassMat .bsm add(factStiff )

exception: none
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pde buildLoadVector(t):

transition: nel := fld numElem()

nelb := bnd numBoundElem()
ndof := fld numDof()
dt := fld timeStep()
(t = 0→
∀j ∈ [1..nel ]
{

ind := ind(j)
estress := bint estress(j)
initStressVec.vec mappedAdd(estress ,ind)
estrain := bint estrain(j)
initStrainVec.vec mappedAdd(estrain,ind)

}
initStressVec := initStressVec.vec scalMul(−1) )

bodyForceVec := new vectorT(ndof )
∀j ∈ [1..nel ]
{

eacc := bint eacc(j)
ind := ind(j)
bodyForceVec.mappedAdd(eacc,ind)

}
tracVec := new vectorT(ndof )
∀j ∈ [1..nelb]
{

etrac := tint etrac(j)
ind := ind t(j)
tracVec.mappedAdd(etrac,ind)

}
loadVec := tracVec.vec add(bodyForceVec)
loadVec := loadVec.vec add(initStressVec)
loadVec := loadVec.vec add(initStrainVec)
(t = 0→

fieldVec := dampMat .bsm vecMul(prevVel)
fieldVec := fieldVec.vec scalMul(−1)
loadVec := loadVec.vec add(fieldVec)
fieldVec := stiffMat .bsm vecMul(prevDisp)
fieldVec := fieldVec.vec scalMul(−1)
loadVec := loadVec.vec add(fieldVec)

| t 6= 0→
factAcc := prevAcc.vec scalMul( dt × (1− GAMMA) )
fieldVec := prevVel .vec add(factAcc)
fieldVec := dampMat .bsm vecMul(fieldVec)
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fieldVec := fieldVec.vec scalMul(−1)
loadVec := loadVec.vec add(fieldVec)
factAcc := prevAcc.vec scalMul( 0.5× dt2 × (1− 2× BETA) )
factVel := prevVel .vec scalMul(dt)
fieldVec := prevDisp.vec add(factVel)
fieldVec := fieldVec.vec add(factAcc)
fieldVec := stiffMat .bsm vecMul(fieldVec)
fieldVec := fieldVec.vec scalMul(−1)
loadVec := loadVec.vec add(fieldVec) )

exception: none

pde initAcc():

transition: prevAcc := lin solve(massMat , loadVec)

∀i ∈ [1..ndof ]
{

(∀j ∈ [1..nnod ]
{
∀k ∈ [1..NDIM]
{

i = fld getDof(j,k) →
fld setAcc(j,k, prevDisp.vec get(i) )

}
} )

}

exception: none

pde incAcc():

transition: newAcc := lin solve(modMassMat , loadVec)

exception: none
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pde incDisp():

transition: dt := fld timeStep()
factAcc1 := prevAcc.vec scalMul( 1− 2× BETA )
factAcc2 := newAcc.vec scalMul( 2× BETA )
factVel := prevVel .vec scalMul( dt )
incDisp := factAcc1.vec add(factAcc2)
incDisp := incDisp.vec scalMul( 0.5× dt2 )
incDisp := incDisp.vec add(factVel)

exception: none

pde incVel():

transition: dt := fld timeStep()
factAcc1 := prevAcc.vec scalMul( 1− GAMMA )
factAcc2 := newAcc.vec scalMul( GAMMA )
incVel := factAcc1.vec add(factAcc2)
incVel := incVel .vec scalMul( dt )

exception: none

pde incStrain():

transition: nel := fld numElem()

incStrain := new vectorT( nel× NTNS )
∀i ∈ [1..nel ]
{

dDisp := new vectorT( NDIM × NNODEL )
∀j ∈ [1..NNODEL]
{
∀k ∈ [1..NDIM]]
{

l := fld getDof( fld getConnect(i,j), k )
( l 6= 0→

dDisp.vec set( (j − 1)× NDIM +k, incDisp.vec get(l) )
}

}
B := bmatrix(i)
dStrain := B.dm vecMul(dDisp)
ind := [(i− 1)× NTNS +1..i× NTNS]
incStrain.vec mappedAdd(dStrain,ind)

}

exception: none
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pde incStress():

transition: nel := fld numElem()

incStress := new vectorT( nel× NTNS )
∀i ∈ [1..nel ]
{

dStrain := new vectorT( NTNS )
∀j ∈ [1..NTNS]
{

dStrain.vec set( j, incStrain.vec get((i− 1)× NTNS +j) )
}
m := fld getMaterial(i)
E := mtl getEmod(m)
ν := mtl getPois(m)
dStress := linearElastic(E,ν,dStrain)
ind := [(i− 1)× NTNS +1..i× NTNS]
incStress .vec mappedAdd(dStress ,ind)

}

exception: none

pde updateAcc():

transition: ndof := fld numDof()

nnod := fld numNode()
∀i ∈ [1..ndof ]
{

(∀j ∈ [1..nnod ]
{
∀k ∈ [1..NDIM]
{

i = fld getDof(j,k) →
fld setAcc( j, k, newAcc.vec get(i) )

}
} )

}
prevAcc := newAcc

exception: none
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pde updateDisp():

transition: newDisp := prevDisp.vec add(incDisp)

ndof := fld numDof()
nnod := fld numNode()
∀i ∈ [1..ndof ]
{

(∀j ∈ [1..nnod ]
{
∀k ∈ [1..NDIM]
{

i = fld getDof(j,k) →
fld setDisp( j, k, newDisp.vec get(i) )

}
} )

}
prevDisp := newDisp

exception: none

pde updateVel():

transition: newVel := prevVel .vec add(incVel)

ndof := fld numDof()
nnod := fld numNode()
∀i ∈ [1..ndof ]
{

(∀j ∈ [1..nnod ]
{
∀k ∈ [1..NDIM]
{

i = fld getDof(j,k) →
fld setVel( j, k, newVel .vec get(i) )

}
} )

}
prevVel := newVel

exception: none
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pde updateStrain():

transition: newStrain := prevStrain.vec add(incStrain)

nel := fld numElem()
∀i ∈ [1..nel ]
{

fld setStrainElem( i, 11, newStrain.vec get( (i− 1)× NTNS +1 ) )
fld setStrainElem( i, 22, newStrain.vec get( (i− 1)× NTNS +2 ) )
fld setStrainElem( i, 12, newStrain.vec get( (i− 1)× NTNS +3 ) )

}
prevStrain := newStrain

exception: none

pde updateStress():

transition: newStress := prevStress .vec add(incStress)

nel := fld numElem()
∀i ∈ [1..nel ]
{

fld setStressElem( i, 11, newStress .vec get( (i− 1)× NTNS +1 ) )
fld setStressElem( i, 22, newStress .vec get( (i− 1)× NTNS +2 ) )
fld setStressElem( i, 12, newStress .vec get( (i− 1)× NTNS +3 ) )

}
prevStress := newStress

exception: none
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Local Functions

max: real × real → real
max(a,b) ≡ (a ≥ b→ a | a < b→ b)

hbw: () → integer

hbw():

transition: result := 0

∀i ∈ [1..fld numElem]
{
∀j ∈ [1..NNODEL]
{
∀k ∈ [1..NDIM]
{
∀l ∈ [(k < NDIM → j | k = NDIM → j + 1)..NNODEL]
{
∀m ∈ [(k < NDIM → k + 1 | k = NDIM → 1)..NNODEL]
{

result :=
( fld getDof(fld getConnect(i,j),k) = 0 → result
| fld getDof(fld getConnect(i,l),m) = 0 → result
| fld getDof(fld getConnect(i,j),k) 6= 0
∧ fld getDof(fld getConnect(i,l),m) 6= 0
→ max(result ,|fld getDof(fld getConnect(i,j),k)
− fld getDof(fld getConnect(i,l),m)| )

}
}

}
}

}

output: out := result

exception: none
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ind: integer → sequence of integer

ind(i):

transition: result := sequence [NDIM × NNODEL] of integer

∀j ∈ [1..NNODEL]
{
∀k ∈ [1..NDIM]
{

result [(j − 1)× NDIM +k] := fld getDof( fld getConnect(i,j), k )
}

}

output:

exception: none

ind t: integer → sequence of integer

ind t(i):

transition: result := sequence [NDIM × NNODELB] of integer

∀j ∈ [1..NNODELB]
{
∀k ∈ [1..NDIM]
{

result [(j − 1)× NDIM +k] := fld getDof( bnd getConnect(i,j), k )
}

}

output:

exception: none

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.4 PDE Solver Constants

Uses

System Constants

Syntax

Exported Constants

Table 4.2: Exported constants for PDE Solver Constants module

Name Type Value

NGAUSS ELEM integer 1
NGAUSS BOUND integer 1

GAUSS PT ELEM sequence of real [1
3
, 1

3
]

GAUSS WT ELEM real 1.0

GAUSS PT BOUND real 0.5
GAUSS WT BOUND real 1.0

BETA real 0.25
GAMA real 0.5

Exported Types
N/A

Exported Functions
N/A
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Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A

Access Routine Semantics
N/A

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.5.1 Dense Matrix ADT

Uses

Modules:
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
Memory Access
Vector ADT

Syntax

Exported Constants
N/A

Exported Types

matrixT = ?

Exported Functions

Table 4.3: Exported function interfaces for Dense Matrix ADT module

Name Input Output Exceptions

new matrixT integer, integer matrixT ALLOC, SZE
dm clean

dm numRows integer
dm numCols integer

dm get integer, integer real POSIT
dm set integer, integer, real POSIT

dm add matrixT matrixT DIMEN
dm scalMul real matrixT
dm vecMul vectorT vectorT DIMEN
dm matMul matrixT matrixT DIMEN
dm transpose matrixT
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Semantics

State Variables

dat : sequence of sequence of real

State Invariants
N/A

Assumptions
N/A

Access Routine Semantics

new matrixT(m,n):

transition: dat := sequence [m,n] of real s.t.

∀i ∈ [1..m]
{
∀j ∈ [1..n]
{

dat [i, j] := 0.0
}

}

output: out := self

exception: exc := (Amount of memory required for dat < mem getAvailMem()
→ ALLOC
| m ≤ 0→ SZE
| n ≤ 0→ SZE )

dm clean():

transition: Deallocate memory for dat

exception: none

dm numRows():

output: out := |dat |

exception: none
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dm numCols():

output: out := |dat [1]|

exception: none

dm get(i,j):

output: out := dat [i, j]

exception: exc := ( i /∈ [1..self .dm numRows()] → POSIT
| j /∈ [1..self .dm numCols()] → POSIT )

dm set(i,j,v):

transition: dat [i, j] := v

exception: exc := ( i /∈ [1..self .dm numRows()] → POSIT
| j /∈ [1..self .dm numCols()] → POSIT )

dm add(other):

transition: result := new matrixT( self .dm numRows() , self .dm numCols() )

∀i ∈ [1..result .dm numRows()]
{
∀j ∈ [1..result .dm numCols()]
{

result .dm set(i,j, self .dm get(i,j) + other .dm get(i,j) )
}

}

output: out := result

exception: exc := (self .dm numRows() 6= other .dm numRows() → DIMEN
| self .dm numCols() 6= other .dm numCols() → DIMEN)

dm scalMul(k):

transition: result := new matrixT( self .dm numRows() , self .dm numCols() )

∀i ∈ [1..result .dm numRows()]
{
∀j ∈ [1..result .dm numCols()]
{

result .dm set( i , j , k × self .dm get(i,j) )
}

}

output: out := result

exception: none
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dm vecMul(other):

transition: result := new vectorT( self .dm numRows() )

∀i ∈ [1..result .vec length()]
{
∀j ∈ [1..self .dm numCols()]
{

result .vec set(i, result .vec get(i) + self .dm get(i,j) × other .vec get(j) )
}

}

output: out := result

exception: exc := (self .dm numCols() 6= other .vec length() → DIMEN)

dm matMul(other):

transition: result := new matrixT( self .dm numRows() , other .dm numCols() )

∀i ∈ [1..result .dm numRows()]
{
∀j ∈ [1..result .dm numCols()]
{
∀k ∈ [1..self .dm numCols()]
{

result .dm set(i,j, result .dm get(i,j) + self .dm get(i,k) × other .dm get(k,j) )
}

}
}

output: out := result

exception: exc := (self .dm numCols() 6= other .dm numRows() → DIMEN)
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dm transpose():

transition: result := new matrixT( self .dm numRows() , self .dm numCols() )

∀i ∈ [1..result .dm numRows()]
{
∀j ∈ [1..result .dm numCols()]
{

result .dm set( i,j, self .dm get(j,i) )
}

}

output: out := result

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.5.2 Banded Symmetric Matrix ADT

Uses

Modules:
Dense Matrix ADT
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
Memory Access
Vector ADT

Syntax

Exported Constants
N/A

Exported Types

bandSymMatrixT = ?

Exported Functions

Table 4.4: Exported function interfaces for Banded Symmetric Matrix ADT module

Name Input Output Exceptions

new bandSymMatrixT integer, integer bandSymMatrixT ALLOC, SZE
bsm clean

bsm numRows integer
bsm halfBW integer

bsm get integer, integer real POSIT
bsm set integer, integer, real POSIT
bsm setDecomp seq of seq of real DIMEN

bsm add bandSymMatrixT bandSymMatrixT DIMEN
bsm mappedAdd matrixT, seq of integer DIMEN, POSIT
bsm scalMul real bandSymMatrixT
bsm vecMul vectorT vectorT DIMEN
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Semantics

State Variables

dat : sequence of sequence of real
decomp : sequence of sequence of real
is decomposed : boolean

State Invariants
N/A

Assumptions

1. The matrixT object passed to bsm mappedAdd() is symmetric.

2. There are no repeated indices in the sequence of integers passed to bsm mappedAdd().

Access Routine Semantics

new bandSymMatrixT(hbw ,n):

transition: dat := sequence [hbw ,n] of real

decomp := sequence [hbw ,n] of real
is decomposed := FALSE
∀i ∈ [1..hbw ]
{
∀j ∈ [1..n]
{

dat [i, j] := 0.0
decomp[i, j] := 0.0

}
}

output: out := self

exception: exc := (Amount of memory required for dat < mem getAvailMem()
→ ALLOC
| Amount of memory required for decomp < mem getAvailMem() → ALLOC
| hbw ≤ 0→ SZE
| n ≤ 0→ SZE )

bsm clean():

transition: Deallocate memory for dat and decomp
is decomposed := FALSE

exception: none
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bsm numRows():

output: out := |dat [1]|

exception: none

bsm halfBW():

output: out := |dat |

exception: none

bsm get(i,j):

transition: r, c := self .packed index(i,j)

output: out := (c− r < self .bsm halfBW()→ dat [r, c] | c− r ≥ self .bsm halfBW()→ 0.0)

exception: exc := (i /∈ [1..self .bsm numRows()]→ POSIT
|j /∈ [1..self .bsm numRows()]→ POSIT)

bsm set(i,j,v):

transition: r, c := self .packed index(i,j)
dat [r, c] := v

exception: exc := (i /∈ [1..self .bsm numRows()]→ POSIT
|j /∈ [1..self .bsm numRows()]→ POSIT
| |j − i| ≥ self .bsm halfBW()→ POSIT)

bsm setDecomp(d):

transition: decomp := d
is decomposed := TRUE

exception: exc := (|d| 6= self .halfBW() → DIMEN
| |d(1)| 6= self .numRows() → DIMEN )
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bsm add(other):

transition: result := new bandSymMatrixT( self .bsm numRows() ,
max(self .bsm halfBW(),other .bsm halfBW() ) )

∀i ∈ [1..result .bsm numRows()]
{
∀j ∈ [i..min(i+ result .bsm halfBW()−1, result .bsm numRows())]
{

result .bsm set(i,j, self .bsm get(i,j) + other .bsm get(i,j) )
}

}

output: out := result

exception: exc := (self .bsm numRows() 6= other .bsm numRows() → DIMEN)

bsm mappedAdd(other ,ind):

transition: ∀i ∈ [1..|ind |]

{
∀j ∈ [i..|ind |]
{

(ind [i] 6= 0 ∧ ind [j] 6= 0
→ self .bsm set(ind [i],ind [j],

self .bsm get(ind [i],ind [j])
+ other .dm get(i,j) ) )

}
}

exception: exc := (other .dm numRows() 6= other .dm numCols() → DIMEN
| other .dm numRows() 6= |ind | → DIMEN
| other .dm numRows() > self .bsm halfBW() → DIMEN
| ∃i ∈ ind s.t. i /∈ [0..self .bsm numRows()]→ POSIT
| ∃i, j ∈ ind s.t. i 6= 0 ∧ j 6= 0 ∧ |j − i| ≥ self .bsm halfBW()→ POSIT )
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bsm scalMul(k):

transition: result := new bandSymMatrixT( self .bsm numRows() , self .bsm halfBW() )

∀i ∈ [1..result .bsm numRows()]
{
∀j ∈ [i..min(i+ result .bsm halfBW()−1, result .bsm numRows())]
{

result .bsm set( i,j,k × self .bsm get(i,j) )
}

}

output: out := result

exception: none

bsm vecMul(other):

transition: result := new vectorT( self .bsm numRows() )

∀i ∈ [1..result .vec length()]
{
∀j ∈ [max(i− self .bsm halfBW()+1, 1)..min(i+ self .bsm halfBW()−1, self .bsm numRows())]
{

result .vec set( i, result .vec get(i) + self .bsm get(i,j) × other .vec get(j) )
}

}

output: out := result

exception: exc := (self .bsm numRows() 6= other .vec length() → DIMEN)
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Local Functions

min: real × real → real
min(a,b) ≡ (a ≤ b→ a | a > b→ b)

max: real × real → real
max(a,b) ≡ (a ≥ b→ a | a < b→ b)

packed index: integer × integer → integer × integer

packed index(i,j):

transition: r,c := ( i > j → j,i | i ≤ j → i,j )
r := self .bsm halfBW() − (c− r)

output: out := r,c

exception: none

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.5.3 Vector ADT

Uses

Modules:
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
Memory Access

Syntax

Exported Constants
N/A

Exported Types

vectorT = ?

Exported Functions

Table 4.5: Exported function interfaces for Vector ADT module

Name Input Output Exceptions

new vectorT integer vectorT ALLOC, SZE
vec clean

vec length integer

vec get integer real POSIT
vec set integer, real POSIT

vec add vectorT vectorT DIMEN
vec mappedAdd vectorT, seq of integer DIMEN, POSIT
vec scalMul real vectorT
vec dotProd vectorT real DIMEN
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Semantics

State Variables

dat : sequence of real

State Invariants
N/A

Assumptions

1. There are no repeated indices in the sequence of integers passed to vec mappedAdd().

Access Routine Semantics

new vectorT(n):

transition: dat := sequence [n] of real

∀i ∈ [1..n]
{

dat [i] := 0.0
}

output: out := self

exception: exc := (Amount of memory required for dat < mem getAvailMem()
→ ALLOC
| n ≤ 0→ SZE )

vec clean():

transition: Deallocate memory for dat

exception: none

vec length():

output: out := |dat |

exception: none

vec get(i):

output: out := dat [i]

exception: exc := (i /∈ [1..self .vec length()]→ POSIT)

vec set(i,v):

transition: dat [i] := v

exception: exc := (i /∈ [1..self .vec length()]→ POSIT)
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vec add(other):

transition: result := new vectorT( self .vec length() )

∀i ∈ [1..result .vec length()]
{

result .vec set(i, self .vec get(i) + other .vec get(i) )
}

output: out := result

exception: exc := (self .vec length() 6= other .vec length() → DIMEN)

vec mappedAdd(other ,ind):

transition: ∀i ∈ [1..|ind |]

{
(ind [i] 6= 0
→ self .vec set(ind [i],

self .vec get(ind [i])
+ other .vec get(i) ) )

}

exception: exc := (other .vec length() 6= |ind | → DIMEN
| ∃i ∈ ind s.t. i /∈ [0..self .vec length()]→ POSIT)

vec scalMul(k):

transition: result := new vectorT( self .vec length() )

∀i ∈ [1..result .vec length()]
{

result .vec set( i, k × self .vec get(i) )
}

output: out := result

exception: none
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vec dotProd(other):

transition: result := 0.0

∀i ∈ [1..self .vec length()]
{

result := result + self .vec get(i) × other .vec get(i)
}

output: out := result

exception: exc := (self .vec length() 6= other .vec length() → DIMEN)

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.6.1 Body Element Integration

Uses

Modules:
Constitutive Matrix
Body Element Interpolation
Dense Matrix ADT
Field Data
Floating Point Operations
Integer Operations
Kinematic Matrix
Material Property Data
PDE Solver Constants
Vector ADT

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.6: Exported function interfaces for Body Element Integration module

Name Input Output Exceptions

bint emass integer matrixT
bint estiff integer matrixT
bint eacc integer vectorT
bint estress integer vectorT
bint estrain integer vectorT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A
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Access Routine Semantics

bint emass(i):

transition: m := fld getMaterial(i)
ρe := mtl getDens(m)

output: out :=
∫
Ae
NT

e ρeNedAe
for body element i where
Ne := bshp shape(l1,l2) and
l1,l2 are area coordinates that vary from 0 to 1 over Ae as defined in Section 2.3.2

exception: none

bint estiff(i):

transition: Be := bmatrix(i)
m := fld getMaterial(i)
E := mtl getEmod(m)
ν := mtl getPois(m)
De := dmatrix(E,ν)

output: out :=
∫
Ae
BT

eDeBedAe for body element i

exception: none

bint eacc(i):

transition: m := fld getMaterial(i)

ρe := mtl getDens(m)
fe := new vectorT(NDIM × NNODEL)
∀j ∈ [1..NNODEL]
{
∀k ∈ [1..NDIM]
{
fe.vec set( (j − 1)× NDIM +k, fld getBodyAcc( fld getConnect(i,j), k) )

}
}

output: out :=
∫
Ae
NT

e ρefedAe
for body element i where
Ne := bshp shape(l1,l2) and
l1,l2 are area coordinates that vary from 0 to 1 over Ae as defined in Section 2.3.2

exception: none
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bint estress(i):

transition: Be := bmatrix(i)
σ0e := new vectorT(NTNS)
σ0e.vec set(1, fld getStressElem(i,11) )
σ0e.vec set(2, fld getStressElem(i,22) )
σ0e.vec set(3, fld getStressElem(i,12) )

output: out :=
∫
Ae
BT

e σ0edAe

exception: none

bint estrain(i):

transition: Be := bmatrix(i)
m := fld getMaterial(i)
E := mtl getEmod(m)
ν := mtl getPois(m)
De := dmatrix(E,ν)
ε0e := new vectorT(NTNS)
ε0e.vec set(1, fld getStrainElem(i,11) )
ε0e.vec set(2, fld getStrainElem(i,22) )
ε0e.vec set(3, fld getStrainElem(i,12) )

output: out :=
∫
Ae
BT

eDeε0edAe

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.6.2 Traction Element Integration

Uses

Modules:
Boundary Data
Dense Matrix ADT
Floating Point Operations
Integer Operations
PDE Solver Constants
Traction Element Interpolation
Vector ADT

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.7: Exported function interfaces for Traction Element Integration module

Name Input Output Exceptions

tint etrac integer matrixT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A
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Access Routine Semantics

tint etrac(i):

transition: lt := bnd lenBoundElem(i)
T := tshp transform(i)
t1 := bnd getTrac(i,1)
t2 := bnd getTrac(i,2)
t̄′t := new vectorT(NNODELB × NDIM)
t̄′t.vec set(1,t1.σnt)
t̄′t.vec set(2,t1.σnn)
t̄′t.vec set(3,t2.σnt)
t̄′t.vec set(4,t2.σnn)

output: out :=
∫ 1

0
NT

t T
TNtt̄

′
tltds for traction element i where

Nt := tshp shape(s)

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.7.1 Body Element Interpolation

Uses

Modules:
Dense Matrix ADT
Floating Point Operations
Integer Operations
System Constants

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.8: Exported function interfaces for Body Element Interpolation module

Name Input Output Exceptions

bshp shape real, real matrixT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions

1. The sum of the inputs to bshp shape(l1,l2) is less than or equal to unity. That is,
l1 + l2 ≤ 1.
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Access Routine Semantics

bshp shape(l1,l2):

transition: result := new matrixT(NDIM, NDIM × NNODEL)
result .dm set(1,1, l1)
result .dm set(2,2, l1)
result .dm set(1,3, l2)
result .dm set(2,4, l2)
result .dm set(1,5, 1− l1 − l2)
result .dm set(2,6, 1− l1 − l2)

output: out := result

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.7.2 Traction Element Interpolation

Uses

Modules:
Boundary Data
Dense Matrix ADT
Field Data
Floating Point Operations
Integer Operations
System Constants

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.9: Exported function interfaces for Traction Element Interpolation module

Name Input Output Exceptions

tshp shape real matrixT
tshp transform integer matrixT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A
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Access Routine Semantics

tshp shape(s):

transition: result := new matrixT(NDIM, NDIM × NNODELB)
result .dm set(1,1, 1− s)
result .dm set(2,2, 1− s)
result .dm set(1,3, s)
result .dm set(2,4, s)

output: out := result

exception: none

tshp transform(i):

transition: x1 := fld getCoord(bnd getConnect(i,1),1)
y1 := fld getCoord(bnd getConnect(i,1),2)
x2 := fld getCoord(bnd getConnect(i,2),1)
y2 := fld getCoord(bnd getConnect(i,2),2)

θ := tan−1
(
y2−y1
x2−x1

)
result := new matrixT(NDIM, NDIM)
result .dm set(1,1, cos θ)
result .dm set(2,1, − sin θ)
result .dm set(1,2, sin θ)
result .dm set(2,2, cos θ)

output: out := result

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.8.1 Linear Elastic Model

Uses

Modules:
Constitutive Matrix
Dense Matrix ADT
Floating Point Operations
Integer Operations
Vector ADT

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.10: Exported function interfaces for Linear Elastic Model module

Name Input Output Exceptions

linearElastic real, real, vectorT vectorT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A

Access Routine Semantics

linearElastic(E,ν,dε):

transition: D := dmatrix(E,ν)

output: out := D.dm vecMul(dε)

exception: none
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Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.8.2 Constitutive Matrix

Uses

Modules:
Dense Matrix ADT
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
System Constants

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.11: Exported function interfaces for Constitutive Matrix module

Name Input Output Exceptions

dmatrix real, real matrixT EXCEED

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A

Ver. DynSWS-PDE-1.0 80



SRS, MG, MIS for PDE Solver
DynSWS

Brandon Karchewski
McMaster University - Dept. of Civil Engineering

Access Routine Semantics

dmatrix(E,ν):

transition: result := new matrixT(NTNS,NTNS)
result .dm set(1,1, 1− ν)
result .dm set(2,1, ν)
result .dm set(1,2, ν)
result .dm set(2,2, 1− ν)
result .dm set(3,3, 1− 2ν)
result .dm scalMul( E

(1+ν)(1−2ν)
)

output: out := result

exception: exc := (E < E MIN→ EXCEED
| E > E MAX→ EXCEED
| ν < NU MIN→ EXCEED
| ν > NU MAX→ EXCEED)

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.8.3 Kinematic Matrix

Uses

Modules:
Dense Matrix ADT
Field Data
Floating Point Operations
Integer Operations
System Constants

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.12: Exported function interfaces for Kinematic Matrix module

Name Input Output Exceptions

bmatrix integer matrixT

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A
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Access Routine Semantics

bmatrix(i):

transition: result := new matrixT( NTNS , NDIM × NNODEL)
b1 := fld getCoord(fld getConnect(i,2),2) − fld getCoord(fld getConnect(i,3),2)
b2 := fld getCoord(fld getConnect(i,3),2) − fld getCoord(fld getConnect(i,1),2)
b3 := fld getCoord(fld getConnect(i,1),2) − fld getCoord(fld getConnect(i,2),2)
c1 := fld getCoord(fld getConnect(i,3),1) − fld getCoord(fld getConnect(i,2),1)
c2 := fld getCoord(fld getConnect(i,1),1) − fld getCoord(fld getConnect(i,3),1)
c3 := fld getCoord(fld getConnect(i,2),1) − fld getCoord(fld getConnect(i,1),1)
result .dm set(1,1, b1)
result .dm set(2,2, c1)
result .dm set(1,3, b2)
result .dm set(2,4, c2)
result .dm set(1,5, b3)
result .dm set(2,6, c3)
result .dm set(3,1, c1)
result .dm set(3,2, b1)
result .dm set(3,3, c2)
result .dm set(3,4, b2)
result .dm set(3,5, c3)
result .dm set(3,6, b3)
result .dm scalMul( 1

2×fld volElem(i)
)

output: out := result

exception: none

Local Functions
N/A

Local Types
N/A

Local Constants
N/A

Considerations
N/A
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4.3.9.1 Linear Solver

Uses

Modules:
Banded Symmetric Matrix ADT
Floating Point Operations
Integer Operations
Log Message Control
Log Messages
Vector ADT

Syntax

Exported Constants
N/A

Exported Types
N/A

Exported Functions

Table 4.13: Exported function interfaces for Linear Solver module

Name Input Output Exceptions

lin solve bandSymMatrixT, vectorT vectorT DIMEN

Semantics

State Variables
N/A

State Invariants
N/A

Assumptions
N/A
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Access Routine Semantics

lin solve(A,b):

output: out := x s.t. (x is a vectorT
∧ x.length() = b.length()

∧ ||A
−1x−b||
||b|| < εa )

exception: exc := ( A.numRows() 6= b.length() → DIMEN )

Local Functions
N/A

Local Types
N/A

Local Constants

εa := 1× 10−5

Considerations
N/A
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