
CAS 741 (Development of Scientific Computing
Software)

Winter 2025

MIS Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 11, 2025

MIS Continued

ADD STRATEGY DESIGN PATTERN

Administrative details

Questions?

Review: Records, Libraries, ADTs, Abstract Objects,
Generic ADTs

Example - Student data

Exceptions

Quality criteria

Modules with external interaction, enviro variables

GUI modules

ADTs

Generic modules

OO design spec

Examples

Dr. Smith CAS 741 Winter 2025: MIS Continued 2/67

Administrative Details: Report Deadlines

MG + MIS Week 10 Mar 19
Final Documentation Week 13 Apr 11

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2025: MIS Continued 3/67

Administrative Details: Presentations

MG + MIS Week 10
Unit VnV/Implement Week 12

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Time for presentation includes time for questions

We will have to be strict with the schedule

Presentations WILL be interrupted with
questions/criticism; please do not take it personally

Any concerns, let the instructor know

Dr. Smith CAS 741 Winter 2025: MIS Continued 4/67

Presentation Schedule

MG+MIS Present (L17, L18) (20 minutes)
▶ Mar 14: Ziyang, Aliyah, Yuanqi, Alaap
▶ Mar 18: Phillip, Baptiste, Kiran, Volunteer?

Dr. Smith CAS 741 Winter 2025: MIS Continued 5/67

Presentation Sched Cont’d

Implementation Present (L22 – L25) (20 min each)
▶ Mar 28: Aliyah, Uriel, Ziyang, Yuanqi
▶ Apr 1: Christopher, Bo, Joe, Junwei
▶ Apr 4: Hussein, Kiran, Alaap, Qianlin
▶ Apr 8: Yinying, Baptiste, Phillip

Dr. Smith CAS 741 Winter 2025: MIS Continued 6/67

Presentation Schedule

3 presentations each
▶ SRS everyone
▶ VnV and POC subset of class
▶ Design subset of class
▶ Implementation or testing results everyone

If you will miss a presentation, please trade with someone

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2025: MIS Continued 7/67

Admin Details Continued

Summary of MIS Format and Notation

Hoffman and Strooper

Dr. Smith CAS 741 Winter 2025: MIS Continued 8/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/MISFormat/MISFormat.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/pub/-/blob/master/HoffmanAndStrooper1995.pdf?ref_type=heads

Questions?

Questions on administrative details?

Questions about Module Guide?

Questions about upcoming presentation?

Questions about MIS?

Other questions?

Dr. Smith CAS 741 Winter 2025: MIS Continued 9/67

Emphasis

Math notation

Modules with external interaction (environment variables)

Types of modules

Abstract Data Types (graph example)

Qualities of an interface

Design patterns
▶ Adapter (Wrapper) pattern
▶ Strategy pattern

Dr. Smith CAS 741 Winter 2025: MIS Continued 10/67

MIS Continued Highlights

SWHS example

Mathematical notation example

Quality criteria for your interface

Generic modules (briefly)

Inheritance (briefly)

Operational versus descriptive specification

Dr. Smith CAS 741 Winter 2025: MIS Continued 11/67

SWHS Example

SWHS MIS

Show decomposition by secrets

Show uses relation

Shows environment variables

Specification parameters module

Shows modules with external interaction

Show use of abstraction (“such that”)

Dr. Smith CAS 741 Winter 2025: MIS Continued 12/67

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

Encapsulates the details of the implementation of the type

Multiple instances of the object

Keyword Template in MIS

Example
▶ Curve ADT Module

Dr. Smith CAS 741 Winter 2025: MIS Continued 13/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2-CurveADT/A2.pdf

Chemistry Example - Highlight Mathematics

Problem Description

Source Code

Stoichiometry page 1

Stoichiometry page 2

Dr. Smith CAS 741 Winter 2025: MIS Continued 14/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2020/A2-ChemReacts/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Assignments/PreviousYears/2020/A2-ChemReacts/A2Soln/src
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Lectures/MathReviewPlusExample/StoichExamplePage1.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Lectures/MathReviewPlusExample/StoichExamplePage2.pdf

Quality Criteria [3, p. 83]

Consistent
▶ Name conventions
▶ Ordering of parameters in argument lists
▶ Exception handling, etc.

Essential - omit unnecessary features

General - cannot always predict how the module will be
used

As implementation independent as possible

Minimal - avoid access routines with two potentially
independent services

High cohesion - components are closely related

Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741 Winter 2025: MIS Continued 15/67

Modules with External Interaction

In general, some modules may interact with the
environment or other modules

Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.

Sometimes the interaction is informally specified using
prose (natural language)

Can introduce an environment variable
▶ Name, type
▶ Interpretation

Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741 Winter 2025: MIS Continued 16/67

External Interaction Continued

Some external interactions are hidden
▶ Present in the implementation, but not in the MIS
▶ An example might be OS memory allocation calls

External interaction described in the MIS
▶ Naming access programs of the other modules
▶ Specifying how the other module’s state variables are

changed
▶ The MIS should identify what external modules are used

Dr. Smith CAS 741 Winter 2025: MIS Continued 17/67

MIS for GUI Modules

Could introduce an environment variable

window: sequence [RES H][RES V] of pixelT
▶ Where window[r][c] is the pixel located at row r and

column c, with numbering zero-relative and beginning at
the upper left corner

▶ Would still need to define pixelT

Could formally specify the environment variable
transitions

More often it is reasonable to specify the transition in
prose

In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741 Winter 2025: MIS Continued 18/67

Display Point Masses Module Syntax

Exported Access Programs

Routine name In Out Exc
DisplayPointMassesApplet DisplayPointMassesApplet
paint

Dr. Smith CAS 741 Winter 2025: MIS Continued 19/67

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()
ListPointMasses.add(0, PointMassT(20, 20, 10))
ListPointMasses.add(1, PointMassT(120, 200, 20))
...

paint():

transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741 Winter 2025: MIS Continued 20/67

Specification of ADTs

Similar template to abstract objects

“Template Module” as opposed to “Module”

“Exported Types” that are abstract use a ?
▶ pointT = ?
▶ pointMassT = ?

Access routines know which abstract object called them

Use “self” to refer to the current abstract object

Use a dot “.” to reference methods of an abstract object
▶ p.xcoord()
▶ self .pt.dist(p.point())

Similar notation to Java

The syntax of the interface in C is different

Dr. Smith CAS 741 Winter 2025: MIS Continued 21/67

Syntax Line ADT Module

Template Module

lineADT

Uses

pointADT

Exported Types

lineT = ?

Dr. Smith CAS 741 Winter 2025: MIS Continued 22/67

Syntax Line ADT Module Continued
Routine name In Out Exceptions
new lineT pointT, pointT lineT
start pointT
end pointT
length real
midpoint pointT
rotate real

Dr. Smith CAS 741 Winter 2025: MIS Continued 23/67

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant

None

Assumptions

None

Dr. Smith CAS 741 Winter 2025: MIS Continued 24/67

Access Routine Semantics Line ADT Module

new lineT (p1, p2):

transition: s, e := p1, p2

output: out := self

exception: none

start:

output: out := s

exception: none

end:

output: out := e

exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 25/67

Access Routine Semantics Continued

length:

output: out := s.dist(e)

exception: none

midpoint:

output: out :=

new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

exception: none

rotate (φ):
φ is in radians

transition: s.rotate(φ), e.rotate(φ)

exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 26/67

Line ADT Local Functions

Local Functions

avg: real × real → real
avg(x1, x2) ≡ x1+x2

2

Dr. Smith CAS 741 Winter 2025: MIS Continued 27/67

Generic Modules

What if we have a sequence of integers, instead of a
sequence of point masses?

What if we want a stack of integers, or characters, or
pointT, or pointMassT?

Do we need a new specification for each new abstract
object?

No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities

Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)
Advantages
▶ Eliminate chance of inconsistencies between modules
▶ Localize effects of possible modifications
▶ Reuse

Dr. Smith CAS 741 Winter 2025: MIS Continued 28/67

Generic Stack Module Syntax

Generic Module

Stack(T)

Exported Constants

MAX SIZE = 100

Exported Access Programs

Routine name In Out Exceptions
...

Dr. Smith CAS 741 Winter 2025: MIS Continued 29/67

Stack Module Syntax

Exported Access Programs

Routine name In Out Exceptions
s init
s push T FULL
s pop EMPTY
s top T EMPTY
s depth integer

Dr. Smith CAS 741 Winter 2025: MIS Continued 30/67

Semantics

State Variables

s: sequence of T

State Invariant

|s| ≤ MAX SIZE

Assumptions

s init() is called before any other access routine

Dr. Smith CAS 741 Winter 2025: MIS Continued 31/67

Access Routine Semantics

s init():

transition: s :=<>

exception: none

s push(x):

transition: s := s|| < x >

exception: exc := (|s| = MAX SIZE ⇒ FULL)

s pop():

transition: s := s[0..|s| − 2]

exception: exc := (|s| = 0 ⇒ EMPTY)

Dr. Smith CAS 741 Winter 2025: MIS Continued 32/67

Access Routine Semantics Continued

s top():

output: out := s[|s| − 1]

exception: exc := (|s| = 0 ⇒ EMPTY)

s depth():

output: out := |s|
exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 33/67

Stack Module Properties

{true}
s init()

{|s ′| = 0}

{|s| < MAX SIZE}
s push(x)

{|s ′| = |s|+ 1 ∧ s ′[|s ′| − 1] = x ∧ s ′[0..|s| − 1] = s[0..|s| − 1]}

{|s| < MAX SIZE}
s push(x)
s pop()

s ′ = s

Dr. Smith CAS 741 Winter 2025: MIS Continued 34/67

Object Oriented Design

One kind of module, ADT, called class

A class exports operations (procedures) to manipulate
instance objects (often called methods)

Instance objects accessible via references

Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a
type)

Dr. Smith CAS 741 Winter 2025: MIS Continued 35/67

Inheritance

Another relation between modules (in addition to USES
and IS COMPONENT OF)

ADTs may be organized in a hierarchy

Class B may specialize class A
▶ B inherits from A
▶ Conversely, A generalizes B

A is a superclass of B

B is a subclass of A

Dr. Smith CAS 741 Winter 2025: MIS Continued 36/67

Template Module Employee
Routine name In Out Except
Employee string, string, moneyT Employee
first Name string
last Name string
where siteT
salary moneyT
fire
assign siteT

Dr. Smith CAS 741 Winter 2025: MIS Continued 37/67

Inheritance Examples

Template Module Administrative Staff inherits Employee

Routine name In Out Exception
do this folderT

Template Module Technical Staff inherits Employee

Routine name In Out Exception
get skill skillT
def skill skillT

Dr. Smith CAS 741 Winter 2025: MIS Continued 38/67

Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

A subclass defines a subtype

A subtype is substitutable for the parent type

Polymorphism - a variable referring to type A can refer to
an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative Staff and Technical Staff
are instances of Employee

Dr. Smith CAS 741 Winter 2025: MIS Continued 39/67

Dynamic Binding

Many languages, like C, use static type checking

OO languages use dynamic type checking as the default

There is a difference between a type and a class once we
know this
▶ Types are known at compile time
▶ The class of an object may be known only at run time

Dr. Smith CAS 741 Winter 2025: MIS Continued 40/67

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Dr. Smith CAS 741 Winter 2025: MIS Continued 41/67

Point ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointT real, real PointT
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc : real
yc : real

Dr. Smith CAS 741 Winter 2025: MIS Continued 42/67

Point Mass ADT Module

Template Module

PointMassT inherits PointT

Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741 Winter 2025: MIS Continued 43/67

Point Mass ADT Module Continued

Exported Access Programs

Routine name In Out Exceptions
new PointMassT real, real, real PointMassT NegMassExcep
mval real
force PointMassT real
fx PointMassT real

Semantics

State Variables

ms: real

Dr. Smith CAS 741 Winter 2025: MIS Continued 44/67

Point Mass ADT Module Semantics

new PointMassT(x , y ,m):

transition: xc , yc ,ms := x , y ,m

output: out := self

exception: exc := (m < 0 ⇒ NegativeMassException)

force(p):

output:

out := UNIVERAL G
self .ms × p.ms

self .dist(p)2

exception: none

Dr. Smith CAS 741 Winter 2025: MIS Continued 45/67

Classification of Specification Styles

Informal, semi-formal, formal

Operational
▶ Behaviour specification in terms of some abstract

machine
▶ Not specifying how to implement, even though it looks

this way

Descriptive
▶ Behaviour described in terms of properties
▶ Prefer this because if its inherent abstraction

The module state machine specification that we use is a
mix of operational and descriptive specification - Why?

Dr. Smith CAS 741 Winter 2025: MIS Continued 46/67

Example Operational Specification

Specification of a geometric figure E
E can be drawn as follows
1. Select two points P1 and P2 on a plane
2. Get a string of a certain length and fix its ends to P1

and P2

3. Position a pencil as shown in the next figure
4. Move the pen clockwise, keeping the string tightly

stretched, until you reach the point where you started
drawing

Dr. Smith CAS 741 Winter 2025: MIS Continued 47/67

Example Descriptive Specification

Geometric figure E is described by the following equation

ax2 + by 2 + c = 0

where a, b and c are suitable constants

Dr. Smith CAS 741 Winter 2025: MIS Continued 48/67

Judging Appropriate Abstraction

If an MIS is too abstract, it won’t capture enough
information for someone to do the implementation

In some cases an MIS is not abstract enough
▶ This can happen when someone is reverse engineering

their spec from exisiting code
▶ Can happen with an operational specification, as

opposed to a descriptive specification

Judge the abstraction level by
▶ If a change in how your code works requires a change in

your specification, look for a better abstraction
▶ If writing and maintaining the spec is exceedingly

frustrating, the spec could be too concrete

The goal is to provide a descriptive, formal mathematical
spec of eveything, but at times we sacrifice this goal in
the name of practicality

Dr. Smith CAS 741 Winter 2025: MIS Continued 49/67

Examples

Solar Water Heating System

Measure Graduate Attributes

Point Line and Circle

Robot Path

Vector Space

Othello Program

GIS

Card Game Forty Thieves

Generic 2D sequences

Maze Formal Specification (Dr. v. Mohrenschildt)

Mustafa ElSheikh Mesh Generator [1]

Ahmed ElSheikh Mesh Generator

Wen Yu Mesh Generator [4]

Dr. Smith CAS 741 Winter 2025: MIS Continued 50/67

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/A3/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2017/A2-DequeCircles/A2.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2017/A3-ImageGuidedRobot/A3Soln/Assig3Part1Solution_Specification.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A3-GIS/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A3-Fortythieves/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2020/A3-Generic2DSeq/A3Soln/A3P1_Spec.pdf?ref_type=heads
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Lectures/L20_MazeTracingRobot/MazeTracingRobot.pdf?ref_type=heads
https://www.sciencedirect.com/science/article/abs/pii/S0965997804001115

Implementing Your MIS

The mapping between the MIS and the code is generally
not “term” by “term”

You do not need to use the mathematical type listed in
the spec

Consider A2 (Allocation to Engineering Programs) for set
types
▶ Problem Description
▶ Source Code

Dr. Smith CAS 741 Winter 2025: MIS Continued 51/67

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/A3/A3P1_Spec.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Assignments/A3/A3Soln/src

Design Patterns

Christopher Alexander (1977, buildings/towns):
▶ “Each pattern describes a problem which occurs over

and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way.”

Design reuse (intended for OO)

Solution for recurring problems

Transferring knowledge from expert to novice

A design pattern is a recurring structure of
communicating components that solves a general design
problem within a particular context

Design patterns consist of multiple modules, but they do
not constitute an entire system architecture

Dr. Smith CAS 741 Winter 2025: MIS Continued 52/67

Adapter Design Pattern

Dr. Smith CAS 741 Winter 2025: MIS Continued 53/67

Adapter UML Diagram

Wikipedia entry

Dr. Smith CAS 741 Winter 2025: MIS Continued 54/67

https://en.wikipedia.org/wiki/Adapter_pattern

SimUDuck Example

2 Chapter 1

It started with a simple SimUDuck app

Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of
duck species swimming and making quacking sounds. The initial
designers of the system used standard OO techniques and created
one Duck superclass from which all other duck types inherit.

Duck

quack()

swim()

display()

// OTHER duck-like methods...

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck
Lots of other t

ypes of ducks

inherit from the Duck class. Each du
ck subt

ype

is resp
onsible

 for

implementing
its own

display
() beha

vior

for ho
w it loo

ks on

the scr
een.

All ducks quack and swim, the
superclass takes care of the
implementation code.

In the last year, the company has been under increasing pressure
from competitors. After a week long off-site brainstorming
session over golf, the company executives think it’s time for a big
innovation. They need something really impressive to show at the
upcoming shareholders meeting in Maui next week.

The display() method is

abstract, since all duck

subtypes look different.

SimUDuck

Dr. Smith CAS 741 Winter 2025: MIS Continued 55/67

Adding a Fly Method

intro to Design Patterns

you are here 4 3

Joe

I just need to add a fl y()
method in the Duck class and
then all the ducks will inherit it.
Now’s my time to really show my

true OO genius.

All subc
lasses

inherit
 fly().

What Joe added.

The executives decided that fl ying ducks is just what the
simulator needs to blow away the other duck sim competitors.
And of course Joe’s manager told them it’ll be no problem
for Joe to just whip something up in a week. “After all”, said
Joe’s boss, “he’s an OO programmer... how hard can it be?”

But now we need the ducks to FLY

Other Duck types...

Duck

quack()

swim()

display()

fly()
// OTHER duck-like methods...

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck

What we want.

Dr. Smith CAS 741 Winter 2025: MIS Continued 56/67

Rubber Duck Problem

4 Chapter 1

What he thought
was a great use
of inheritance
for the purpose
of reuse hasn’t
turned out so well
when it comes to
maintenance.

OK, so there’s a slight
fl aw in my design. I
don’t see why they can’t
just call it a “feature”.

It’s kind of cute...

Joe, I’m at the
shareholder’s meeting.

They just gave a demo and there
were rubber duckies fl ying around
the screen. Was this your idea of
a joke? You might want to spend
some time on Monster.com...

Joe failed to notice that not all
subclasses of Duck should fl y. When
Joe added new behavior to the
Duck superclass, he was also adding
behavior that was not appropriate
for some Duck subclasses. He now
has fl ying inanimate objects in the
SimUDuck program.

A localized update to the code caused a non-
local side effect (fl ying rubber ducks)!

What happened?

quack()

swim()

display()

fly()
// OTHER duck-like methods...

display() {

// looks like a mallard

}

MallardDuck

display() {

// looks like a redhead

}

RedheadDuck

quack() {

 // overridden to Squeak

}

display() {

// looks like a rubberduck

}

RubberDuck

Duck

Rubber ducks don’
t quack,

so quack() is ove
rrridden

to “Squeak”.

By putt
ing fly

() in t
he

superc
lass, h

e gave
 flying

ability
 to ALL ducks

,

includi
ng tho

se tha
t

should
n’t.

But something went horribly wrong...

something went wrong

How to stop rubber ducks from flying?

Dr. Smith CAS 741 Winter 2025: MIS Continued 57/67

Rubber Duck Problem Continued

Solve problem by overriding the fly() method to do
nothing

Not a good solution - think of the potential maintenance
problems if we add wooden decoys, which cannot fly, or
quack - what about different quacks?

Which of the following are disadvantages of using inheritance
to provide Duck behaviour?

A. Some code is duplicated across subclasses

B. Runtime behaviour changes are difficult

C. Difficult to gain knowledge of all duck behaviours

D. Changes can unintentionally affect other ducks

E. All of the above

Dr. Smith CAS 741 Winter 2025: MIS Continued 58/67

How About an Interface?

6 Chapter 1

I could take the fl y() out of the
Duck superclass, and make a
Flyable() interface with a fl y()

method. That way, only the ducks that
are supposed to fl y will implement that
interface and have a fl y() method... and
I might as well make a Quackable, too,
since not all ducks can quack.

display()

fly()

quack()

MallardDuck

display()

fly()

quack()

RedheadDuck

display()

quack()

RubberDuck

swim()

display()

// OTHER duck-like methods...

Duck

display()

DecoyDuck

fly()

Flyable
quack()

Quackable

How about an interface?

Joe realized that inheritance probably wasn’t the
answer, because he just got a memo that says that
the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe
knows the spec will keep changing and he’ll be forced
to look at and possibly override fl y() and quack() for
every new Duck subclass that’s ever added to the
program... forever.

So, he needs a cleaner way to have only some (but not
all) of the duck types fl y or quack.

What do YOU think about this design?

inheritance is not the answer

Disadvantages of interface?

A. Maintenance nightmare - the different options for fly and
quack are duplicated everywhere

B. Ducks that have fly and quack are clearly shown
C. All of the above

Dr. Smith CAS 741 Winter 2025: MIS Continued 59/67

Information Hiding

How can the principle of information hiding help us?

A. Identify the aspects of the application that are likely to
change and separate them from what is unlikely to change

B. Provide a means for part of the system to vary
independently of the other parts

C. Prevent the program’s user from knowing which ducks
can fly and/or quack

D. A and B

E. A, B and C

Dr. Smith CAS 741 Winter 2025: MIS Continued 60/67

Separate Out Changeable Parts (Likely Changes)

10 Chapter 1

Separating what changes from what stays the same

Duck class

The Duck class is still the supercla
ss

of all ducks, but we are pulling out

the fly and quack behaviors
 and

putting them into another class

structure.

Various behavior
implementations are going
to live here.Now flying and quacking each get

their own set of classes.

Duck Behaviors

Quacking Behaviors

Flying Behaviors

Pull out what varies

Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck
class is working well and there are no other parts of it that appear to vary or change frequently.
So, other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same”, we are going to create two
sets of classes (totally apart from Duck), one for fly and one for quack. Each set of classes will hold
all the implementations of their respective behavior. For instance, we might have one class that
implements quacking, another that implements squeaking, and another that implements silence.

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll
pull both methods out of the Duck class and create a
new set of classes to represent each behavior.

pull out what varies

Dr. Smith CAS 741 Winter 2025: MIS Continued 61/67

Implementing the Duck Behaviours

intro to Design Patterns

you are here 4 13

FlyBehavior is
 an inter

face tha
t

all flying
 classes im

plement. All

new flying cl
asses just

 need to

implement the f
ly method.

Here’s the implementation
of flying for all ducks
that have wings.

And here’s the implementation for
all ducks that can’t fly.

Quacks that really quack. Quacks that squeak.
Quacks that make
no sound at all.

Same thing here for the q
uack

behavior; we have an interface

that just includes a q
uack()

method that needs to b
e

implemented.

implement the f
ly method.

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack() {

 // implements duck quacking

}

Quack

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack

Implementing the Duck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior along with
the corresponding classes that implement each concrete behavior:

So we get the
benefit of

REUSE without all
the

baggage th
at comes along

with inherit
ance.

With this design, other types of objects can
 reuse our fl y and quack behaviors because
these behaviors are no longer hidden away
in our Duck classes!

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use fl ying behaviors.

Program to an interface not an implementation (interface
in the sense we have used it for MISes, not just a Java
interface)

Other modules can use these behaviours too

Can add new behaviours without touching the original
Duck class

Dr. Smith CAS 741 Winter 2025: MIS Continued 62/67

The Big Picture

22 Chapter 1

Below is the entire reworked class structure. We have everything you’d expect:
ducks extending Duck, fl y behaviors implementing FlyBehavior and quack
behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead
of thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the
algorithms represent things a duck would do (different ways of quacking or
fl ying), but we could just as easily use the same techniques for a set of classes
that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A and
IMPLEMENTS) on each arrow in the class diagram.

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the
duck simulator design, it’s time to come back up
for air and take a look at the big picture.

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior

QuackBehavior quackBehavior

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack
display() {

// looks like a decoy duck }

DecoyDuck

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck

display() {

// looks like a rubberduck }

RubberDuck

Encapsulated fl y behavior

Encapsulated quack behavior

Think of e
ach

set of b
ehaviors

as a fam
ily of

algorithm
s.

Client

These b
ehavio

rs

“algor
ithms” are

interc
hange

able.

Client makes use of an
encapsulated family of algorithms
for both flying and quacking.

the big picture

Dr. Smith CAS 741 Winter 2025: MIS Continued 63/67

Often Favour Composition over Inheritance

Composition provides a “has a” relationship, as opposed
to an “is a” relationship

Composition provides greater flexibility

Composition allows changing behaviour at runtime

Many languages (like Java) do not allow multiple
inheritance, but can have multiple compositions

Dr. Smith CAS 741 Winter 2025: MIS Continued 64/67

Strategy Pattern

Defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it.

Dr. Smith CAS 741 Winter 2025: MIS Continued 65/67

References I

Jacques Carette, Mustafa ElSheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53–62,
January 2011.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741 Winter 2025: MIS Continued 66/67

References II

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.
International Thomson Computer Press, New York, NY,
USA, 1995.

W. Spencer Smith and Wen Yu.
A document driven methodology for improving the quality
of a parallel mesh generation toolbox.
Advances in Engineering Software, 40(11):1155–1167,
November 2009.

Dr. Smith CAS 741 Winter 2025: MIS Continued 67/67

