
intro to Design Patterns

you are here 4 13

FlyBehavior is
 an inter

face tha
t

all flying
 classes im

plement. All

new flying cl
asses just

 need to

implement the f
ly method.

Here’s the implementation
of flying for all ducks
that have wings.

And here’s the implementation for
all ducks that can’t fly.

Quacks that really quack. Quacks that squeak.
Quacks that make
no sound at all.

Same thing here for the q
uack

behavior; we have an interface

that just includes a q
uack()

method that needs to b
e

implemented.

implement the f
ly method.

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack() {

 // implements duck quacking

}

Quack

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack

Implementing the Duck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior along with
the corresponding classes that implement each concrete behavior:

So we get the
benefit of

REUSE without all
the

baggage th
at comes along

with inherit
ance.

With this design, other types of objects can
 reuse our fl y and quack behaviors because
these behaviors are no longer hidden away
in our Duck classes!

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use fl ying behaviors.

