CAS 741 (Development of Scientific Computing
Software)

Winter 2024
Assurance Cases

Dr. Spencer Smith
Faculty of Engineering, McMaster University

May 25, 2024

McMaster
University ‘1*?:1

Assurance Cases

Administrative details

Final documentation

Make

Coding standards

Coding advice

Connecting code to MG and MIS
License and copyright

README file

Other files in capTemplate

Assurance cases

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

2/52

Administrative Details

e Draft participation grade

@ When developing your code, remember that your goal is
for someone else to be able to compile and run it

@ Upcoming classes

» L19 — Assurance Cases

» |20 — Artifact Generation

» L21a—24 — Implementation/Testing Presentations
» L21b — A Holistic Approach (not this year)

@ No requirement to provide feedback to colleagues on final
documentation

Dr. Smith CAS 741 Winter 2024: Assurance Cases 3/52

Administrative Details: Report Deadlines

Final Documentation Week 13 Apr 12

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

@ If you need an extension for a written doc, please ask

@ When ready, assign issues to your primary and secondary
reviewers

@ GitHub issues due two days after assignment deadlines

@ From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: Assurance Cases 4/52

Administrative Details: Presentations

Unit VnV/Implement Week 12 Week of Apr 3
@ Specific schedule depends on final class registration

@ Informal presentations with the goal of improving
everyone's written deliverables

@ Time for presentation includes time for questions
@ We will have to be strict with the schedule

@ Presentations WILL be interrupted with
questions/criticism; please do not take it personally

@ Any concerns, let the instructor know

Dr. Smith CAS 741 Winter 2024: Assurance Cases

5/52

Presentation Schedule

Dr. Smith CAS 741 Winter 2024: Assurance Cases 6/52

Presentation Sched Cont’d

@ Implementation Present (15 min each)
» Apr 2: Phil, Xinyu, Fasil, Yi-Leng
» Apr 5: Gaofeng, Morteza, Valerie, Hunter, Ali
» Apr 9: Cynthia, Adrian, Yiding, Kim Ying, Nada

Dr. Smith CAS 741 Winter 2024: Assurance Cases 7/52

Presentation Schedule

@ 3 presentations each

» SRS everyone

» VnV and POC subset of class
» Design subset of class

» Implementation everyone

o If you will miss a presentation, please trade with someone

@ Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: Assurance Cases 8/52

Final Presentations

@ Based on your implementation and testing
@ You decide what to focus on
o If in doubt, ask
@ Options
» Demonstration
Summarize testing results
Usability test with the class (show of hands for data)

>
| 4
» Code walkthrough with class
» Usability survey with class
» Technology overview
> CI/CD
» Valgrind
> Doxygen
> etc.

Dr. Smith CAS 741 Winter 2024: Assurance Cases 9/52

Final Documentation

@ Looking for
» Revision of documentation
» Consistency between documents
» Traceability between documents - should be able to pick
a requirement and trace it all the way to testing
» Effort made to address issues and comments
» Appropriate challenge level
@ Make it easy to see changes from Rev 0
» Reflection document
» Closed issues in the issue tracker
» Specific explanation in Revision History
» Comments in tex file

Dr. Smith CAS 741 Winter 2024: Assurance Cases 10/52

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Documentation

Faking a rational design process

Problem Statement revised and improved
Requirements Document revised and improved
Design Documents revised and improved

VnV Plan revised and improved (complete unit testing
sections)

» Summarize unit testing philosophy
» Point to unit testing code

VnV Report
Source Code

Drasil projects no longer need to maintain the
traditionally generated SRS

Reflection Document

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

11/52

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Doc: Reflect and Trace

@ Reflect and trace document in capTemplate repo

@ Summarize response to ALL feedback

@ Each item of feedback should be treated separately

| 2

>
4
>
4
>

Identify source (reviewers, instructor, supervisor, users)
Give response

Summary of issue

Hyperlink to issue (if available)

Summary of change (include hyperlink if available)
Reasoning for not changing (include hyperlink if
available)

@ Explain how you arrived at your final design and
implementation

@ Reflect on and justify your design decisions

Dr. Smith

CAS 741 Winter 2024: Assurance Cases 12/52

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Doc: Reflection Cont'd

@ Ignore questions related to:

» Hazard analysis
» Economic considerations
» Feedback on capstone

@ How did actual project management compare to dev plan

» What went well? (continue)
» What went wrong? (stop)
» What would you do differently next time? (start)

Dr. Smith CAS 741 Winter 2024: Assurance Cases 13/52

Final Project Quality

@ Installability - instructions given, makefiles etc to support,
means to validate the installation, required libraries are
explicitly identified — update README.md and
INSTALL.md

@ Learnability - instructions to get someone started using
the software — give instructions on how to run the
software, how to execute the tests

@ Robustness - can the software handle garbage inputs
reasonably

@ Performance - measured if appropriate

@ Usability - measured if appropriate

Dr. Smith CAS 741 Winter 2024: Assurance Cases 14/52

Installability and Learnability

You can test this

Ask a colleague to install your software

Run it on a virtual machine, like VirtualBox
Use a “light weight” VM like docker

Include installation instructions (INSTALL.txt)

Include instructions so that someone else can run your
tests cases

Part of the evaluation of each project is to run it

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

15/52

https://www.virtualbox.org/

Consider Make for Installability, running test cases

@ Tutorial on Make, with links
@ Example Makefile for GlassBR

Dr. Smith CAS 741 Winter 2024: Assurance Cases 16/52

https://gitlab.cas.mcmaster.ca/smiths/se3xa3/blob/master/Labs/L12/Lab12.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/glass/src/Python/Makefile

Unit VnV Plan

@ Complete VnV Plan
@ Scope - what modules will be verified

@ Your approach for automated testing (if not already
covered)

Tools for code coverage metrics (if not already covered)

Non-testing based verification (if planned)

Unit test cases for each module - from black box and
white box (can point to code)

Performance tests for individual modules (if appropriate)
Evidence that all modules are considered

Dr. Smith CAS 741 Winter 2024: Assurance Cases 17/52

Final Documentation: VnV Report

@ Completing what you proposed in your test plan

@ You do not need to repeat material from your test plan -
the emphasis is not on the rational for test case selection,
but on the results.

@ If your test plan does not match what you are now
testing, edit your test plan to “fake” a rational design
process.

@ If your test report is not complete, because there is not
time for all of the tests, explain this in your report

Dr. Smith CAS 741 Winter 2024: Assurance Cases 18/52

VnV Report Continued

@ Point to specific test cases in test plan
@ Summarize your test results
» Test case name
» Initial state
» Input
» Expected results
» Whether actual output matched expected
@ Summarize and explain usability tests - quantify the

results
@ Performance tests - quantify the results
@ Stress tests
@ Robustness tests
°

After quantification of nonfunctional tests, explain
significance of results

Dr. Smith CAS 741 Winter 2024: Assurance Cases 19/52

VnV Report Continued

@ In cases where there are many similar tests
» Summarize the results
» If the expected result is obvious, you might not need to
state it
» Give an example test case, and explain how similar tests
were constructed
» If the tests were random, describe how they were
selected, and how many, but not all of the details
» Use graphs and tables
» You need enough information that
» Someone could reproduce your tests
> Your test results are convincing

» Evidence that you have used testing to improve the
quality of your project

Dr. Smith CAS 741 Winter 2024: Assurance Cases 20/52

VnV Report Continued

@ Summarize changes made in response to test results

@ Explain your automated testing set-up (if require more
detail than from the test plan)

@ Provide traceability to requirements (if not in test plan)
@ Provide traceability to modules (if not in test plan)

@ Make sure you show test results for “bad/abnormal” input

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

21/52

Sample VnV Report Documents

@ Screenholders

@ 2D Physics Based Game (Uses doxygen)
@ Capstone Sample reports

@ Solar Water Heating System

e Follow given template

@ Examples are not perfect

@ Examples are intended to give you ideas, not to be strictly
followed

@ You can modify/extend the test report template as
appropriate

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

22/52

https://gitlab.cas.mcmaster.ca/screenholders/screenholders
https://github.com/palmerst/CS-4ZP6/tree/master
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/SamplesOfStudentWork/VnVReport
https://github.com/smiths/swhs/tree/master/docs/VnVReport
https://github.com/smiths/capTemplate

Final Documentation: Source Code

@ Source code in src folder
@ Comments on “what” not “how”
o Identifiers that are consistent, distinctive, and meaningful

@ Avoidance of hard-coded constants (other than maybe 0
and 1)

Appropriate modularization

» Follow module guide
» Show traceability between MG modules and code files

Consistent indentation
Explicit identification of coding standards (see next slide)
Parameters are in the same order for all functions

Descriptive names of source code files

Show mapping between MIS symbols and code symbols

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

23/52

Coding Style

@ Having a coding standard is more important than which
standard you use
e Examples
» Google guides
»> Python

> C++
> Java

> NASA C Style Guide
@ Important to be consistent

@ Every code file should have a header with

> Author(s)
> Date
» Purpose

Dr. Smith CAS 741 Winter 2024: Assurance Cases 24/52

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html
https://ntrs.nasa.gov/citations/19950022400

Doxygen

@ A tool that generates documentation (say in html or tex)
from the code

@ Comments with special syntax are used in source files to
mark information for Doxygen to use

@ Tutorial on Doxygen

@ There are alternative to doxygen (pydoc, javadoc, sphinx,
etc.)

Dr. Smith CAS 741 Winter 2024: Assurance Cases 25/52

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01b-Doxygen

Final Grading Scheme

@ Available on Avenue
@ 60 possible grades, but out of 50

Dr. Smith CAS 741 Winter 2024: Assurance Cases 26/52

No License?

@ Can others use your work if you do not include a license?

@ See this link for the answer

Dr. Smith CAS 741 Winter 2024: Assurance Cases 27/52

http://choosealicense.com/no-license/

Copyright

@ Your work is automatically afforded protection by

copyright law

» Your cannot infringe on someone else's copyright
»> Must be some creativity

Additional protection through registration with the
copyright office

Copyright does not apply to the idea, but the expression
of the idea

Trademarks and patents cover concepts and ideas
In work for hire, copyright belongs to employer

You can assign your copyright to someone else or a
corporation

Dr. Smith

CAS 741 Winter 2024: Assurance Cases 28/52

Rights

@ Owner has full and exclusive rights to control who may
copy or create a derivative work

@ Right to sue for copyright infringement

Dr. Smith CAS 741 Winter 2024: Assurance Cases 29/52

Licensing

@ Permission to others to reproduce or distribute a work

@ Licenses are distinguished by the restrictions (conditions)

Dr. Smith CAS 741 Winter 2024: Assurance Cases 30/52

Proprietary License

@ Copyright holder retains all rights
e Cannot copy
e Cannot use

e Cannot modify

Dr. Smith CAS 741 Winter 2024: Assurance Cases 31/52

GNU General Public License (GPL)

Can copy the software
Can distribute the software

Can charge a fee to distribute the software (which will
still include the license information)

Can make modifications

Condition — all modifications/uses are also under GPL,
source code must be available

Lesser GPL allows to link to libraries, without
automatically falling under GPL conditions

Dr. Smith

CAS 741 Winter 2024: Assurance Cases 32/52

BSD and MIT

Removes ‘“virus" from GPL

Can copy, distribute, charge a fee, make modifications

Under the condition that you keep the license intact,
credit the author

Not required to disclose source

Use at your own risk (cannot sue)

Dr. Smith CAS 741 Winter 2024: Assurance Cases 33/52

Public Domain

@ Do what you want with the code

@ No conditions

Dr. Smith CAS 741 Winter 2024: Assurance Cases 34/52

Copyright and License Related Links

Developer's guide to copyright law
Summary of licenses

Main types of licenses

Choose a license

Another summary

Plain English summaries

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

35/52

http://haacked.com/archive/2006/01/24/TheDevelopersGuideToCopyrightLaw-Part1.aspx/
https://www.smashingmagazine.com/2010/03/a-short-guide-to-open-source-and-similar-licenses/
http://haacked.com/archive/2007/04/04/there-are-only-four-software-licenses.aspx/
http://choosealicense.com
http://choosealicense.com/licenses/
https://tldrlegal.com

Other Potential Files in Your Project

README
Contributing guidelines
Citation

Changelog

Install /Uninstall
Dependency list
Authors

Code of conduct
Acknowledgements
Style guide

Release information
Product roadmap
Getting started guide, user manual, tutorials
FAQ

Dr. Smith CAS 741 Winter 2024: Assurance Cases 36/52

Code of Conduct

@ Open source projects with a large diverse base of
developers frequently create a code of conduct

@ Open Code of Conduct
@ Diversity statement for Python

@ Geek Feminism

Dr. Smith CAS 741 Winter 2024: Assurance Cases 37/52

https://github.com/todogroup/opencodeofconduct
https://www.python.org/community/diversity/
https://geekfeminismdotorg.wordpress.com/about/code-of-conduct/

README files

@ Make sure the README file on your landing page is up
to date

o Categories and Contents of README files
e A README file is useful in any folder
@ Give the reader information on the contents of the folder

Dr. Smith CAS 741 Winter 2024: Assurance Cases 38/52

https://arxiv.org/abs/1802.06997

Assurance Cases in Scientific Computing [1, 2]

@ Assurance cases

» Organized and explicit argument for correctness

» Successfully used for safety critical systems
@ Advantages for SC

» Engaging domain experts

» Producing necessary and relevant documentation

» Evidence that can be verified /replicated by a third party
@ Example of 3dfim+

» No errors found
» However
» Documentation ambiguities
» No warning about parametric statistical model

Dr. Smith CAS 741 Winter 2024: Assurance Cases 39/52

Assurance Cases in SC Motivation

Do we put too much trust in the quality of SCS?

Are enough checks and balances in place, especially for
safety related software?

@ Problems with imposing external requirements for
certification

» External body does not have expertise
» SCS developers dislike documentation

Solution — Assurance Cases by experts

» Experts engaged
» Relevant documentation

Current techniques of development and testing still used,
but arguments will no longer be ad hoc and incompletely
documented

Dr. Smith CAS 741 Winter 2024: Assurance Cases 40/52

A

C1: System Requirement
Specifications

G1 (System top level
Assurance Goal)

A 4

ST1 (Strategy for
Meeting Goal)

G: System Goal / Sub-Goal

C: Context Information

A: Assumption

ST: Strategy to meet goal

S: Solution to support goal
<>: Remain to be supported

G4 (System Sub-Goal to
be addressed later)

G2 (System Sub-Goal
supported by Evidence)

G3 (System Sub-Goal
supported by Evidence)

S1 (Test
Results)

¢

S2
(Simulation

Results)

<

Al: Assumption

made

éf [A] AENI: tmp/LRtap/mdeft3d_01+ori &) & v — |

[order: RAI=DICOM]
-39.500 mn [R]
31.500 mm [P]
45.500 mm [S]

Xhairs|Multi ™ [X+

Color green =
Gap 5 HlHrap
Truhax I? I»‘T s |

Axial m ﬁr‘aph
Sagittal M Er‘aph
Coronal M Er‘aph

0Original VYiew
A DC-PC A Laned

A Tatairach Yiew

Define Markers

M See Markers

Define OwverlLay

M See Overlay

Define Datamode

Switch Session

INew M
IBHe 1p |done

DL-+oril =

ISwitch UnderLay

Switch OwverlLay

Control Bwface

141
==

left=Right float [2¥-98%] F l_ F

08

0.6

0.4

0z

Scaled Yoxel (23 27 22) and Ideal Signal over time

Ideal Signal
Scaled Yoxel

1 1 1
40 B0 a0 100 120 140
Tirme

1
160

180

c7

SRS stands for Software
Requirements
Specification in this
assurance case.

ca

Intended environments for
3dfim+ are the
Unix+X11+Motif systems
[Based on AFNI Intro].

Ccs5

Intended environment
for using 3dfim+ is

i <7
currently academia and
the program is currently
used for research
purposes.

Al
This assurance case is

c1

Correctness is defined as (IEEE)

(1) The degree to which software is free from
faults in its specification, design and coding.
(2) The degree to which software,
documentation and other items meet specified
requirements.

(3) The degree to which software,
documentation and other items meet user
needs and expectations, whether specified or
not. [From "FDA Glossary of Computer System
Software Development Terminology"]

c2

The main intended functionality of
3dfim+ is to compute cross—correlation
between one or more ideal signals and
the fMRI data (brain signals). Other
functionalities are mentioned in the
documentation.

c3

The term “intended use /
intended purpose” is the
objective intent of the
programmer regarding

the use of a product, process
and output as reflected in the
documentation.

designed such that it does
not consider the correctness
of 3dfim+ in cases where
the program is used for any
purpose other than its
intended purpose or if it is
used in an environment
rather than its intended
environment.

GTop

Program 3dfim+
delivers correct outputs
when used for its
intended use/purpose in
its intended
environment.

c6

In this assurance case, some of
the arguments (the ones that
are related) follow the principles
provided in "General Principles
of Software Validation; Final
Guidance for Industry and FDA
Staff". This document lists
elements that are acceptable to
the FDA for validation of medical
software.

GTop

Program 3dfim+
delivers correct outputs
when used for its
intended use/purpose in
its intended
environment.

s_Top

G can be decomposed into:

GR. 3dfim+ requirements are documented and documentation of the requirements.

is complete, unambiguous, correct, consistent, verifiable, modifiable and traceable.

GD. The design of 3df|m+ compl\es with its requlrements and it is complete,
verifiable, i and traceable.

)_Top

Gl. The |mp|ememanon of 3dﬂm+ complies with its requirements and it is
e, co i erifiable, and traceable.
GA. Inputs to 3dfim+ sausfy rhe deflned operational assumptions.

complete,

Reasoning Proof:
Premise: GR, GD, Gl and GA are true.
Conclusion: GTpp is valid.

[—)

1

GR

3dfim+ requirements
are documented and
doc of the

GD

The design of 3dfim+
complles with its
and itis

requirements is
complete, unambiguous,
correct, consistent,
verifiable, modifiable
and traceable.

complete, unambiguous,
correct, consistent,
verifiable, modifiable
and traceable.

Gl

The implementation of
3dfim+ complies with its
requirements and it is

GA

Inputs to 3dfim+ satisfy
the defined operational
assumptions.

complete,
correct, consistent,
verifiable, modifiable
and traceable.

The major software development lifecycle steps

with appropriate V&V activities. V&V activities
will be reflected in claims regarding validation of
requirements, and verification of design and
implementation. If requirements are

appropriate, and design and implementation

are appropriate and they comply with the
requirements, then 3dfim+ will have been

shown to deliver correct outputs. Moreover, as
meeting the input assumptions is of great
importance, it is considered as a separate goal;
however, the correctness, completeness and
consistency of the assumptions have been shown
in the GR as a part of the requirements
correctness, completeness and consistency.

GR

3dfim+ requirements are
documented and
documentation of the
requirements is complete,
unambiguous, correct,
consistent, verifiable,
modifiable and traceable.

S_GR

If standard principles for
documentation of the
requirements are followed
correctly and completely
then the documentation
should have the
characteristics of good
documentation. These
characteristics include
correctness, unambiguity,
completeness, consistency,
verifiability, modifiability,
J traceability.

J_GRa

According to IEEE Std 830-
1993, a good documentation
of the requirements should be:
a) Correct, b) Unambiguous, c)
Complete, d) Consistent, e)
Ranked for Importance and/or
Stability, f) Verifiable, g)
Modifiable, h) Traceable

J_GRb

"Ranked for importance
and/ or Stability" is
excluded from our
assurance case
decomposition as our
case study is a scientific
software and all the
requirements are
considered as equally
important.

GR_3C GR_Unambiguous GR_Modifiable GR_Traceable
Documentation of the Documentation of the Documentation of the Documentation of the
requirements is complete, requirements is requirements is requirements is
correct and consistent; i.e. unambiguous. modifiable. traceable.

3dfim+ requirements are

documented completely

and correctly and they are 1

consistent. GR_Verifiable

Documentation of the
requirements is
verifiable.

C_ModifiableA

According to IEEE Std 830-1993, a
documentation of the requirements is
modifiable, if and only if, its structure and
style are such that any changes to the
requirements can be made easil
completely, and consistently while retaining
the structure and style. Modifiability
generally requires a requirement
documentation to a)
Have a coherent and easy-to-use
organization with a table of contents, an
index, and explicit cross-referencing.

b) Not be redundant; the same requirement
should not appear in more than one place in
the documentation.

©) Express each requirement separately,
rather than intermixed with other
requirements.

GR_Modifiable
Documentation of the
requirements is
modifiable.

Modifiable.1

The SRS has a coherent
and easy-to-use
organization with a
table of contents, an
index, and explicit
cross-referencing.

Modifiable.2

There is no duplication
between the
requirements.

Modifiable.3

Each requirement is
expressed separately,
rather than intermixed
with other
requirements.

S_Modifiable.1

If a standard / correct
well-structured template
has been followed by a
competent team, then
the documentation is
structured and
presented correctly.

's_Modifiable.2

there is no specified
approach or tool for
checking duplication in a
document, hence a
review must be done
manually by the experts/,
developers.

s_Modifiable.3

there is no specified
approach or tool for
checking this matter,
hence a review must be
done manually by the
experts/ developers.

C_ModifiableC

Modifiable.1.1 Modifiable.1.2

A standard / correct
well-structured
template has been

followed by a
competent team.

The template has been

Modifiable.1.3
The doc has

Modifiable.2.1

has

been reviewed by the
domain experts to

followed.

C_ModifiableB

List of the team
members.

make sure the template
has been followed
correctly.

The
been reviewed by
domain expert to make
sure there is no
duplication between the
requirements.

Modifiable.3.1

The documentation has
been reviewed by

domain expert to make
sure each requirement

is atomic.

Atomic is, are each of
the requirements
measurable on their

set of separate

E.

E_Modifiable.1

2

[}

GenericEvidence

The standard
template.

Team members'
resumes.

Domain experts /
customers approve the
<<quality>> of the
documentation of the
requirements.

GenericEvidence.
Reviewers are expert:

E_GenericEvidence.1

Reviewers' resumes
satisfy acceptance criteria
for required
qualifications, including
an engineering, science
or medical degree and at
least 5 years experience
in medical imaging.

GenericEvidence

Domain
experts/customers
approve the
<<quality>> of the
documentation of the
requirements.

Review techniques are
acceptably likely to
uncover errors in the
requirements.

C_GenericEvidence

™ List of Domain Experts
and other reviewers.

GenericEvidence.2.1 Geners 2.2

GenericEvi 3

Al reviewers have
submitted comments
regarding the

A task based inspection
approach is used for
the review.

<<quality>> of the
documentation of the
requirements using
Gitlab/Github issue
tracker.

If applicable,
documentation of the
requirements should be
compared with any
applicable superior
specification (External
Consistency).

v

E_G
The task based

approach is based
on Kelly's Papers, so
it is reliable.

E_GenericEvidence.2

All Gitlab/Github
issues related to the
<<quality>> have
been addressed and
signed off by the
reviewers.

GenericEvidence.3.1

The comparison among
the documents has
been done by Domain
Experts/ customer and
they approve the
documents agree.

/|_GenericEvidence

Review techniques
consists of task based
inspection, using
Gitlab/Github issue
tracking and
comparison to the
existing
documentation.

and Software
Requirement
Acceptance Report

regarding the
<<quality>> are
provided.

cenericsvidw\q

GenericEvidence.2.3

Reviewers approve the
<<quality>> of the
documentation of the
software requirements.

E_GenericEvidence.4
Reviewers' signature

containing a section

GA

Input(s) to 3dfim+
satisfies the defined
operational
assumptions.

A‘/\A

GA.2

User is aware of what
inputs are valid.

C_GA

Input assumptions are
defined in the
documentation.

GA.l

3dfim+ does not
proceed if the given
input(s) does not meet
all the necessary
assumptions.

72

GA.2.2

GA.2.1

Input assumptions and
constraints are
mentioned in the
documentation.

SGA.1
Software's responsibility
comes from programmer's
responsibility. A

User's responsibilities
are mentioned in the
documentation.

programmer - especially in
the case of i ing a

scientific software - must G

ensure that their program Upon starting 3dfim+, a
checks the inputs to see E_GA2 warning message
whether they meet_the Therelarelsections appears that states
necessary assumptions. If called : what a valid input is.

the input(s) does not meet
one or more of the
assumptions, the program
should throw an exception
with a message clearly
stating the reason.

and Data Constraints
dedicated to input
assumptions and
constraints in the
documentation.

E_GA4

3dfim-+ displays a
warning message
that states what a

GA.l.1l GA.1.2 valid input to the
software is.

3dfim+ throws The exceptions that
exceptions if the input 3dfim+ throws when it
(s) does not meet one receives an invalid input
or more of the clearly state the reason.
assumptions. E_GA3

ELGEEL There is a section

called System
Context dedicated to
user's and
software's
responsibilities in

the documentation.

3dfim+ throws
clear exceptions
in the case of
receiving invalid
inputs.

Proposed Changes to 3dfim+

@ No mistakes found in calculations
@ Goal of original software was not certification

@ Problems found

» GR goal not satisfied
» Not complete, verifiable, modifiable or traceable
» Coordinate system information missing
» Ambiguous rank function

» Inputs not checked in code

» User not informed of their responsibility to use tool with

correct statistical model

Dr. Smith CAS 741 Winter 2024: Assurance Cases 50/52

Concluding Remarks

@ Hopefully motivated assurance cases for SC

@ Quality is improved by looking at a problem from different
perspectives, assurance cases provide a systematic and
rigorous way to introduce a new perspective

@ An assurance cases will likely use the same
documentation and ideas used in CAS 741

@ However, an assurance case can focus and direct efforts
right from the start of the project

Dr. Smith

CAS 741 Winter 2024: Assurance Cases

51/52

References |

[§ W. Spencer Smith, Mojdeh Sayari Nejad, and Alan
Wassyng.
Assurance cases for scientific computing software (poster).

In ICSE 2018 Proceedings of the 40th International
Conference on Software Engineering, May 2018.

2 pp.

[§ W. Spencer Smith, Mojdeh Sayari Nejad, and Alan
Wassyng.
Raising the bar: Assurance cases for scientific computing
software.

Computing in Science and Engineering, 23(1):47-57,
February 2020.

Dr. Smith CAS 741 Winter 2024: Assurance Cases 52/52

