
CAS 741 (Development of Scientific Computing
Software)

Winter 2024

Artifact Generation

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 22, 2024

Artifact Generation

Administrative details

Finish Assurance Case review

Artifact generation (Drasil)

Dr. Smith CAS 741 Winter 2024: Artifact Generation 2/78

Administrative Details: Report Deadlines

Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need to
maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: Artifact Generation 3/78

Administrative Details: Presentations

Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving everyone’s
written deliverables

Domain experts and secondary reviewers (and others) will ask
questions

Dr. Smith CAS 741 Winter 2024: Artifact Generation 4/78

Presentation Schedule

Dr. Smith CAS 741 Winter 2024: Artifact Generation 5/78

Presentation Sched Cont’d

Implementation Present (15 min each)
▶ Mar 26: Reyhaneh, Waqar, Al, Tanya, Atiyeh
▶ Apr 2: Nada, Phil, Xinyu, Fasil, Yi-Leng
▶ Apr 5: Gaofeng, Morteza, Valerie, Hunter, Ali
▶ Apr 9: Cynthia, Adrian, Yiding, Kim Ying

Dr. Smith CAS 741 Winter 2024: Artifact Generation 6/78

Presentation Schedule

3 presentations each
▶ SRS everyone
▶ VnV and POC subset of class
▶ Design subset of class
▶ Implementation everyone

If you will miss a presentation, please trade with someone

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: Artifact Generation 7/78

Questions?

Questions on administrative details?

Questions on final documentation?

Questions on reflection document?

Questions on final implementation?

Questions on VnV report?

Other questions?

Dr. Smith CAS 741 Winter 2024: Artifact Generation 8/78

Assurance Cases in Scientific Computing [14, 13]

Assurance cases
▶ Organized and explicit argument for correctness
▶ Successfully used for safety critical systems

Advantages for SC
▶ Engaging domain experts
▶ Producing necessary and relevant documentation
▶ Evidence that can be verified/replicated by a third party

Example of 3dfim+
▶ No errors found
▶ However

▶ Documentation ambiguities
▶ No warning about parametric statistical model

Dr. Smith CAS 741 Winter 2024: Artifact Generation 9/78

Assurance Cases in SC Motivation

Do we put too much trust in the quality of SCS?

Are enough checks and balances in place, especially for safety
related software?

Problems with imposing external requirements for certification

▶ External body does not have expertise
▶ SCS developers dislike documentation

Solution – Assurance Cases by experts
▶ Experts engaged
▶ Relevant documentation

Current techniques of development and testing still used, but
arguments will no longer be ad hoc and incompletely
documented

Dr. Smith CAS 741 Winter 2024: Artifact Generation 10/78

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310003 9122

 G: System Goal / Sub-Goal
C: Context Information
A: Assumption
ST: Strategy to meet goal
S: Solution to support goal
 : Remain to be supported

G1 (System top level
Assurance Goal)

 C1: System Requirement
Specifications

 ST1 (Strategy for
Meeting Goal)

G2 (System Sub-Goal
supported by Evidence)

S1 (Test
Results)

G3 (System Sub-Goal
supported by Evidence)

S2
(Simulation

Results)

A1: Assumption
made

G4 (System Sub-Goal to
be addressed later)

Fig. 1 Assurance Case with its basic elements

An Assurance Case presents an argument that a system is acceptably safe, secure, reliable, etc. in a given context.
Where, a system could be physical or a combination of hardware and software. Based on the system goals identified in
an Assurance Case, Assurance Case can also be referred as security case, dependability case, and safety case or by
other relevant name as per goals applicability.

For better clarity, uses, critical engineering decisions and to ensure consistency, it is required to meet some
minimum requirements for the contents and structure of an Assurance Case. These minimum requirements are specified
by an International Standard ISO/IEC 15026-2:2011. To present an Assurance Case in a way to make it easy for
visualization, understanding and reviewing purpose, following Graphical notation tools are used

x Goal Structuring Notation (GSN) and
x Claims-Arguments-Evidence (CAE)

CAE defines nodes for Claims, Arguments and Evidence whereas GSN uses goal oriented presentation style and
defines nodes for Goals (claims), Strategy (arguments) and Solutions (evidence). Both these graphics notations are
mostly similar, with some difference of progression approach. GSN follows Top –Down approach while creating the
Assurance Case starting with top level goal of the system where as CAE supports Bottom-UP view starting with
evidence to determine the possible claim, while preparing Assurance Case [10]. There is no thumb rule as such to
decide which approach should be followed, it can be decided by developers based on their choice and information
available in hand before proceeding ahead with creating of Assurance Case. Arguments presented using GSN can help
provide assurance of critical properties of systems, services or organizations (such as safety or security properties).
Such arguments can form a key part of an overall assurance Case [11]. Refer figure 1, which is showing the typical
structure of an Assurance Case represented with Goal Structuring Notations.

Assurance Case in its simple form basically consists of following main components.

x Claim or Goal: This is generally some functionality, characteristics, requirement or behavior of the system

that needs to be fulfilled. This can include all the essential requirements, functionalities and behavior of the
system which is supposed to be met to ensure that system is fit for use. All the goals/claims are required to
be supported by valid arguments based on valid evidences. The higher level goal/claim can be further

Proposed Changes to 3dfim+

No mistakes found in calculations

Goal of original software was not certification

Problems found
▶ GR goal not satisfied

▶ Not complete, verifiable, modifiable or traceable
▶ Coordinate system information missing
▶ Ambiguous rank function

▶ Inputs not checked in code
▶ User not informed of their responsibility to use tool with

correct statistical model

Dr. Smith CAS 741 Winter 2024: Artifact Generation 20/78

Concluding Remarks

Hopefully motivated assurance cases for SC

Quality is improved by looking at a problem from different
perspectives, assurance cases provide a systematic and
rigorous way to introduce a new perspective

An assurance cases will likely use the same documentation
and ideas used in CAS 741

However, an assurance case can focus and direct efforts right
from the start of the project

Dr. Smith CAS 741 Winter 2024: Artifact Generation 21/78

Abstract for Artifact Generation Talk

Goal – Improve quality of SCS

Idea – Adapt ideas from SE

Document Driven Design
▶ Good – improves quality
▶ Bad – “manual” approach is too much work

Solution
▶ Capture knowledge
▶ Generate all things
▶ Avoid duplication
▶ Traceability

Showing great promise
▶ Significant work yet to do
▶ Looking for examples/partners

Dr. Smith CAS 741 Winter 2024: Artifact Generation 22/78

Scope: Large/Multiyear

Scope: Program Families

Product Lines in User Manual

9PRODUCT SPECIFICATIONS
ENG

LISH

PRODUCT SPECIFICATIONS
The appearance and specifications listed in this manual may vary due to constant product improvements.

Electrical requirements: 115 V, 60 Hz
Min. / Max. water pressure: 20 - 120 psi (138 - 827 kPa)

Model LFCC22426*

Description Counter-depth, French door refrigerator, bottom freezer

Net weight 243 lb (110 kg)

Model LFCS27596*

Description Standard-depth, Door-in-Door French door refrigerator, bottom freezer

Net weight 284 lb (129 kg)

Model LFCC23596*

Description Counter-depth, Door-in-Door French door refrigerator, bottom freezer

Net weight 269 lb (122 kg)

13

Variation points are identified to model variability in FMG. A variation point defines the possible variations of

the features in a feature model. Based on the domain analysis, the potential variations of the software and hardware

features of FMG are identified. For example, in FMG the Persistence feature is a variation point that has two

variation features, i.e., File and Database. The FMG serves as a basis for development of application specific feature

model (FMA).

Figure 3. Extract of Generic Mobile Application Product-line Feature Model (FMG)

In the proposed product-line model-driven application development approach, the FMG forms the basis of mobile

application development. The various features modeled in FMG are later converted to design interfaces and then to

code as required by the application under development. The framework provider has provided implementation of the

features in various languages compatible to the various mobile operating systems available. For example, for the

software feature Timer, the implementation APIs for Android and Windows Phone platforms are provided. The

design interface corresponding to the Timer feature is shown in Figure 4. The design interfaces of various features

and their corresponding implementation APIs are maintained through an XML document. Listing 1 shows an XML

extract for Timer feature that contains the design interface (Operations in Listing 1) and its mapping to the

[15]

Scope: End User Developers

Scope: Physical Science

Build on Success of MDSE

Codify (capture) code and non-code info together
▶ Natural language (text)
▶ Definitions
▶ Assumptions
▶ Rationale, Derivations
▶ Abstract theory
▶ Etc.

Generate all artifacts from one framework
▶ Requirements
▶ User manuals
▶ Build scripts, dev environment (CI etc)
▶ Assurance case
▶ Code (in different languages)
▶ Test cases
▶ etc.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 29/78

a = dv
dt and v = dp

dt

F = ma

m dv
dt = mg − cv

g = 9.8m/s2 or g = 32.2ft/s2

yn+1 = yn +
1
6(k1 + 2k2 + 2k3 + k4)h

σij = Dijklϵkl

coordinate system
=⇒

Motivation: Safety

Motivation: (Re)certification

Motivation: Improve Quality

CorrectnessUnderstandability

Verifiability

Usability Maintainability

Reusability

Reproducibility

Dr. Smith CAS 741 Winter 2024: Artifact Generation 34/78

Current Approach

Agile like [1]

Amethododical [3]

Knowledge acquisition driven [4]

Each stage reports counterproductive [10]

Limited tool use [16]

Limited testing of code [5]

Lack of understanding of testing [7]

Missed opportunities for reuse [8]

Emphasis on:

1. Science [6]
2. Code

Dr. Smith CAS 741 Winter 2024: Artifact Generation 35/78

Documentation Advantages

Improves verifiability, reusability, reproducibility, etc.

From [9]
▶ easier reuse of old designs
▶ better communication about requirements
▶ more useful design reviews
▶ easier integration of separately written modules
▶ more effective code inspection
▶ more effective testing
▶ more efficient corrections and improvements

New doc found 27 errors [12]

Developers see advantage [11]

Dr. Smith CAS 741 Winter 2024: Artifact Generation 36/78

Study Of Documentation in SC [11]

1. Select 5 small to medium size SCS

2. Interview code owners

3. Redevelop using Document Driven Design (DDD)

4. Interview code owners

5. Analyze responses

Dr. Smith CAS 741 Winter 2024: Artifact Generation 37/78

Summary of Case Studies

LOC Lng ND Ag SE Prg Tst VC Bug

SWHS 1000 F77 1 5 ✗ ✓ ✗ ✗ ✗

Astro 5000 C 2 10 ✗ ✓ ✗ ✗ ✗

Glass 1300 F90 1 <1 ✗ ✓ ✗ ✗ ✗

Soil 800 M 1 5 ✓ ✓ ✓ ✓ ✗

Neuro 1000 M 1 5 ✓ ✓ ✗ ✓ ✗

Acoust 200 M 4 2.5 ✗ ✓ ✗ ✗ ✗

Dr. Smith CAS 741 Winter 2024: Artifact Generation 38/78

Perceived Advantages from Participants

Documentation of assumptions

All variables have explicit units

SRS helpful with new graduate students

Modules result in more user friendly code

Traceability between modules and requirements useful

Better organized code

Information sharing on design choices

Detailed record of knowledge capital

Code is produced to make testing easier

Dr. Smith CAS 741 Winter 2024: Artifact Generation 39/78

Disadvantages (Perceived and Real)

SRS is too long

SRS is not necessary

DDD will not work in reality, since needs upfront requirements

Too much SE jargon

Difficult without a team of people

Too difficult to maintain

Not amenable to change

Too tied to waterfall process

Reports counterproductive [10]

The Solution?

Dr. Smith CAS 741 Winter 2024: Artifact Generation 40/78

Dr. Smith CAS 741 Winter 2024: Artifact Generation 41/78

Knowledge Capture

Dr. Smith CAS 741 Winter 2024: Artifact Generation 42/78

Drasil

Dr. Smith CAS 741 Winter 2024: Artifact Generation 43/78

Dr. Smith CAS 741 Winter 2024: Artifact Generation 44/78

GlassBR

Given

dimensions of glass
plane

glass type

explosion
characteristics

tolerable breakage
probability

Predict whether the glass
will withstand the
explosion

Dr. Smith CAS 741 Winter 2024: Artifact Generation 45/78

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

Dr. Smith CAS 741 Winter 2024: Artifact Generation 46/78

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

Dr. Smith CAS 741 Winter 2024: Artifact Generation 47/78

/glassbr
 /Website/GlassBR_SRS.html
 /Website/GlassBR_SRS.css
 /SRS/bibfile.bib
 /SRS/Makefile
 /SRS/GlassBR_SRS.tex
 /SRS/GlassBR_SRS.pdf
 /src/python
 /src/python/README.md
 /src/python/InputParameters.py
 /src/python/Calculations.py
 /src/python/Makefile
 /src/python/doxConfig
 ...

 ...
 /src/java/GlassBR/Calculations.java
 /src/java/Makefile
 /src/java/README.md
 ...
 /src/cpp/GlassBR
 /src/cpp/ReadTable.cpp
 /src/cpp/InputFormat.hpp
 /src/cpp/Calculations.cpp
 ...
 /src/swift/Calculations.swift
 ...
 /src/csharp/Control.cs
 ...

/glassbr
 /Website/GlassBR_SRS.html
 /Website/GlassBR_SRS.css
 /SRS/bibfile.bib
 /SRS/Makefile
 /SRS/GlassBR_SRS.tex
 /SRS/GlassBR_SRS.pdf
 /src/python
 /src/python/README.md
 /src/python/InputParameters.py
 /src/python/Calculations.py
 /src/python/Makefile
 /src/python/doxConfig
 ...

 ...
 /src/java/GlassBR/Calculations.java
 /src/java/Makefile
 /src/java/README.md
 ...
 /src/cpp/GlassBR
 /src/cpp/ReadTable.cpp
 /src/cpp/InputFormat.hpp
 /src/cpp/Calculations.cpp
 ...
 /src/swift/Calculations.swift
 ...
 /src/csharp/Control.cs
 ...

Software Requirements Specification for GlassBR
Nikitha Krithnan and Spencer Smith

Table of Symbols
qhat
B
...
Introduction
... The software, herein called GlassBR, ...

Assumptions
StdVals: LDF is constant
...

Data Definitions

...

Software Requirements Specification for GlassBR
Nikitha K and Spencer S

Table of Symbols

...
Introduction
... The software, herein called GlassBR, ...

Assumptions
ldfConstant: LDF is constant, depends on assumed
value of and , ...

Data Definitions

...

tex

html

GlassBR
Authors Nikitha K and Spencer S
How to Run the Program: In your terminal command
line, enter the same directory as this README file. Then
enter the following line
make run RUNARGS=input.txt
Configuration Files: SDF.txt, TSD.txt must be in the
same directory as the executable to run successfully
Versioning: Python Version 3.5.1

README.md

...

build:

run: build
python Control.py $(RUNARGS)
...

build: GlassBR/Control.class
...
GlassBR/Control.class:
GlassBR/Control.java ...
 javac GlassBR/Control.java

run: build
 java GlassBR.Control $(RUNARGS)
...

Jtol in SRS.pdf

Refname DD:sdf.tol

Label Stress Distribution Factor (Function) Based on Pbtol

Units Unitless

Equation Jtol = log

✓
log

⇣
1

1�Pbtol

⌘
(a

1000
b

1000)
m�1

k
⇣⇣

E·1000(h
1000)

2
⌘⌘m

·LDF

◆

Description Jtol is the stress distribution factor (Function) based on Pbtol
Pbtol is the tolerable probability of breakage
a is the plate length (long dimension) (m)
b is the plate width (short dimension) (m)
m is the surface flaw parameter (m

12

N7)

k is the surface flaw parameter (m
12

N7)

E is the modulus of elasticity of glass (Pa)
h is the actual thickness (m)
LDF is the load duration factor

6.2.5 Instance Models

This section transforms the problem defined in Section 6.1 into one which is expressed in
mathematical terms. It uses concrete symbols defined in Section 6.2.4 to replace the abstract
symbols in the models identified in Section 6.2.2 and Section 6.2.3.

Refname T:probOfBr

Label Probability of Glass Breakage

Equation Pb = 1 � e�B

Description Pb is the calculated probability of breakage. B is the risk of failure.

17

Dr. Smith CAS 741 Winter 2024: Artifact Generation 54/78

Jtol in SRS.tex

...

Label & Stress distribution factor (Function) based on

Pbtol

\\ \midrule \\

Symbol & ${J_{\text{tol}}}$

\\ \midrule \\

Units & Unitless

\\ \midrule \\

Equation & \begin{displaymath}

{J_{\text{tol }}}=\ln\left(\ln\left(\frac {1}{1 -{

P_{\text{b}\text{tol }}}}\ right) \frac{\left

(\frac{a}{1000} \frac{b}{1000}\ right)^{m

-1}}{k \left(E\cdot {}1000 \left(\frac{h

}{1000}\ right)^{2}\ right)^{m} LDF}\right)

\end{displaymath}

\\ \midrule \\

Description & ...

Jtol in SRS.html

...

<th>Equation </th>

<td>

\[{J_{\text{tol }}}=\ln\left(\ln\left(\frac {1}{1 -{P_{\text{

b}\text{tol }}}}\ right) \frac{\left(\frac{a}{1000} \

frac{b}{1000}\ right)^{m-1}}{k \left(E\cdot {}1000 \left

(\frac{h}{1000}\ right)^{2}\ right)^{m} LDF}\right)\]

</td>

...

Jtol in Python

\brief Calculates stress distribution factor (Function)

based on Pbtol

\param inParams structure holding the input values

\return stress distribution factor (Function) based on

Pbtol

def func_J_tol(inParams):

outfile = open("log.txt", "a")

print("function func_J_tol called with inputs: {",

file=outfile)

print(" inParams = ", end="", file=outfile)

print("Instance of InputParameters object", file=

outfile)

print(" }", file=outfile)

outfile.close()

return math.log(math.log (1.0 / (1.0 - inParams.P_btol)

) * ((inParams.a / 1000.0 * (inParams.b / 1000.0))

** (7.0 - 1.0) / (2.86e-53 * (7.17 e10 * 1000.0 *

(inParams.h / 1000.0) ** 2.0) ** 7.0 * inParams.

LDF)))

Jtol in Java

/** \brief Calculates stress distribution factor (

Function) based on Pbtol

\param inParams structure holding the input values

\return stress distribution factor (Function)

based on Pbtol

*/

public static double func_J_tol(InputParameters

inParams) throws IOException {

PrintWriter outfile;

outfile = new PrintWriter(new FileWriter(new File(

"log.txt"), true));

...

return Math.log(Math.log (1.0 / (1.0 - inParams.

P_btol)) * (Math.pow(inParams.a / 1000.0 * (

inParams.b / 1000.0) , 7.0 - 1.0) / (2.86e-53 *

Math.pow (7.17 e10 * 1000.0 * Math.pow(inParams

.h / 1000.0 , 2.0), 7.0) * inParams.LDF)));

}

Jtol in Drasil (Haskell)

tolStrDisFacEq :: Expr

tolStrDisFacEq = ln (ln (recip_ (exactDbl 1 $- sy pbTol))

‘mulRe ‘ (((sy plateLen $/ exactDbl 1000) ‘mulRe ‘ (sy

plateWidth $/ exactDbl 1000)) $^ (sy sflawParamM $-
exactDbl 1) $/

(sy sflawParamK ‘mulRe ‘ ((sy modElas ‘mulRe ‘ exactDbl

1000 ‘mulRe ‘

square (sy minThick $/ exactDbl 1000)) $^ sy

sflawParamM) ‘mulRe ‘ sy lDurFac)))

Jtol without Unit Conversion

tolStrDisFacEq :: Expr

tolStrDisFacEq = ln (ln (recip_ (exactDbl 1 $- sy pbTol))

‘mulRe ‘ ((sy plateLen ‘mulRe ‘ sy plateWidth) $^ (sy

sflawParamM $- exactDbl 1) $/
(sy sflawParamK ‘mulRe ‘ ((sy modElas ‘mulRe ‘

square (sy minThick)) $^ sy sflawParamM) ‘mulRe ‘ sy

lDurFac)))

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

Dr. Smith CAS 741 Winter 2024: Artifact Generation 61/78

Traceability Graph

Figure 2: Traceability Matrix Showing the Connections Between Items of Di↵erent Sections

Figure 3: Traceability Matrix Showing the Connections Between Requirements, Instance
Models, and Data Constraints

29

Maintainability

A1: The only form of energy that is relevant for this problem is
thermal energy. All other forms of energy, such as mechanical
energy, are assumed to be negligible [T1].

A2: All heat transfer coefficients are constant over time [GD1].

A3: The water in the tank is fully mixed, so the temperature is the
same throughout the entire tank [GD2, DD2].

A4: The PCM has the same temperature throughout [GD2, DD2,
LC1].

A5: etc.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 64/78

Verifiability

Var Constraints Typical Value Uncertainty

L L > 0 1.5 m 10%

ρP ρP > 0 1007 kg/m3 10%

EW =

∫ t

0
hCAC (TC − TW (t))dt −

∫ t

0
hPAP(TW (t)− TP(t))dt

If wrong, wrong everywhere

Sanity checks captured and reused

Generate guards against invalid input

Generate test cases

Generate view suitable for inspection

Traceability for verification of change

Dr. Smith CAS 741 Winter 2024: Artifact Generation 65/78

Reusability

Num. T1

Label Conservation of energy

Eq −∇ · q+ q′′′ = ρC ∂T
∂t

Descrip The above equation gives the conservation of energy
for time varying heat transfer in a material of specific
heat capacity C and density ρ, where q is the thermal
flux vector, q′′′ is the volumetric heat generation, T
is the temperature, ∇ is the del operator and t is the
time.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 66/78

Reusability

De-embed knowledge

Reuse throughout document
▶ Units
▶ Symbols
▶ Descriptions
▶ Traceability information

Reuse between documents
▶ SRS
▶ MIS
▶ Code
▶ Test cases

Reuse between projects
▶ Knowledge reuse
▶ A family of related models, or reuse of pieces
▶ Conservation of thermal energy
▶ Interpolation, Etc.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 67/78

Reproducibility

Usual emphasis is on reproducing code execution

However, [2] show reproducibility challenges due to
undocumented:
▶ Assumptions
▶ Modifications
▶ Hacks

Shouldn’t it be easier to independently replicate the work of
others?

Require theory, assumptions, equations, etc.

Drasil can potentially check for completeness and consistency

Dr. Smith CAS 741 Winter 2024: Artifact Generation 68/78

Smith and Koothoor (2016) [12]

Rcode
1 =

f

8πkAV
+

1

2πrf hg
(1)

Rmanual
1 =

f

8πkAV
+

1

2πrf hg
+

τc
4πrf kc

(2)

Uncovered 27 issues with the previous documentation
▶ Incompleteness (Rgap)
▶ Inconsistency(r , r0, hg)
▶ Verifiability problems (R1)
▶ Lack of traceability (circuit analogy)

Advantages of proposed approach
▶ Abstract to concrete
▶ Separation of concerns
▶ Every equation, assumption, definition, model, derivation,

source and traceability between them

Dr. Smith CAS 741 Winter 2024: Artifact Generation 69/78

Dr. Smith CAS 741 Winter 2024: Artifact Generation 70/78

Drasil Framework for LSS
SCS has the opportunity to lead other software fields

Document driven design is feasible

Requires an investment of time

Documentation does not have to be painful

Develop/refactor via practical case studies

Ontology may naturally emerge

Open source Drasil here

Dr. Smith CAS 741 Winter 2024: Artifact Generation 71/78

https://github.com/JacquesCarette/literate-scientific-software

Drasil Links

Drasil on GitHub

Design Language for Code Variabilities in Chapter 6 of
Brook’s thesis

Drasil Generated Examples

Drasil Haddock Documentation

Package Dependency Graph (at the bottom of the page)

Dr. Smith CAS 741 Winter 2024: Artifact Generation 72/78

https://github.com/JacquesCarette/literate-scientific-software
https://macsphere.mcmaster.ca/handle/11375/25542
https://macsphere.mcmaster.ca/handle/11375/25542
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/docs/index.html
https://jacquescarette.github.io/Drasil/

References I

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and
Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 550–559, Washington, DC,
USA, 2007. IEEE Computer Society.

Cezar Ionescu and Patrik Jansson.
Dependently-Typed Programming in Scientific Computing —
Examples from Economic Modelling.
In Revised Selected Papers of the 24th International
Symposium on Implementation and Application of Functional
Languages, volume 8241 of Lecture Notes in Computer
Science, pages 140–156. Springer International Publishing,
2012.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 73/78

References II

Diane Kelly.
Industrial scientific software: A set of interviews on software
development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’13,
pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

Diane Kelly and Rebecca Sanders.
The challenge of testing scientific software.
In Proceedings of the Conference for the Association for
Software Testing, pages 30–36, 2008.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 74/78

References III

Diane F. Kelly.
A software chasm: Software engineering and scientific
computing.
IEEE Software, 24(6):120–119, 2007.

Zeeya Merali.
Computational science: ...error.
Nature, 467:775–777, 2010.

Steven J. Owen.
A survey of unstructured mesh generation technology.
In INTERNATIONAL MESHING ROUNDTABLE, pages
239–267, 1998.

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148, 2010.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 75/78

References IV

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

W. Spencer Smith, Thulasi Jegatheesan, and Diane F. Kelly.
Advantages, disadvantages and misunderstandings about
document driven design for scientific software.
In Proceedings of the Fourth International Workshop on
Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCE). In
conjunction with SC16: The International Conference for High
Performance Computing, Networking, Storage and Analysis,
November 2016.
8 pp.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 76/78

References V

W. Spencer Smith and Nirmitha Koothoor.
A document-driven method for certifying scientific computing
software for use in nuclear safety analysis.
Nuclear Engineering and Technology, 48(2):404–418, April
2016.

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng.
Assurance cases for scientific computing software (poster).
In ICSE 2018 Proceedings of the 40th International Conference
on Software Engineering, May 2018.
2 pp.

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng.
Raising the bar: Assurance cases for scientific computing
software.
Computing in Science and Engineering, 23(1):47–57, February
2020.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 77/78

References VI

Muhammad Usman, Muhammad Zohaib Iqbal, and
Muhammad Uzair Khan.
A product-line model-driven engineering approach for
generating feature-based mobile applications.
Journal of Systems and Software, 123:1–32, 01 2017.

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing? Scientists
would do well to pick some tools widely used in the software
industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741 Winter 2024: Artifact Generation 78/78

