
CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

Modular Design

Dr. Spencer Smith

Faculty of Engineering, McMaster University

October 29, 2020



Modular Design

Start recording

Administrative details

Questions?

Feedback on issues

Overview of design

Modular decomposition: advantages, guidelines etc.

Module guide

Module guide example

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 2/57



Administrative Details

VnV GitHub issues for colleagues as for SRS
I Provide at least 5 issues on their VnV Plan
I Grading as before
I Create issues within 2 days of being assigned the task by

the project’s author

Template for MG and MIS available in repo

Some edits to the SRS template and FAQ (see diffs)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 3/57



Administrative Details: Report Deadlines

System VnV Plan Oct 29
MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written deliverable, please
ask

You should inform your primary and secondary reviewers
of the extension

Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 4/57



Admin Details: Presentation Schedule

Proof of Concept Demonstrations (15 min)
I Mon, Nov 2: Sid, Shayan, Leila, Xingzhi, Liz
I Thurs, Nov 12: Salah, John

MG Present (10 minutes)
I Thurs, Nov 12: John, Tiago, Leila, Xuanming, Andrea

MIS Present
I Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi

Drasil Project Present (20 min each)
I Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 5/57



Presentation Schedule Continued

Test or Impl. Present (15 min each)
I Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
I Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
I Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago

4 presentations each

If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 6/57



Questions?

Questions about Verification and Validation plan?

Questions about Proof of Concept demos?

Other questions?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 7/57



Feedback on SRS Issues

Close issues when they are resolved
I Explain why closing the issue

I Maybe you will just address the issue in a comment
I Maybe the issue will lead to repo changes

I Include the commit hash (you just need the number)
I Small, well-defined, commits
I Link to other issues using hash symbol

Take and give feedback in the collegial spirit, use emojis
as appropriate

If your project doesn’t have a name, give it one

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 8/57



Review of our “Faked” Rational Design Process

Problem Statement

Development Plan

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 9/57



SWHS MG Example

https://github.com/smiths/swhs/tree/master/docs/Design/MG

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 10/57

https://github.com/smiths/swhs/tree/master/docs/Design/MG


What is Design?

Your requirements document identifies “What,” now we
begin to look at “How”

Your system should meet both your functional and
nonfunctional requirements

There is no unique “optimal” design
I Different goals will lead to different designs
I There is a mix of art and science in design
I Even with fully formal requirements specification there

does not yet exist a systematic way to obtain a design
I Favour art in some areas and favour science in others

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 11/57



What is Design Continued?

Provides structure to any artifact

Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal

Design refers to
I Activity

I Bridge between requirements and implementation
I Structure to an artifact

I Result of the activity
I System decomposition into modules (module guide)
I Module interface specification (MIS)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 12/57



Why Decompose Into Modules?

Separation of concerns

Cannot understand all of the details

All engineering fields use decomposition

Modules will act as “work assignments”

Decomposition needs to follow a systematic procedure (as
for SRS)

Need to ensure that modules when fit together achieve
our global goals

Document in a Software Design Document (Module
Guide)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 13/57



Benefits of Modularity

Shorter development time

Improved verification

Reduced maintenance costs

Easier to understand
I Small modules
I An abstract interface

Modules can be developed independently

Modules can be tested independently

Modules can be reused

Software is easy to change, extend, maintain

This requires identifying the anticipated changes in the
design and in the requirements

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 14/57



Two Important Goals for Decomposition

Design for change (Parnas) [4, 5]
I Designers tend to concentrate on current needs
I Special effort needed to anticipate likely changes
I Changes can be in the design or in the requirements
I Too expensive to design for all changes, but should

design for likely changes

Product families (Parnas) [3, 6]
I Think of the current system under design as a member

of a program family
I Analogous to product lines in other engineering

disciplines
I Example product families include automobiles, cell

phones, etc.
I Design the whole family as one system, not each

individual family member separately

Use Design Principle of Information Hiding
Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 15/57



Sample Likely Changes

What are some examples of likely changes for software?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 16/57



Sample Likely Changes [1]

Algorithms – like replacing inefficient sorting algorithm
with a more efficient one

Change of data representation
I From binary tree to threaded tree
I Array implementation to a pointer implementation
I Approx. 17% of maintenance costs attributed to data

representation changes (Lientz and Swanson, 1980)

Change of underlying abstract machine
I New release of operating system
I New optimizing compiler
I New version of DBMS
I etc.

Change of peripheral devices

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 17/57



Binary Tree to Threaded Tree

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 18/57



Sample Likely Changes

Change of “social” environment
I Corresponds to requirements changes
I New tax regime
I EURO versus national currency in EU
I New language for user interface
I y2k

Change due to development process (prototype
transformed into product)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 19/57



Components of a Module

A software modules has two components

1. An interface that enables the module’s clients to use the
service the module provides

2. An implementation of the interface that provides the
services offered by the module

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 20/57



The Module Interface

A module’s interface can be viewed in various ways
I As a set of services
I As a contract between the module and its clients
I As a language for using the module’s services

The interface is exported by the module and imported by
the module’s clients

An interface describes the data and procedures that
provide access to the services of the module

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 21/57



The Module Implementation

A module’s implementation is an implementation of the
module’s interface

The implementation is hidden from other modules

The interface data and procedures are implemented
together and may share data structures

The implementation may utilize the services offered by
other modules

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 22/57



Information Hiding

Made explicit by Parnas [4]

Basis for design (that is modular decomposition (Module
Guide))

Implementation secrets are hidden to clients

Secret can be changed freely if the change does not affect
the interface

Try to encapsulate changeable design decisions as
implementation secrets within module implementations

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 23/57



Questions

What relationships are there between modules?

Are there desirable properties for these relations?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 24/57



Relationships Between Modules [1]

Let S be a set of modules

S = {M1,M2, ...,Mn}

A binary relation r on S is a subset of S × S

If Mi and Mj are in S , < Mi ,Mj >∈ r can be written as
Mi rMj

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 25/57



Relations

Transitive closure r+ of r

Mi r
+Mj iff Mi rMj or ∃Mk in S such that Mi rMk and Mkr

+Mj

r is a hierarchy iff there are no two elements Mi , Mj such
that Mi r

+Mj ∧Mj r
+Mi

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 26/57



Relations Continued

Relations can be represented as graphs

A hierarchy is a DAG (Directed Acyclic Graph)

Why do we prefer the uses relation to be a DAG?
Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 27/57



Desirable Properties

USES should be a hierarchy [5]
I Hierarchy makes software easier to understand
I We can proceed from the leaf nodes (nodes that do not

use other nodes) upwards
I They make software easier to build
I They make software easier to test

Low coupling

Fan-in is considered better than Fan-out: WHY?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 28/57



DAG Versus Tree

Is a DAG a tree? Is a tree a DAG?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 29/57



DAG Versus Tree

Would you prefer your uses relation is a tree?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 30/57



Hierarchy

Organizes the modular structure through levels of
abstraction

Each level defines an abstract (virtual) machine for the
next level

Level can be defined precisely
I Mi has level 0 if no Mj exists such that Mi rMj

I Let k be the maximum level of all nodes Mj such that
Mi rMj , then Mi has level k + 1

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 31/57



Static Definition of Uses Relation

Your program has code like:
if cond then ServiceFromMod1 else ServiceFromMod2

This is the only place where each module is used. Does this
mean the uses relation depends on the dynamic execution of
the program?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 32/57



Question about Association and DAG

Is the uses relation here a DAG?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 33/57



Module Decomposition (Parnas)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 34/57



Module Decomposition (Parnas)

For the module decomposition on the previous slide:

Does it show a Uses relation?

Is it a DAG?

Is it a tree?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 35/57



IS COMPONENT OF

The Parnas decomposition by secrets gives an
IS COMPONENT OF relationship

Used to describe a higher level module as constituted by a
number of lower level modules

A IS COMPONENT OF B means B consists of several
modules of which one is A

B COMPRISES A

MS,i = {Mk |Mk ∈ S ∧Mk IS COMPONENT OF Mi} we
say that MS ,i IMPLEMENTS Mi

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 36/57



A Graphical View

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 37/57



Module Guide [7]

Part of Parnas’ Rational Design Process (RDP)

When decomposing the system into modules, we need to
document the module decomposition so that developers
and other readers can understand and verify the
decomposition

Helps future maintainers find appropriate module

Parnas proposed a Module Guide (MG) based on the
decomposition module tree shown earlier

Decomposition is usually three to five levels deep

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 38/57



Three Top Conceptual Modules in an RDP MG

What are the three groups of modules in a typical
information-hiding decomposition?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 39/57



Module Decomposition (Parnas)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 40/57



RDP - MG

The MG consists of a table that documents each
module’s service and secret

Conceptual modules will have broader responsibilities and
secrets

Following a particular branch, the secrets at lower levels
“sum up” to the secret at higher levels

The leaf modules that represent code will contain much
more precise services and secrets

Only the leaf modules are actually implemented

The MG should list the likely and unlikely changes on
which the design is based

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 41/57



Module Details

For each module

Module name

Secret (informal description)

Service or responsibility (informal description)

For “leaf” modules add
I Associated requirement
I Anticipated change
I Module prefix (optional)

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 42/57



RDP - MG

Criteria for a good secret
I One module one secret, especially for leaf modules

(watch for “and”)
I Secrets should often be nouns (data structure,

algorithm, hardware, ...)
I Secrets are often phrased as “How to ... ”

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 43/57



Good Secret?

Is the following a good module secret: “The file format for the
map and the rules for validating that the map satisfies the
environmental constraints.”

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 44/57



Typical Modules [2]

What are the typical secrets for an input variable?
I You have an input in the environment, how to get it into

your system?
I What format is the input data?

What are the secrets for an output variable?
I How to get an output from inside the system to the

external environment?
I How will the output be determined?
I What format will the output have?

What are the secrets for a state variable?
I What rules are there governing the state transitions?
I What data structures or algorithms are needed?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 45/57



Typical Modules [2]

Input variables
I Machine-hiding from hardware or OS service
I Behaviour-hiding input format

Output variables
I Machine-hiding
I Behaviour-hiding output format
I Behaviour-hiding (calculation)

State variables
I Software decision hiding for data structure/algorithm
I Behaviour-hiding state-drive

Judgement is critical

Often combine variables into the same module

For non-embedded systems, machine hiding for
input-output is often combined

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 46/57



RDP - Views

As well as the MG, the modular decomposition should be
displayed using a variety of views

An obvious one is the Uses Hierarchy

The Uses Hierarchy is updated once the MIS for all
modules is complete

The Uses Hierarchy can be represented
I Graphically (if it isn’t too large and complex)
I Using a binary matrix – What would the binary matrix

look like?

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 47/57



MG Template

Table of contents

Introduction

Anticipated and unlikely changes

Module hierarchy

Connection between requirements and design

Module decomposition
I Hardware hiding modules
I Behaviour hiding modules
I Software decision hiding modules

Traceability matrices

Uses hierarchy between modules

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 48/57



Traceability Matrices

Traceability matrix help inspect the design

Check for completeness, look at from a different viewpoint

Req. Modules

R1 M1, M2, M3, M7
R2 M2, M3
... ...

AC Modules

AC1 M1
AC2 M2
... ...

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 49/57



Verification

Well formed (consistent format/structure)
I Follows template
I Follows rules (one secret per module, nouns etc.)

Feasible (implementable at reasonable cost)
I Difficult to assess
I Try sketches of MIS

Flexible
I Again try sketches of MIS
I Thought experiment as if likely change has occurred
I Low coupling
I Encapsulate repetitive tasks

May sometimes have to sacrifice information hiding

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 50/57



Object Oriented Design Versus Modular Design

OO-design and OO-languages are different

OO-design
I Classes and methods
I Classes are like modules (state variables and access

functions (methods))
I An object is an instance of a class
I Polymorphism
I Inheritance - use carefully

Implementation of modules using an OO-lang is natural

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 51/57



Examples of Modules [1]

Record
I Consists of only data
I Has state but no behaviour

Collection of related procedures (library)
I Has behaviour but no state
I Procedural abstractions

Abstract object
I Consists of data (fields) and procedures (methods)
I Consists of a collection of constructors, selectors, and

mutators
I Has state and behaviour

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 52/57



Examples of Modules Continued

Abstract data type (ADT)
I Consists of a collection of abstract objects and a

collection of procedures that can be applied to them
I Defines the set of possible values for the type and the

associated procedures that manipulate instances of the
type

I Encapsulates the details of the implementation of the
type

Generic Modules
I A single abstract description for a family of abstract

objects or ADTs
I Parameterized by type
I Eliminates the need for writing similar specifications for

modules that only differ in their type information
I A generic module facilitates specification of a stack of

integers, stack of strings, stack of stacks etc.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 53/57



Getting Started

1. Find a similar example to your problem as use that as a
starting point

2. Draft module names and secrets

3. For each module sketch out:
I Classify module type (record, library, abstract object,

abstract data type, generic ADT)
I Access program syntax
I State variables (if applicable)

4. Iterate on design

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 54/57



References I

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Daniel M. Hoffman and Paul A. Strooper.
Software Design, Automated Testing, and Maintenance: A
Practical Approach.
International Thomson Computer Press, New York, NY,
USA, 1995.

David Parnas.
On the design and development of program families.
IEEE Transactions on Software Engineering, SE-2(1):1–9,
1976.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 55/57



References II

David L. Parnas.
On the criteria to be used in decomposing systems into
modules.
Comm. ACM, 15(2):1053–1058, December 1972.

David L. Parnas.
On a ’buzzword’: Hierarchical structure.
In IFIP Congress 74, pages 336–339. North Holland
Publishing Company, 1974.

David L. Parnas.
Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, pages
128–138, March 1979.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 56/57



References III

D.L. Parnas, P.C. Clement, and D. M. Weiss.
The modular structure of complex systems.
In International Conference on Software Engineering,
pages 408–419, 1984.

Dr. Smith CAS 741, CES 741 Fall 2020: Modular Design 57/57


