CAS 741 (Development of Scientific Computing
Software)

Winter 2025

MIS Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 11, 2025

McMaster
University ‘%ﬂ

MIS Continued

ADD STRATEGY DESIGN PATTERN
Administrative details
Questions?

Review: Records, Libraries, ADTs, Abstract Objects,

Generic ADTs

Example - Student data

Exceptions

Quality criteria

Modules with external interaction, enviro variables
GUI modules

ADTs

Generic modules

OO design spec

Examples

Dr. Smith

CAS 741 Winter 2025: MIS Continued

2/67

Administrative Details: Report Deadlines

MG + MIS Week 10 Mar 19
Final Documentation Week 13 Apr 11

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

@ If you need an extension for a written doc, please ask

@ When ready, assign issues to your primary and secondary
reviewers

@ GitHub issues due two days after assignment deadlines

@ From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2025: MIS Continued 3/67

Administrative Details: Presentations

MG + MIS Week 10
Unit VnV/Implement Week 12

@ Specific schedule depends on final class registration

@ Informal presentations with the goal of improving
everyone's written deliverables

@ Time for presentation includes time for questions
@ We will have to be strict with the schedule

@ Presentations WILL be interrupted with
questions/criticism; please do not take it personally

@ Any concerns, let the instructor know

Dr. Smith CAS 741 Winter 2025: MIS Continued

4/67

Presentation Schedule

@ MG+MIS Present (L17, L18) (20 minutes)
> Mar 14: Ziyang, Aliyah, Yuanqi, Alaap
» Mar 18: Phillip, Baptiste, Kiran, Volunteer?

Dr. Smith CAS 741 Winter 2025: MIS Continued 5/67

Presentation Sched Cont’d

@ Implementation Present (L22 — L25) (20 min each)
» Mar 28: Aliyah, Uriel, Ziyang, Yuanqi
» Apr 1: Christopher, Bo, Joe, Junwei
» Apr 4: Hussein, Kiran, Alaap, Qianlin
» Apr 8: Yinying, Baptiste, Phillip

Dr. Smith CAS 741 Winter 2025: MIS Continued 6/67

Presentation Schedule

@ 3 presentations each

» SRS everyone

» VnV and POC subset of class

» Design subset of class

» Implementation or testing results everyone

o If you will miss a presentation, please trade with someone

@ Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2025: MIS Continued

7/67

Admin Details Continued

@ Summary of MIS Format and Notation

@ Hoffman and Strooper

Dr. Smith CAS 741 Winter 2025: MIS Continued 8/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/MISFormat/MISFormat.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/HoffmanAndStrooper1995.pdf?ref_type=heads

Questions?

Questions on administrative details?
Questions about Module Guide?
Questions about upcoming presentation?
Questions about MIS?

Other questions?

Dr. Smith CAS 741 Winter 2025: MIS Continued 9/67

Emphasis

@ Math notation

@ Modules with external interaction (environment variables)
@ Types of modules

@ Abstract Data Types (graph example)

@ Qualities of an interface

@ Design patterns

» Adapter (Wrapper) pattern
» Strategy pattern

Dr. Smith CAS 741 Winter 2025: MIS Continued 10/67

MIS Continued Highlights

@ SWHS example
Mathematical notation example

Quality criteria for your interface

°
°
@ Generic modules (briefly)
@ Inheritance (briefly)

°

Operational versus descriptive specification

Dr. Smith CAS 741 Winter 2025: MIS Continued 11/67

SWHS Example
o SWHS MIS

@ Show decomposition by secrets

@ Show uses relation

@ Shows environment variables

@ Specification parameters module

@ Shows modules with external interaction

@ Show use of abstraction (“such that")

Dr. Smith CAS 741 Winter 2025: MIS Continued 12/67

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the

type
Encapsulates the details of the implementation of the type
Multiple instances of the object
Keyword Template in MIS
Example
» Curve ADT Module

Dr. Smith

CAS 741 Winter 2025: MIS Continued 13/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2-CurveADT/A2.pdf

Chemistry Example - Highlight Mathematics

@ Problem Description
@ Source Code

@ Stoichiometry page 1
@ Stoichiometry page 2

Dr. Smith CAS 741 Winter 2025: MIS Continued 14/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2020/A2-ChemReacts/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Assignments/PreviousYears/2020/A2-ChemReacts/A2Soln/src
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Lectures/MathReviewPlusExample/StoichExamplePage1.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Lectures/MathReviewPlusExample/StoichExamplePage2.pdf

Quality Criteria [3, p. 83]

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741 Winter 2025: MIS Continued 15/67

Modules with External Interaction

@ In general, some modules may interact with the
environment or other modules
@ Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.
@ Sometimes the interaction is informally specified using
prose (natural language)
@ Can introduce an environment variable
> Name, type
» Interpretation
@ Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741 Winter 2025: MIS Continued 16/67

External Interaction Continued

@ Some external interactions are hidden
» Present in the implementation, but not in the MIS
» An example might be OS memory allocation calls
@ External interaction described in the MIS
» Naming access programs of the other modules
» Specifying how the other module’s state variables are

changed
» The MIS should identify what external modules are used

Dr. Smith CAS 741 Winter 2025: MIS Continued 17/67

MIS for GUI Modules

@ Could introduce an environment variable
e window: sequence [RES_H][RES_V] of pixel T

» Where window(r][c] is the pixel located at row r and
column ¢, with numbering zero-relative and beginning at
the upper left corner

» Would still need to define pixel T

@ Could formally specify the environment variable
transitions

@ More often it is reasonable to specify the transition in
prose

@ In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741 Winter 2025: MIS Continued 18/67

Display Point Masses Module Syntax

Exported Access Programs

Routine name

In

Out

Exc

DisplayPointMassesApplet

DisplayPointMassesApplet

paint

Dr. Smith

CAS 741 Winter 2025: MIS Continued

19/67

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

@ transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()

ListPointMasses.add(0, PointMassT (20, 20, 10))
ListPointMasses.add(1, PointMassT(120, 200, 20))
paint():

@ transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741 Winter 2025: MIS Continued 20/67

Specification of ADTs

@ Similar template to abstract objects
@ “Template Module" as opposed to “Module”
@ “Exported Types” that are abstract use a 7

» pointT =7
» pointMassT =7

Access routines know which abstract object called them

Use “self” to refer to the current abstract object
@ Use a dot “." to reference methods of an abstract object

» p.xcoord()
> self.pt.dist(p.point())

@ Similar notation to Java

@ The syntax of the interface in C is different

Dr. Smith

CAS 741 Winter 2025: MIS Continued

21/67

Syntax Line ADT Module

Template Module
lineADT

Uses

pointADT
Exported Types

lineT =7

Dr. Smith CAS 741 Winter 2025: MIS Continued 22/67

Syntax Line ADT Module Continued

Routine name | In Out Exceptions
new lineT pointT, pointT | lineT

start pointT

end pointT

length real

midpoint pointT

rotate real

Dr. Smith

CAS 741 Winter 2025: MIS Continued

23/67

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant
None
Assumptions

None

Dr. Smith CAS 741 Winter 2025: MIS Continued 24/67

Access Routine Semantics Line ADT Module

new lineT (p1, p2):
@ transition: s, e ;= p1, p»
@ output: out := self
@ exception: none
start:
@ output: out :=s
@ exception: none
end:
@ output: out := e

@ exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued

25/67

Access Routine Semantics Continued

length:
@ output: out := s.dist(e)
@ exception: none
midpoint:

@ output: out :=
new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

@ exception: none

rotate (p):
@ is in radians

@ transition: s.rotate(y), e.rotate(y)

@ exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 26/67

Line ADT Local Functions

Local Functions

avg: real x real — real

avg(xy, xp) = 122

Dr. Smith CAS 741 Winter 2025: MIS Continued

27/67

Generic Modules

e What if we have a sequence of integers, instead of a
sequence of point masses?

@ What if we want a stack of integers, or characters, or
pointT, or pointMassT?

@ Do we need a new specification for each new abstract
object?

@ No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities

@ Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)

@ Advantages

» Eliminate chance of inconsistencies between modules

» Localize effects of possible modifications
> Reuse

Dr. Smith CAS 741 Winter 2025: MIS Continued 28/67

Generic Stack Module Syntax

Generic Module
Stack(T)

Exported Constants
MAX_SIZE = 100

Exported Access Programs

Routine name | In | Out | Exceptions

Dr. Smith CAS 741 Winter 2025: MIS Continued 29/67

Stack Module Syntax

Exported Access Programs

Routine name | In | Out Exceptions
s_init

s_push T FULL

s_pop EMPTY
s_top T EMPTY
s_depth integer

Dr. Smith

CAS 741 Winter 2025: MIS Continued

30/67

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE
Assumptions

s_init() is called before any other access routine

Dr. Smith CAS 741 Winter 2025: MIS Continued 31/67

Access Routine Semantics

s_init():

@ transition:

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

S i=<>
none
si=s||<x>

exc := (|s| = MAX_SIZE = FULL)

s :=s[0..[s| — 2]
exc := (|s| = 0 = EMPTY)

Dr. Smith

CAS 741 Winter 2025: MIS Continued

32/67

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s|

@ exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued

33/67

Stack Module Properties

{true}
s_init()

{Is'1=0}

{|s| < MAX_SIZE}
s_push(x)
{Is'| = |s| + L AS[|s'| — 1] = x A §'[0..]s| — 1] = s[0..|s| — 1]}

{|s| < MAX_SIZE}
s_push(x)

s_pop()
ss=s

Dr. Smith CAS 741 Winter 2025: MIS Continued 34/67

Object Oriented Design
@ One kind of module, ADT, called class

@ A class exports operations (procedures) to manipulate
instance objects (often called methods)

@ Instance objects accessible via references

@ Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a

type)

Dr. Smith CAS 741 Winter 2025: MIS Continued

35/67

Inheritance

@ Another relation between modules (in addition to USES
and IS.CCOMPONENT _OF)

@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

Dr. Smith CAS 741 Winter 2025: MIS Continued 36/67

Template Module Employee

Dr. Smith

Routine name | In Out Except
Employee string, string, money T | Employee
first_Name string
last_Name string
where siteT
salary money T
fire
assign siteT
CAS 741 Winter 2025: MIS Continued 37/67

Inheritance Examples

Template Module Administrative_Staff inherits Employee

Routine name

In

Out

Exception

do_this

folderT

Template Module Technical_Staff inherits Employee

Routine name | In Out | Exception
get_skill skill T
def_skill skill T

Dr. Smith

CAS 741 Winter 2025: MIS Continued

38/67

Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

@ A subclass defines a subtype

@ A subtype is substitutable for the parent type

@ Polymorphism - a variable referring to type A can refer to

an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative_Staff and Technical _Staff
are instances of Employee

Dr. Smith

CAS 741 Winter 2025: MIS Continued

39/67

Dynamic Binding

@ Many languages, like C, use static type checking
@ OO languages use dynamic type checking as the default

@ There is a difference between a type and a class once we
know this
» Types are known at compile time
» The class of an object may be known only at run time

Dr. Smith CAS 741 Winter 2025: MIS Continued 40/67

Point ADT Module

Template Module
PointT

Uses

N/A

Syntax

Exported Types

PointT =7

Dr. Smith CAS 741 Winter 2025: MIS Continued 41/67

Point ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcoord real

ycoord real

dist PointT real
Semantics

State Variables

xc: real
yc: real

Dr. Smith

CAS 741 Winter 2025: MIS Continued

42/67

Point Mass ADT Module

Template Module
PointMassT inherits PointT
Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741 Winter 2025: MIS Continued 43/67

Point Mass ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointMassT | real, real, real | PointMassT | NegMassExcep
mval real

force PointMassT real

fx PointMassT real
Semantics

State Variables

ms: real

Dr. Smith

CAS 741 Winter 2025: MIS Continued

44/67

Point Mass ADT Module Semantics

new PointMassT(x, y, m):
@ transition: xc,yc, ms == x,y, m
@ output: out := self

@ exception: exc := (m < 0 = NegativeMassException)

force(p):
@ output:

self .ms x p.ms

t == UNIVERAL G
ou self .dist(p)?

@ exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 45/67

Classification of Specification Styles

@ Informal, semi-formal, formal
e Operational
» Behaviour specification in terms of some abstract
machine
» Not specifying how to implement, even though it looks
this way
@ Descriptive

» Behaviour described in terms of properties
» Prefer this because if its inherent abstraction

@ The module state machine specification that we use is a
mix of operational and descriptive specification - Why?

Dr. Smith CAS 741 Winter 2025: MIS Continued

46/67

Example Operational Specification

@ Specification of a geometric figure E
@ E can be drawn as follows
1. Select two points P; and P, on a plane
2. Get a string of a certain length and fix its ends to P;
and P2
3. Position a pencil as shown in the next figure
4. Move the pen clockwise, keeping the string tightly
stretched, until you reach the point where you started
drawing

Dr. Smith CAS 741 Winter 2025: MIS Continued

47/67

Example Descriptive Specification

Geometric figure E is described by the following equation
ax>*+ by’ +c=0

where a, b and c¢ are suitable constants

Dr. Smith CAS 741 Winter 2025: MIS Continued

48/67

Judging Appropriate Abstraction

e If an MIS is too abstract, it won't capture enough
information for someone to do the implementation
@ In some cases an MIS is not abstract enough
» This can happen when someone is reverse engineering
their spec from exisiting code
» Can happen with an operational specification, as
opposed to a descriptive specification
@ Judge the abstraction level by
» If a change in how your code works requires a change in
your specification, look for a better abstraction
» If writing and maintaining the spec is exceedingly
frustrating, the spec could be too concrete
@ The goal is to provide a descriptive, formal mathematical
spec of eveything, but at times we sacrifice this goal in
the name of practicality

Dr. Smith CAS 741 Winter 2025: MIS Continued

49/67

Examples

Solar Water Heating System

Measure Graduate Attributes

Point Line and Circle

Robot Path

Vector Space

Othello Program

GIS

Card Game Forty Thieves

Generic 2D sequences

Maze Formal Specification (Dr. v. Mohrenschildt)
Mustafa EISheikh Mesh Generator [1]
Ahmed EISheikh Mesh Generator
Wen Yu Mesh Generator [4]

Dr. Smith

CAS 741 Winter 2025: MIS Continued 50/67

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/A3/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2017/A2-DequeCircles/A2.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2017/A3-ImageGuidedRobot/A3Soln/Assig3Part1Solution_Specification.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A3-GIS/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A3-Fortythieves/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2020/A3-Generic2DSeq/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Lectures/L20_MazeTracingRobot/MazeTracingRobot.pdf?ref_type=heads
https://www.sciencedirect.com/science/article/abs/pii/S0965997804001115

Implementing Your MIS

@ The mapping between the MIS and the code is generally
not “term” by “term”
@ You do not need to use the mathematical type listed in
the spec
@ Consider A2 (Allocation to Engineering Programs) for set
types
» Problem Description
» Source Code

Dr. Smith CAS 741 Winter 2025: MIS Continued 51/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/A3/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Assignments/A3/A3Soln/src

Design Patterns

@ Christopher Alexander (1977, buildings/towns):

» “Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

@ Design reuse (intended for OO)

@ Solution for recurring problems

@ Transferring knowledge from expert to novice

@ A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

@ Design patterns consist of multiple modules, but they do

not constitute an entire system architecture

Dr. Smith

CAS 741 Winter 2025: MIS Continued 52/67

Adapter Design Pattern

\
ooy . M

The Client is implemented
i the target intorace.
Adapter
o™t The Adaphir Implements the
target interface and holds an
irstanc of the Adagtes.

Dr. Smith CAS 741 Winter 2025: MIS Continued 53/67

Adapter UML Diagram

Client target Target

+Request()

|

Adapter

adaptee Adaptee

+Request() +SpecificRequest()

adaptee SpecificRequest()

Wikipedia entry

Dr. Smith CAS 741 Winter 2025: MIS Continued 54/67

https://en.wikipedia.org/wiki/Adapter_pattern

SimUDuck Example

3 =Py

Duck
All ducks quack and swim, the | Quack)
supevelass £akes care of the swim() _
implementation ¢ode. display) &—— The display0 method 1;
1/ OTHER duck-like methods... abstratt, since all dud t
hbypes look diferents
oot s\k);‘“e MaIIardDuck/ Redh];Duck\ yypes of Gueks
o
ottt o‘\s\\,\c o o - : Loks of °J°hel\\j\;)v¢\‘ olass.
o0 ™ | display({ display() { hevit from
W€y oera" o on Il looks like a mallard } Il'looks like a redhead }
a8 ot
X
S(:;*c seeee™

Dr. Smith CAS 741 Winter 2025: MIS Continued 55/67

Adding a Fly Method

Duck

quack()

swim()

display() Joe 3d ded-
s D My e Wt

1\l [N /1 OTHER duck-like methods...
.\“\“d‘
MallardDuck RedheadDuck Other Dutk bypes-

display() { display() {
I'looks like a mallard } II'looks like a redhead }

Dr. Smith CAS 741 Winter 2025: MIS Continued 56/67

Rubber Duck Problem

A localized update to the code caused a non-
local side effect (flying rubber ducks)!

Duck
quack()
Xt swim()
Ny ‘:) display()

e
™ ‘{")(’ S‘\\e"? b“"\‘"s' 2 | fly()
w‘{""b\as N’

/I OTHER duck-like methods...

%
3
9 \i\V‘)d_kp)c\\os‘ X
2 \“‘\m%
Wt \ 6':)("
oo™

MallardDuck RedheadDuck RubberDuck
display() { display() { quack() { <
I/ looks like a mallard II'ooks like a redhead Il overridden to Squeak
} } }
display() {
II'ooks like a rubberduck
}

How to stop rubber ducks from flying?

Dr. Smith CAS 741 Winter 2025: MIS Continued 57/67

Rubber Duck Problem Continued

@ Solve problem by overriding the fly() method to do

nothing

@ Not a good solution - think of the potential maintenance

problems if we add wooden decoys, which cannot fly, or
quack - what about different quacks?

Which of the following are disadvantages of using inheritance
to provide Duck behaviour?

A.

mOU o w

Some code is duplicated across subclasses
Runtime behaviour changes are difficult

Difficult to gain knowledge of all duck behaviours
Changes can unintentionally affect other ducks
All of the above

Dr. Smith

CAS 741 Winter 2025: MIS Continued

58/67

How About an Interface?

'- 2
Duck i
Onackahl swim()
Flyable quack() display() .
fly() /I OTHER duck-like methods...

Malla.rdDuck RedheadDuck RﬁbberDuck DecoyDuck
display() display() display() display()
fiy() fiy() quack()
quack() quack()

Disadvantages of interface?
A. Maintenance nightmare - the different options for fly and
quack are duplicated everywhere
B. Ducks that have fly and quack are clearly shown
C. All of the above

Dr. Smith CAS 741 Winter 2025: MIS Continued 59/67

Information Hiding

How can the principle of information hiding help us?

A.

B.

Identify the aspects of the application that are likely to
change and separate them from what is unlikely to change

Provide a means for part of the system to vary
independently of the other parts

Prevent the program’s user from knowing which ducks
can fly and/or quack

. Aand B
. A Band C

Dr. Smith

CAS 741 Winter 2025: MIS Continued

60/67

Separate Out Changeable Parts (Likely Changes)

\

/

Buck clos®

PuHoufwhaTvames ®

)
ying Bene®

Duck Behaviors

Dr. Smith

CAS 741 Winter 2025: MIS Continued

61/67

Implementing the Duck Behaviours

<<interface>> <<interface>>
FlyBehavior QuackBehavior
K
0 quack()
FlyWithWings FlyNoWay Quack Squeak MuteQuack
ﬂyQ() fiy() { quack() { quack() { quack() {
/1implements duck flying 1 do nothing - can'tfiy! 11 implements duck quacking || // ubber duckie squeak 11 do nothing - can't quack!

} } } } }

- ~ A -

@ Program to an interface not an implementation (interface
in the sense we have used it for MISes, not just a Java
interface)

@ Other modules can use these behaviours too

@ Can add new behaviours without touching the original
Duck class

Dr. Smith CAS 741 Winter 2025: MIS Continued 62/67

The Big Picture

Client makes use of an

Encapsulated fly behavior
encapolated il of dgorithns
) ; lyBehavior
Sor both fiyirg and quacking K a
nt i
. T\\k penano”
n . (X o
Client Duck - - S fam
FiyBehavior flyBehavior FlyWithWing FiyNolay a2 s
QuackBehavior quackBehavior w0 I 3\5‘.,(&,
I implements duck flying 1 do nothing - can't fly!
i)
dspla) } S
performQuack()
pertomely) g
selFyBataior) Encapsulated quack behavior
setQuackBehavior()
I OTHER duckie methods
usckBehavior
-
Y, AN
MallardDuck RedheadDuck RubberDuck DecoyDuck Quack Squeak uteQuack
D e quea uteQuact
display() { display() { display() { display() { quack) P— —
ook eamatard) B ook liearachead) |1 | ook e arwterduck] [ook e a deco duck) mperents ok ko J| otk e N ot
. — 1 }
R 0
. \
et 2
o Joe
2\)
OV
'w\v’

Dr. Smith CAS 741 Winter 2025: MIS Continued 63/67

Often Favour Composition over Inheritance

@ Composition provides a “has a" relationship, as opposed
to an “is a" relationship

@ Composition provides greater flexibility
@ Composition allows changing behaviour at runtime

@ Many languages (like Java) do not allow multiple
inheritance, but can have multiple compositions

Dr. Smith CAS 741 Winter 2025: MIS Continued

64/67

Strategy Pattern

Defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it.

Program to an interface. notan implementation. Il‘

winterfaces
Abstraction

+doSomething()

LF.

_______ Open for extension,
closed for modification.

ImplementationOne

+doSomething()

ImplementationTwo

+doSomething()

Dr. Smith

CAS 741 Winter 2025: MIS Continued 65/67

References |

@ Jacques Carette, Mustafa EISheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53-62,
January 2011.

@ Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741 Winter 2025: MIS Continued 66/67

References ||

[@ Daniel M. Hoffman and Paul A. Strooper.

Software Design, Automated Testing, and Maintenance: A

Practical Approach.
International Thomson Computer Press, New York, NY,

USA, 1995.

W. Spencer Smith and Wen Yu.

A document driven methodology for improving the quality
of a parallel mesh generation toolbox.

Advances in Engineering Software, 40(11):1155-1167,
November 2009.

Dr. Smith

CAS 741 Winter 2025: MIS Continued 67/67

