CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

Modular Design

Dr. Spencer Smith
Faculty of Engineering, McMaster University

October 29, 2020

McMaster
University %ﬁ

Modular Design

e Start recording
@ Administrative details
@ Questions?

Feedback on issues

Overview of design
Modular decomposition: advantages, guidelines etc.
Module guide

Module guide example

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 2/57

Administrative Details

@ VnV GitHub issues for colleagues as for SRS
» Provide at least 5 issues on their VnV Plan

» Grading as before
» Create issues within 2 days of being assigned the task by

the project’s author
e Template for MG and MIS available in repo
@ Some edits to the SRS template and FAQ (see diffs)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 3/57

Administrative Details: Report Deadlines

System VnV Plan Oct 29
MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

@ If you need an extension for a written deliverable, please
ask

@ You should inform your primary and secondary reviewers
of the extension

@ Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 4/57

Admin Details: Presentation Schedule

@ Proof of Concept Demonstrations (15 min)
> Mon, Nov 2: Sid, Shayan, Leila, Xingzhi, Liz
» Thurs, Nov 12: Salah, John
@ MG Present (10 minutes)
» Thurs, Nov 12: John, Tiago, Leila, Xuanming, Andrea
e MIS Present
» Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi
@ Drasil Project Present (20 min each)
» Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 5/57

Presentation Schedule Continued

@ Test or Impl. Present (15 min each)
» Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
» Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
» Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago
@ 4 presentations each
@ If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 6/57

Questions?

@ Questions about Verification and Validation plan?
@ Questions about Proof of Concept demos?

@ Other questions?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 7/57

Feedback on SRS Issues

@ Close issues when they are resolved
» Explain why closing the issue

» Maybe you will just address the issue in a comment
» Maybe the issue will lead to repo changes

» Include the commit hash (you just need the number)
» Small, well-defined, commits
» Link to other issues using hash symbol

@ Take and give feedback in the collegial spirit, use emojis
as appropriate

@ If your project doesn’t have a name, give it one

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 8/57

Review of our “Faked” Rational Design Process

Problem Statement

System VnV Plan

System VnV Report

MIS —> Unit VnV Report

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design

9/57

SWHS MG Example

https://github.com /smiths/swhs/tree /master/docs/Design /MG

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 10/57

https://github.com/smiths/swhs/tree/master/docs/Design/MG

What is Design?

@ Your requirements document identifies “What,” now we
begin to look at “How"

@ Your system should meet both your functional and
nonfunctional requirements

@ There is no unique “optimal” design

» Different goals will lead to different designs

» There is a mix of art and science in design

» Even with fully formal requirements specification there
does not yet exist a systematic way to obtain a design

» Favour art in some areas and favour science in others

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 11/57

What is Design Continued?

@ Provides structure to any artifact

@ Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal
@ Design refers to
> Activity
> Bridge between requirements and implementation
» Structure to an artifact
» Result of the activity
> System decomposition into modules (module guide)
» Module interface specification (MIS)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 12/57

Why Decompose Into Modules?

@ Separation of concerns
Cannot understand all of the details
All engineering fields use decomposition

Modules will act as “work assignments”

Decomposition needs to follow a systematic procedure (as

for SRS)

@ Need to ensure that modules when fit together achieve
our global goals

@ Document in a Software Design Document (Module
Guide)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 13/57

Benefits of Modularity

@ Shorter development time
@ Improved verification

@ Reduced maintenance costs
@ Easier to understand

» Small modules
» An abstract interface
@ Modules can be developed independently
@ Modules can be tested independently
@ Modules can be reused
e Software is easy to change, extend, maintain

@ This requires identifying the anticipated changes in the
design and in the requirements

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 14/57

Two Important Goals for Decomposition

@ Design for change (Parnas) [4, 5]
» Designers tend to concentrate on current needs
» Special effort needed to anticipate likely changes
» Changes can be in the design or in the requirements
» Too expensive to design for all changes, but should
design for likely changes
@ Product families (Parnas) [3, 6]
» Think of the current system under design as a member
of a program family
» Analogous to product lines in other engineering
disciplines
» Example product families include automobiles, cell
phones, etc.
» Design the whole family as one system, not each
individual family member separately

Use Design Principle of Information Hiding

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 15/57

Sample Likely Changes

What are some examples of likely changes for software?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 16/57

Sample Likely Changes [1]

@ Algorithms — like replacing inefficient sorting algorithm
with a more efficient one
@ Change of data representation
» From binary tree to threaded tree
» Array implementation to a pointer implementation
> Approx. 17% of maintenance costs attributed to data
representation changes (Lientz and Swanson, 1980)
@ Change of underlying abstract machine
> New release of operating system
» New optimizing compiler
» New version of DBMS
> etc.

@ Change of peripheral devices

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 17/57

Binary Tree to Threaded Tree

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 18/57

Sample Likely Changes

@ Change of “social” environment
» Corresponds to requirements changes
> New tax regime
» EURO versus national currency in EU
» New language for user interface
> y2k
@ Change due to development process (prototype
transformed into product)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design

19/57

Components of a Module

@ A software modules has two components
1. An interface that enables the module’s clients to use the
service the module provides
2. An implementation of the interface that provides the
services offered by the module

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 20/57

The Module Interface

@ A module’s interface can be viewed in various ways

» As a set of services
» As a contract between the module and its clients
» As a language for using the module's services

@ The interface is exported by the module and imported by
the module's clients

@ An interface describes the data and procedures that
provide access to the services of the module

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 21/57

The Module Implementation

@ A module's implementation is an implementation of the
module’s interface

@ The implementation is hidden from other modules

@ The interface data and procedures are implemented
together and may share data structures

@ The implementation may utilize the services offered by
other modules

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 22/57

Information Hiding

Made explicit by Parnas [4]

Basis for design (that is modular decomposition (Module
Guide))

Implementation secrets are hidden to clients

Secret can be changed freely if the change does not affect
the interface

Try to encapsulate changeable design decisions as
implementation secrets within module implementations

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 23/57

Questions

@ What relationships are there between modules?

@ Are there desirable properties for these relations?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 24/57

Relationships Between Modules [1]
@ Let S be a set of modules
S — {Ml, MQ, ceey Mn}

@ A binary relation r on S is a subset of S x S

e If Mi and M are in S, < M;, M; >¢€ r can be written as
M,’I’/Wj

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 25/57

Relations
@ Transitive closure rt of r
M;r* M; iff M;rM; or My in S such that M;rMy and Myr* M;

@ ris a hierarchy iff there are no two elements M;, M; such
that M,-r+Mj N MJ'I’+M,'

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 26/57

Relations Continued

@ Relations can be represented as graphs
@ A hierarchy is a DAG (Directed Acyclic Graph)

o
e l ‘/ J'

My——> M

\./

a)

/f\
a DAG ./\ /

121 ‘I."_)_

./ly\,“
\/

b)

Why do we prefer the uses relation to be a DAG?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 27/57

Desirable Properties

@ USES should be a hierarchy [5]
» Hierarchy makes software easier to understand
» We can proceed from the leaf nodes (nodes that do not
use other nodes) upwards
» They make software easier to build
» They make software easier to test

@ Low coupling
@ Fan-in is considered better than Fan-out: WHY?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 28/57

DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 29/57

DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 30/57

Hierarchy

@ Organizes the modular structure through levels of
abstraction

@ Each level defines an abstract (virtual) machine for the
next level
@ Level can be defined precisely

» M; has level 0 if no M; exists such that M;rM;
> Let k be the maximum level of all nodes M; such that
M;rM;, then M; has level k + 1

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 31/57

Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromModl else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 32/57

Question about Association and DAG

Is the uses relation here a DAG?

TECHNICAL | _ 1 | PROJECT
_STAFF project member
1 “*
manages
MANAGER

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design

33/57

Module Decomposition (Parnas)

Conceptual | APP
modules
H/W A S/W Behav.
hiding ecision hiding
i | |
T
Leaf modules
I | / contalr\ | |
codef
Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 34/57

Module Decomposition (Parnas)

For the module decomposition on the previous slide:
@ Does it show a Uses relation?
e Is it a DAG?

o Is it a tree?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 35/57

IS COMPONENT _OF

The Parnas decomposition by secrets gives an
IS.COMPONENT_OF relationship

Used to describe a higher level module as constituted by a
number of lower level modules

A IS_.COMPONENT_OF B means B consists of several
modules of which one is A

B COMPRISES A

Ms; = {M|M, € S A M, IS.COMPONENT_OF M;} we
say that Ms; IMPLEMENTS M

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design

36/57

A Graphical View

IVIIVIIVI

9 5 Nb

R / l\
\ l/ gﬂ\%

My
(IS_COMPONENT_OF) (COMPRISES)

They are a hierarchy

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design 37/57

Module Guide [7]

@ Part of Parnas’ Rational Design Process (RDP)

@ When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

@ Helps future maintainers find appropriate module

@ Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

@ Decomposition is usually three to five levels deep

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 38/57

Three Top Conceptual Modules in an RDP MG

What are the three groups of modules in a typical
information-hiding decomposition?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 39/57

Module Decomposition (Parnas)

Conceptual | APP
modules
H/W A S/W Behav.
hiding ecision hiding
i | |
T
Leaf modules
I | / contalr\ | |
codef
Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 40/57

RDP - MG

The MG consists of a table that documents each
module’s service and secret

Conceptual modules will have broader responsibilities and
secrets

Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

The leaf modules that represent code will contain much
more precise services and secrets

Only the leaf modules are actually implemented

The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design 41/57

Module Details

For each module

Module name

Secret (informal description)

Service or responsibility (informal description)

For “leaf” modules add

» Associated requirement
» Anticipated change
» Module prefix (optional)

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design

42/57

RDP - MG

@ Criteria for a good secret
» One module one secret, especially for leaf modules
(watch for “and")
> Secrets should often be nouns (data structure,
algorithm, hardware, ...)
» Secrets are often phrased as “How to ...

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 43/57

Good Secret?

Is the following a good module secret: “The file format for the
map and the rules for validating that the map satisfies the
environmental constraints.”

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 44/57

Typical Modules [2]

@ What are the typical secrets for an input variable?

» You have an input in the environment, how to get it into
your system?
» What format is the input data?

@ What are the secrets for an output variable?

> How to get an output from inside the system to the
external environment?

» How will the output be determined?

» What format will the output have?

@ What are the secrets for a state variable?

» What rules are there governing the state transitions?
» What data structures or algorithms are needed?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 45/57

Typical Modules [2]

@ Input variables

» Machine-hiding from hardware or OS service
» Behaviour-hiding input format
@ Output variables
» Machine-hiding
» Behaviour-hiding output format
» Behaviour-hiding (calculation)

@ State variables

> Software decision hiding for data structure/algorithm
» Behaviour-hiding state-drive

@ Judgement is critical
@ Often combine variables into the same module

@ For non-embedded systems, machine hiding for
input-output is often combined

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design

46/57

RDP - Views

@ As well as the MG, the modular decomposition should be
displayed using a variety of views

@ An obvious one is the Uses Hierarchy

@ The Uses Hierarchy is updated once the MIS for all
modules is complete

@ The Uses Hierarchy can be represented

» Graphically (if it isn't too large and complex)
» Using a binary matrix — What would the binary matrix
look like?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 47/57

MG Template

Table of contents

Introduction

Anticipated and unlikely changes
Module hierarchy

Connection between requirements and design

Module decomposition
» Hardware hiding modules
» Behaviour hiding modules
» Software decision hiding modules

Traceability matrices

Uses hierarchy between modules

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 48/57

Traceability Matrices

@ Traceability matrix help inspect the design

@ Check for completeness, look at from a different viewpoint

Req. Modules

R1 M1, M2, M3, M7
R2 M2, M3

AC Modules

AC1 M1

AC2 M2

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 49/57

Verification

@ Well formed (consistent format/structure)
» Follows template
» Follows rules (one secret per module, nouns etc.)
@ Feasible (implementable at reasonable cost)
» Difficult to assess
» Try sketches of MIS
o Flexible
» Again try sketches of MIS
» Thought experiment as if likely change has occurred
» Low coupling
» Encapsulate repetitive tasks

@ May sometimes have to sacrifice information hiding

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 50/57

Object Oriented Design Versus Modular Design

@ OO-design and OO-languages are different
@ OO-design
» Classes and methods
» Classes are like modules (state variables and access
functions (methods))
» An object is an instance of a class
» Polymorphism
» Inheritance - use carefully

@ Implementation of modules using an OO-lang is natural

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design

51/57

Examples of Modules [1]

@ Record
» Consists of only data
> Has state but no behaviour
@ Collection of related procedures (library)

» Has behaviour but no state
» Procedural abstractions

@ Abstract object

» Consists of data (fields) and procedures (methods)

» Consists of a collection of constructors, selectors, and
mutators

» Has state and behaviour

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 52/57

Examples of Modules Continued

@ Abstract data type (ADT)

» Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

» Defines the set of possible values for the type and the
associated procedures that manipulate instances of the
type

» Encapsulates the details of the implementation of the
type

@ Generic Modules

» A single abstract description for a family of abstract
objects or ADTs

» Parameterized by type

» Eliminates the need for writing similar specifications for
modules that only differ in their type information

» A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 53/57

Getting Started

1. Find a similar example to your problem as use that as a
starting point

2. Draft module names and secrets

3. For each module sketch out:

» Classify module type (record, library, abstract object,
abstract data type, generic ADT)

» Access program syntax

> State variables (if applicable)

4. lterate on design

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 54/57

References |

[@ Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.

Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.

Software Design, Automated Testing, and Maintenance: A
Practical Approach.

International Thomson Computer Press, New York, NY,

USA, 1995.

David Parnas.

On the design and development of program families.
IEEE Transactions on Software Engineering, SE-2(1):1-9,
1976.

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design 55/57

References ||

[David L. Parnas.

On the criteria to be used in decomposing systems into
modules.
Comm. ACM, 15(2):1053-1058, December 1972.

David L. Parnas.

On a 'buzzword’: Hierarchical structure.

In IFIP Congress 74, pages 336—339. North Holland
Publishing Company, 1974.

David L. Parnas.

Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages
128-138, March 1979.

Dr. Smith

CAS 741, CES 741 Fall 2020: Modular Design 56/57

References |1

[D.L. Parnas, P.C. Clement, and D. M. Weiss.
The modular structure of complex systems.
In International Conference on Software Engineering,
pages 408—-419, 1984.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 57/57

