CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2020

MIS Continued

Dr. Spencer Smith
Faculty of Engineering, McMaster University

November 9, 2020

McMaster
University ':*ﬁ

MIS Continued

Start recording

Administrative details

Questions?

Nonfunctional requirements

Review: Records, Libraries, ADTs, Abstract Objects,
Generic ADTs

Example - Student data

Exceptions

Quality criteria

Modules with external interaction, enviro variables
GUI modules

ADTs

Generic modules

OO design spec

Examples

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

2/50

Administrative Details

@ When developing your code, remember that your goal is
for someone else to be able to compile and run it
@ Upcoming classes
» L16 - MIS Continued
» L17 - POC + MG Presentations
» L18 - MIS Presentations
@ Mathematical review ([3] and separate slides)
@ Potential software for drawing figures

» draw.io
» Tkiz

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 3/50

https://app.diagrams.net/
https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf

Administrative Details: Report Deadlines

MG + MIS (Traditional) Nov 19
Drasil Code and Report (Drasil) Nov 19
Final Documentation Dec 9

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

@ If you need an extension for a written deliverable, please
ask

@ You should inform your primary and secondary reviewers
of the extension

@ Two days after each major deliverable, your GitHub issues
will be due

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 4/50

Admin Details: Presentation Schedule

@ Proof of Concept Demonstrations (15 min)
» Thurs, Nov 12: Salah, John
@ MG Present (10 minutes)

» Thurs, Nov 12: John, Tiago, Leila, Xuanming,
Andrea

e MIS Present

» Mon, Nov 16: Shayan, Parsa, Gaby, Sid, Xingzhi
@ Drasil Project Present (20 min each)

» Thurs, Nov 26: Andrea, Naveen, Ting-Yu

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 5/50

Presentation Schedule Continued

@ Test or Impl. Present (15 min each)
» Mon, Nov 30: John, Salah, Liz, Xingzhi, Leila
» Thurs, Dec 3: Shayan, Naveen, Sid, Gaby, Seyed
» Mon, Dec 7: Ting-Yu, Xuanming, Mohamed, Andrea,

Tiago
@ 4 presentations each
@ If you will miss a presentation, please trade with someone
else

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 6/50

Questions?

Questions on administrative details?
Questions about Module Guide?
Questions about upcoming presentation?
Questions about MIS?

Other questions?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 7/50

Nonfunctional Requirements

@ Aim to be unambiguous

@ Say the quality you want to achieve, not how you are
going to achieve it

@ Point to the Verification and Validation plan
o Added to the blank SRS template

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 8/50

Examples of Modules: Record [2]

@ Consists of only data
@ Has state but no behaviour

e Example
» Specification Parameters Module in SWHS

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 9/50

Examples of Modules: Library [2]

@ Collection of related procedures (library)
@ Has behaviour but no state

@ Procedural abstractions

e Example

» Library of trigonometric functions
» ODE Solver Module in SWHS
» Sequence Services Module

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 10/50

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Abstract Object [2]

o Consists of data (fields) and procedures (methods)

@ Consists of a collection of constructors, selectors, and
mutators

@ Has state and behaviour
@ There is only ONE
e Example

» Input Parameters Module for SWHS
> Logger

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 11/50

Examples of Modules: Abstract Data Type [2]

What you are used to for OO programming

Consists of a collection of abstract objects and a
collection of procedures that can be applied to them

Defines the set of possible values for the type and the
associated procedures that manipulate instances of the

type
Encapsulates the details of the implementation of the type
Multiple instances of the object
Keyword Template in MIS
Example
» Curve ADT Module

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued 12/50

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2018/A2/A2.pdf

Examples of Modules: Generic [2]

@ A single abstract description for a family of abstract
objects or ADTs

e Parameterized by type

@ Eliminates the need for writing similar specifications for
modules that only differ in their type information

@ A generic module facilitates specification of a stack of
integers, stack of strings, stack of stacks etc.
e Example
» Generic Sequence ADT Module

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued 13/50

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/blob/master/Assignments/PreviousYears/2019/A2/A2.pdf

Chemistry Example - Highlight Mathematics

@ Problem Description

@ Source Code

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 14/50

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/blob/master/Assignments/A2/A2.pdf
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Assignments/A2/A2Soln/src

Exception Signalling

Useful to think about exceptions in the design process

Will need to decide how exception signalling will be done

» A special return value, a special status parameter, a
global variable

» Invoking an exception procedure

» Using built-in language constructs

Caused by errors made by programmers, not by users

Write code so that it avoid exceptions

Exceptions will be particularly useful during testing

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 15/50

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued 16/50

Quality Criteria [3, p. 83]

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 17/50

Modules with External Interaction

@ In general, some modules may interact with the
environment or other modules
@ Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.
@ Sometimes the interaction is informally specified using
prose (natural language)
@ Can introduce an environment variable
> Name, type
» Interpretation
@ Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 18/50

External Interaction Continued

@ Some external interactions are hidden
» Present in the implementation, but not in the MIS
» An example might be OS memory allocation calls
@ External interaction described in the MIS
» Naming access programs of the other modules
» Specifying how the other module’s state variables are

changed
» The MIS should identify what external modules are used

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 19/50

MIS for GUI Modules

@ Could introduce an environment variable
e window: sequence [RES_H][RES_V] of pixel T

» Where window(r][c] is the pixel located at row r and
column ¢, with numbering zero-relative and beginning at
the upper left corner

» Would still need to define pixel T

@ Could formally specify the environment variable
transitions

@ More often it is reasonable to specify the transition in
prose

@ In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 20/50

Display Point Masses Module Syntax

Exported Access Programs

Routine name

In

Out

Exc

DisplayPointMassesApplet

DisplayPointMassesApplet

paint

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

21/50

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

@ transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()

ListPointMasses.add(0, PointMassT (20, 20, 10))
ListPointMasses.add(1, PointMassT (120, 200, 20))

paint():

@ transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 22/50

Specification of ADTs

@ Similar template to abstract objects
@ “Template Module" as opposed to “Module”
@ “Exported Types” that are abstract use a 7

» pointT =7
» pointMassT =7

Access routines know which abstract object called them

Use “self” to refer to the current abstract object
@ Use a dot “." to reference methods of an abstract object

» p.xcoord()
> self.pt.dist(p.point())

@ Similar notation to Java

@ The syntax of the interface in C is different

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

23/50

Syntax Line ADT Module

Template Module
lineADT

Uses

pointADT
Exported Types

lineT =7

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 24/50

Syntax Line ADT Module Continued

Routine name | In Out Exceptions
new lineT pointT, pointT | lineT

start pointT

end pointT

length real

midpoint pointT

rotate real

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

25/50

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant
None
Assumptions

None

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 26/50

Access Routine Semantics Line ADT Module
new lineT (p1, p2):

@ transition: s, e ;= p1, p»
@ output: out := self
@ exception: none
start:
@ output: out :=s
@ exception: none
end:
@ output: out := e

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 27/50

Access Routine Semantics Continued

length:
@ output: out := s.dist(e)
@ exception: none
midpoint:

@ output: out :=
new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

@ exception: none

rotate (p):
@ is in radians

@ transition: s.rotate(y), e.rotate(y)

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 28/50

Line ADT Local Functions

Local Functions

avg: real x real — real

avg(xy, xp) = 122

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued

29/50

Generic Modules

@ What if we have a sequence of integers, instead of a
sequence of point masses?

@ What if we want a stack of integers, or characters, or
pointT, or pointMassT?

@ Do we need a new specification for each new abstract
object?

@ No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities

@ Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)

@ Advantages

» Eliminate chance of inconsistencies between modules

» Localize effects of possible modifications
P> Reuse

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 30/50

Generic Stack Module Syntax

Generic Module
Stack(T)

Exported Constants
MAX_SIZE = 100

Exported Access Programs

Routine name | In | Out | Exceptions

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 31/50

Stack Module Syntax

Exported Access Programs

Routine name | In | Out Exceptions
s_init

s_push T FULL

s_pop EMPTY
s_top T EMPTY
s_depth integer

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

32/50

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE
Assumptions

s_init() is called before any other access routine

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 33/50

Access Routine Semantics

s_init():

@ transition: s :=<>

@ exception: none
s_push(x):

@ transition: s :=s|| < x >

@ exception: exc := (|s| = MAX_SIZE = FULL)
s-pop():

@ transition: s := s[0..|s| — 2]

@ exception: exc := (|s| = 0 = EMPTY)

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 34/50

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s|

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 35/50

Stack Module Properties

{true}
s_init()

{Is'1=0}

{|s| < MAX_SIZE}
s_push(x)
{Is'| = |s| + L AS[|s'| — 1] = x A §'[0..]s| — 1] = s[0..|s| — 1]}

{|s| < MAX_SIZE}
s_push(x)

s_pop()
ss=s

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 36/50

Object Oriented Design

@ One kind of module, ADT, called class

@ A class exports operations (procedures) to manipulate
instance objects (often called methods)

@ Instance objects accessible via references

@ Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a

type)

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 37/50

Inheritance

@ Another relation between modules (in addition to USES
and IS.CCOMPONENT _OF)

@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 38/50

Template Module Employee

Dr. Smith

Routine name | In Out Except
Employee string, string, money T | Employee
first_Name string
last_Name string
where siteT
salary money T
fire
assign siteT
CAS 741, CES 741 Fall 2020: MIS Continued 39/50

Inheritance Examples

Template Module Administrative_Staff inherits Employee

Routine name

In

Out

Exception

do_this

folderT

Template Module Technical_Staff inherits Employee

Routine name | In Out | Exception
get_skill skill T
def_skill skill T

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

40/50

Inheritance Continued

A way of building software incrementally

Useful for long lived applications because new features
can be added without breaking the old applications

@ A subclass defines a subtype

@ A subtype is substitutable for the parent type

@ Polymorphism - a variable referring to type A can refer to

an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative_Staff and Technical _Staff
are instances of Employee

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

41/50

Dynamic Binding

@ Many languages, like C, use static type checking
@ OO languages use dynamic type checking as the default

@ There is a difference between a type and a class once we
know this
» Types are known at compile time
» The class of an object may be known only at run time

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 42/50

Point ADT Module

Template Module
PointT

Uses

N/A

Syntax

Exported Types

PointT =7

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 43/50

Point ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcoord real

ycoord real

dist PointT real
Semantics

State Variables

xc: real
yc: real

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

44/50

Point Mass ADT Module

Template Module
PointMassT inherits PointT
Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 45/50

Point Mass ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointMassT | real, real, real | PointMassT | NegMassExcep
mval real

force PointMassT real

fx PointMassT real
Semantics

State Variables

ms: real

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued

46/50

Point Mass ADT Module Semantics

new PointMassT(x, y, m):
@ transition: xc,yc, ms == x,y, m
@ output: out := self

@ exception: exc := (m < 0 = NegativeMassException)

force(p):
@ output:

self .ms x p.ms

t == UNIVERAL G
ou self .dist(p)?

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 47/50

Examples

@ Solar Water Heating System
Example Point Line and Circle
Example Robot Path

Example Vector Space

Example Othello Program

Example Maze Formal Specification (Dr. v.
Mohrenschildt)

o Mustafa EISheikh Mesh Generator [1]
@ Wen Yu Mesh Generator [4]

@ Sven Barendt Filtered Backprojection
@ Sanchez sDFT

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 48/50

https://github.com/smiths/swhs/blob/master/docs/Design/MIS/PCM_MIS.pdf

References |

@ Jacques Carette, Mustafa EISheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53-62,
January 2011.

@ Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741, CES 741 Fall 2020: MIS Continued 49/50

References ||

[@ Daniel M. Hoffman and Paul A. Strooper.

Software Design, Automated Testing, and Maintenance: A

Practical Approach.
International Thomson Computer Press, New York, NY,

USA, 1995.

W. Spencer Smith and Wen Yu.

A document driven methodology for improving the quality
of a parallel mesh generation toolbox.

Advances in Engineering Software, 40(11):1155-1167,
November 2009.

Dr. Smith

CAS 741, CES 741 Fall 2020: MIS Continued 50/50

