CAS 741 (Development of Scientific Computing
Software)

Winter 2023

Artifact Generation

Dr. Spencer Smith
Faculty of Engineering, McMaster University

March 23, 2023

McMaster
University ‘1*?:1

Artifact Generation

@ Administrative details
@ Finish Assurance Case review

o Artifact generation (Drasil)

Dr. Smith CAS 741 Winter 2023: Artifact Generation 2/78

Administrative Details: Report Deadlines

Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need to
maintain traditional SRS

Dr. Smith

CAS 741 Winter 2023: Artifact Generation 3/78

Administrative Details: Presentations

Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3
@ Specific schedule depends on final class registration
@ Informal presentations with the goal of improving everyone's
written deliverables
@ Domain experts and secondary reviewers (and others) will ask
questions

Dr. Smith CAS 741 Winter 2023: Artifact Generation 4/78

Presentation Schedule

@ Drasil Project Present (25 min each)
> Mar 30: Karen, Sam, Jason

Dr. Smith CAS 741 Winter 2023: Artifact Generation 5/78

Presentation Schedule

@ Test or Impl. Present (25 min each)

» Apr 5: Lesley, Deesha, Volunteer?
» Apr 6: Mina, Joachim, Maryam

@ 4 presentations each (please check)
o If you will miss a presentation, please trade with someone else

@ Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2023: Artifact Generation 6/78

Course Evaluations

@ Course experience surveys will close on Wednesday, April 12,
2023 11:59 PM

@ https://mcmaster.bluera.com/mcmaster/

Dr. Smith CAS 741 Winter 2023: Artifact Generation 7/78

https://mcmaster.bluera.com/mcmaster/

Questions?

Questions on administrative details?
Questions on final documentation?
Questions on reflection document?
Questions on final implementation?

Questions on VnV report?

Other questions?

Dr. Smith CAS 741 Winter 2023: Artifact Generation 8/78

Assurance Cases in Scientific Computing [14, 13]

@ Assurance cases

» Organized and explicit argument for correctness

» Successfully used for safety critical systems
@ Advantages for SC

» Engaging domain experts

» Producing necessary and relevant documentation

» Evidence that can be verified /replicated by a third party
@ Example of 3dfim+

» No errors found
» However
» Documentation ambiguities
» No warning about parametric statistical model

Dr. Smith CAS 741 Winter 2023: Artifact Generation 9/78

Assurance Cases in SC Motivation

Do we put too much trust in the quality of SCS?

Are enough checks and balances in place, especially for safety
related software?

Problems with imposing external requirements for certification

» External body does not have expertise

» SCS developers dislike documentation
Solution — Assurance Cases by experts

» Experts engaged

» Relevant documentation
Current techniques of development and testing still used, but
arguments will no longer be ad hoc and incompletely
documented

Dr. Smith

CAS 741 Winter 2023: Artifact Generation 10/78

G1 (System top level
Assurance Goal)

——

C1: System Requirement

Specifications
\ 4

ST1 (Strategy for
Meeting Goal)

G: System Goal / Sub-Goal

C: Context Information

A: Assumption

ST: Strategy to meet goal

S: Solution to support goal
<> Remain to be supported

G4 (System Sub-Goal to
be addressed later)

G3 (System Sub-Goal
supported by Evidence)

G2 (System Sub-Goal
supported by Evidence)

!

S2
(Simulation
Results)

S1 (Test
Results)

<

Al: Assumption
made

€ [A] AFNI: tmp/LRtap/mdeft3d 01+ori & & v — @ X

[order: RAI=DICOM]

-39.500 mm [R]
y 31.500 mm [P]
z = 45,500 mm [5]

Xhairs|Multi — 7 X+

Color preen =]
Gap 5 I HHrap
Frwdox I?IA_ PG

Axial m Eraph
Sagittal m Fraph

Coronal [[Graph

#Original View
A BC-PE Bl iged
A Talal

Define Markers

M See Markers

Define Overlay

M See Overlay

Define Datamode
Switch Session

£ Yiews

New
BHelp |done

|Switch UnderLay

Switch Overlay

J |

135 I

141

left=Right Float [24-98%] F

fisp [Savi.pew [Font. [Dore) [Rec

=mlal

Dise [Eavi.een [Font [Donel[Rec

float [2%-98%] F

08

06

0.4

0z

Scaled Woxel (23 27 22) and Ideal Signal over time

Ideal Signal
Scaled Woxel

1 1 1
40 B0 an 100 120 140
Tirme

1
160

180

c7

SRS stands for Software
Requirements
Specification in this
assurance case.

c4

Intended environments for
3dfim+ are the
Unix+X11+Motif systems
[Based on AFNI Intro].

Ccs5

Intended environment
for using 3dfim+ is

i <
currently academia and
the program is currently
used for research
purposes.

Al
This assurance case is

c1

Correctness is defined as (IEEE)

(1) The degree to which software is free from
faults in its specification, design and coding.
(2) The degree to which software,
documentation and other items meet specified
requirements.

(3) The degree to which software,
documentation and other items meet user
needs and expectations, whether specified or
not. [From "FDA Glossary of Computer System
Software Development Terminology"]

c2

The main intended functionality of
3dfim+ is to compute cross—correlation
between one or more ideal signals and
the fMRI data (brain signals). Other
functionalities are mentioned in the
documentation.

c3

The term “intended use /
intended purpose” is the
objective intent of the
programmer regarding

the use of a product, process
and output as reflected in the
documentation.

designed such that it does
not consider the correctness
of 3dfim+ in cases where
the program is used for any
purpose other than its
intended purpose or if it is
used in an environment
rather than its intended
environment.

GTop

Program 3dfim+
delivers correct outputs
when used for its
intended use/purpose in
its intended
environment.

c6

In this assurance case, some of
the arguments (the ones that
are related) follow the principles
provided in "General Principles
of Software Validation; Final
Guidance for Industry and FDA
Staff". This document lists
elements that are acceptable to
the FDA for validation of medical
software.

GTop

Program 3dfim+
delivers correct outputs
when used for its
intended use/purpose in
its intended
environment.

S_Top

G can be decomposed into:
GR. 3dfim+ requirements are documented and documentation of the requirements
is complete, correct, ¢ verifiable, and traceable.

GD. The design of 3dfim+ complies with its requirements and it is complete,

rect, consistent, verifiable,

and traceable.

cor
Gl. The |mp|ememanon of 3dfim+ complles with its requlrements and itis

e, , verifiable, and traceable.
GA. Inputs to 3dfim+ satisfy the defined operational assumptions.

complete

Reasoning Proof:
Premise: GR, GD, Gl and GA are true.
Conclusion: GTpp is valid.

[—)

1

GR

3dfim+ requirements
are documented and
documentation of the
requirements is

complete, unambiguous,

correct, consistent,
verifiable, modifiable
and traceable.

GD

The design of 3dfim+
complies with its
requirements and it is
complete, unambiguous,
correct, consistent,
verifiable, modifiable
and traceable.

Gl

The implementation of
3dfim+ complies with its
requirements and it is

GA

Inputs to 3dfim+ satisfy
the defined operational
assumptions.

complete,
correct, consistent,
verifiable, modifiable
and traceable.

J_Top

The major software development lifecycle steps
are: Req s

with appropriate V&V activities. V&V activities
will be reflected in claims regarding validation of
requirements, and verification of design and
implementation. If requirements are

appropriate, and design and implementation

are appropriate and they comply with the
requirements, then 3dfim+ will have been

shown to deliver correct outputs. Moreover, as
meeting the input assumptions is of great
importance, it is considered as a separate goal;
however, the correctness, completeness and
consistency of the assumptions have been shown
in the GR as a part of the requirements
correctness, completeness and consistency.

GR

3dfim+ requirements are
documented and
documentation of the
requirements is complete,
unambiguous, correct,
consistent, verifiable,
modifiable and traceable.

S_GR

If standard principles for
documentation of the
requirements are followed
correctly and completely
then the documentation
should have the
characteristics of good
documentation. These
characteristics include
correctness, unambiguity,
completeness, consistency,
verifiability, modifiability,
J traceability.

J_GRa

According to IEEE Std 830-
1993, a good documentation
of the requirements should be:
a) Correct, b) Unambiguous, c)
Complete, d) Consistent, e)
Ranked for Importance and/or
Stability, f) Verifiable, g)
Modifiable, h) Traceable

J_GRb

"Ranked for importance
and/ or Stability" is
excluded from our
assurance case
decomposition as our
case study is a scientific
software and all the
requirements are
considered as equally
important.

1

GR_3C GR_Unambiguous GR_Modifiable GR_Traceable
Documentation of the Documentation of the Documentation of the Documentation of the
requirements is complete, requirements is requirements is requirements is
correct and consistent; i.e. unambiguous. modifiable. traceable.

3dfim+ requirements are

documented completely

and correctly and they are |

consistent.

GR_Verifiable

Documentation of the
requirements is
verifiable.

C_ModifiableA

According to IEEE Std 830-1993, a
documentation of the requirements is
modifiable, if and only if, its structure and
style are such that any changes to the
requirements can be made easily,
completely, and consistently while retaining
the structure and style. Modifiability
generally requires a requirement
documentation to a)
Have a coherent and easy-to-use
organization with a table of contents, an
index, and explicit cross-referencing.

b) Not be redundant; the same requirement
should not appear in more than one place in
the documentation.

© Express each requirement separately,
rather than intermixed with other
requirements.

GR_Modifiable

Documentation of the
requirements is
modifiable.

Modifiable.1

The SRS has a coherent
and easy-to-use
organization with a
table of contents, an
index, and explicit
cross-referencing.

v

Modifiable.2
There is no duplication
between the
requirements.

Modifiable.3

Each requirement is
expressed separately,
rather than intermixed
with other
requirements.

S_Modifiable.1

If a standard / correct
well-structured template
has been followed by a
competent team, then
the documentation is
structured and
presented correctly.

'S_Modifiable.2

there is no specified
approach or tool for
checking duplication in a
document, hence a
review must be done
manually by the experts/,
developers.

s_Modifiable.3

there is no specified
approach or tool for
checking this matter,
hence a review must be
done manually by the

experts/ developers.

C_ModifiableC

Modifiable.1.1 Modifiable.1.2

A standard / correct
well-structured
template has been

followed by a
competent team.

The template has been

T

ifiable.2.1

The doc has

has

been reviewed by the
domain experts to

followed.

C_ModifiableB

List of the team
members.

make sure the template
has been followed
correctly.

The
been reviewed by
domain expert to make
sure there is n
duplication between the
requirements.

Modifiable.3.1

The documentation has
been reviewed by
domain expert to make
sure each requirement
is atomic.

Atomic is, are each of
the requirements
measurable on their
own and not obviously
decomposable into a
set of separate
requirements

E.

E_Modi

The standard
template.

resumes.

Team members'

2

[}

GenericEvidence

Domain experts /
customers approve the
<<quality>> of the
documentation of the
requirements.

GenericEvidence

Domain
experts/customers
approve the
<<quality>> of the
documentation of the
requirements.

Generi(Evidence\ﬁ

C_GenericEvidence

™ List of Domain Experts
and other reviewers.

GenericEvidence.2.3

GenericEvidence. Review techniques are
Reviewers are expert: acceptably likely to
uncover errors in the
requirements.

/|_GenericEvidence Reviewers approve the

<<quality>> of the
documentation of the
software requirements.

Review techniques
consists of task based
inspection, using

Gitlab/Github issue
tracking and
comparison to the

GenericEvidence.2.1 GenericEvis 2.2 GenericEvi 3

£ GenericEvidence.1 All reviewers have Atask based inspection If applicable, existing
submitted comments approach is used for documentation of the documentation.
Reviewers' resumes regarding the the review. requirements should be

satisfy acceptance criteria
for required
qualifications, including
an engineering, science
or medical degree and at
least 5 years experience
in medical imaging.

<<quality>> of the
documentation of the
requirements using
Gitlab/Github issue
tracker.

compared with any
applicable superior
specification (External
Consistency).

v

GenericEvidence.3.1

E.

The task based
approach is based
on Kelly's Papers, so
it is reliable.

E_GenericEvidence.4

Reviewers' signature
and Software
Requirement
Acceptance Report
containing a section
regarding the
<<quality>> are
provided.

The comparison among
the documents has
been done by Domain
Experts/ customer and
they approve the
documents agree.

E_GenericEvidence.2’

All Gitlab/Github
issues related to the
<<quality>> have
been addressed and
signed off by the
reviewers.

GA

Input(s) to 3dfim+
satisfies the defined
operational
assumptions.

A‘/\A

GA.2

User is aware of what
inputs are valid.

C.GA

Input assumptions are
defined in the
documentation.

GA.1

3dfim+ does not
proceed if the given
input(s) does not meet
all the necessary
assumptions.

v

GA.2.2

GA2.1

Input assumptions and
constraints are
mentioned in the
documentation.

SGA.1
Software's responsibility
comes from programmer's
responsibility. A
programmer - especially in
the case of implementing a
scientific software - must
ensure that their program

User's responsibilities
are mentioned in the
documentation.

GA.23
Upon starting 3dfim-+, a

checks the inputs to see E_GA2 warning message
whether they mee(‘the Thereareleecions appears that_stateg
necessary assumptions. If called : what a valid input is.

the input(s) does not meet
one or more of the
assumptions, the program
should throw an exception
with a message clearly
stating the reason.

and Data Constraints
dedicated to input
assumptions and
constraints in the
documentation.

E.GA4

3dfim+ displays a
warning message
that states what a
valid input to the
software is.

GA.1.2

GA.l.1

3dfim+ throws
exceptions if the input
(s) does not meet one
or more of the
assumptions.

The exceptions that
3dfim+ throws when it

receives an invalid input
clearly state the reason.

EGA3

.,

E_.GA.l
3dfim+ throws
clear exceptions
in the case of

receiving invalid
inputs.

There is a section
called System
Context dedicated to
user's and
software's
responsibilities in
the documentation.

Proposed Changes to 3dfim+

@ No mistakes found in calculations

@ Goal of original software was not certification

@ Problems found

» GR goal not satisfied
» Not complete, verifiable, modifiable or traceable
» Coordinate system information missing
» Ambiguous rank function

» Inputs not checked in code

» User not informed of their responsibility to use tool with

correct statistical model

Dr. Smith CAS 741 Winter 2023: Artifact Generation 20/78

Concluding Remarks

Hopefully motivated assurance cases for SC

Quiality is improved by looking at a problem from different
perspectives, assurance cases provide a systematic and
rigorous way to introduce a new perspective

@ An assurance cases will likely use the same documentation
and ideas used in CAS 741

However, an assurance case can focus and direct efforts right
from the start of the project

Dr. Smith CAS 741 Winter 2023: Artifact Generation 21/78

Abstract for Artifact Generation Talk

Goal — Improve quality of SCS
Idea — Adapt ideas from SE
@ Document Driven Design
» Good — improves quality
» Bad — "manual” approach is too much work
Solution

» Capture knowledge
» Generate all things
» Avoid duplication
» Traceability

@ Showing great promise

» Significant work yet to do
» Looking for examples/partners

Dr. Smith CAS 741 Winter 2023: Artifact Generation 22/78

Scope: Large/Multiyear

Scope: Program Families

Product Lines in User Manual

PRODUCT SPECIFICATIONS

PRODUCT SPECIFICATIONS

The appearance and specifications listed in this manual may vary due to constant product improvements.

Electrical requirements: 115V, 60 Hz
Min. / Max. water pressure: 20 - 120 psi (138 - 827 kPa)

9

Model LFCC22426

Description Counter-depth, French door refrigerator, bottom freezer

Net weight 243 1b (110 kg)

Model LFCS27596*

Description Standard-depth, Door-in-Door French door refrigerator, bottom freezer
Net weight 284 1b (129 kg)

Model LFCC23596™

Description Counter-depth, Door-in-Door French door refrigerator, bottom freezer
Net weight 269 Ib (122 kg)

HSITON3

[15]

Scope: End User Developers

Scope: Physical Science

PCM

Tank

eeeeeeeee

Build on Success of MDSE

e Codify (capture) code and non-code info together

> Natural language (text)
> Definitions

> Assumptions

> Rationale, Derivations
> Abstract theory

> Etc.

@ Generate all artifacts from one framework

» Requirements

User manuals

Build scripts, dev environment (Cl etc)
Assurance case

Code (in different languages)

Test cases

etc.

VVVYVYYVYY

Dr. Smith CAS 741 Winter 2023: Artifact Generation 29/78

Artifact Analysis

Domain Analysis

—

Math
Knowledge

Physics
Knowledge

Computing
Knowledge

Domain X;
Knowledge

" | Knowledge

Domain X,
Knowleage

README
Knowledge

Knowledge

DocY;

Ym Knowledge

Generator

i

Test Cases

Family A

)

Test Gases

Family B

i

Test Cases

Family H

dv dp
a= g andv= 3

F = ma

dv
m% = mg —cv

g =9.8m/s? or g = 32.2ft /s>
Ynt1 = (kl + 2ky + 2k3 + k4)h

oij = Dijien

coordinate system

Motivation: Safety

Motivation: (Re)certification

Motivation: Improve Quality

Verifiability

Understandability .| -

Reproducibility

Reusability

Maintainability

Dr. Smith CAS 741 Winter 2023: Artifact Generation 34/78

Current Approach

Agile like [1]

Amethododical [3]

Knowledge acquisition driven [4]

Each stage reports counterproductive [10]
Limited tool use [16]

Limited testing of code [5]

Lack of understanding of testing [7]

Missed opportunities for reuse [8]

® 6 6 6 66 o o o o

Emphasis on:

1. Science [6]
2. Code

Dr. Smith CAS 741 Winter 2023: Artifact Generation 35/78

Documentation Advantages

@ Improves verifiability, reusability, reproducibility, etc.

e From [9]

>

vVVyVYVYY

>

easier reuse of old designs

better communication about requirements
more useful design reviews

easier integration of separately written modules
more effective code inspection

more effective testing

more efficient corrections and improvements

e New doc found 27 errors [12]

@ Developers see advantage [11]

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

36/78

Study Of Documentation in SC [11]

Select 5 small to medium size SCS
Interview code owners
Redevelop using Document Driven Design (DDD)

Interview code owners

AR

Analyze responses

Dr. Smith CAS 741 Winter 2023: Artifact Generation 37/78

Summary of Case Studies

LOC

Lng ND Ag SE Prg Tst VC Bug

SWHS
Astro
Glass
Soil
Neuro
Acoust

1000
5000
1300
800
1000
200

Fr7 1 5 X v
C 2 10 X v
F90 1 <1 X v
M 1 5 v v
M 1 5 v ooV
M 4 25 X v

*x X N X %X %

x NN X % X

X

xX X X X X

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

38/78

Perceived Advantages from Participants

Documentation of assumptions

All variables have explicit units

SRS helpful with new graduate students

Modules result in more user friendly code
Traceability between modules and requirements useful
Better organized code

Information sharing on design choices

Detailed record of knowledge capital

Code is produced to make testing easier

Dr. Smith CAS 741 Winter 2023: Artifact Generation 39/78

Disadvantages (Perceived and Real)

SRS is too long

SRS is not necessary

DDD will not work in reality, since needs upfront requirements
Too much SE jargon

Difficult without a team of people

Too difficult to maintain

Not amenable to change

Too tied to waterfall process

Reports counterproductive [10]
The Solution?

Dr. Smith CAS 741 Winter 2023: Artifact Generation 40/78

mzameagenaraior.nat

Dr. Smith CAS 741 Winter 2023: Artifact Generation 41/78

Knowledge Capture

l,'!.'iii's”!

4141
|I||i|... |

Dr. Smith CAS 741 Winter 2023: Artifact Generation 42/78

Drasil

(SRS (Lafex) | [SRS (htmi) |

" Makefile
()

uncertaint .
typical val- he is the heat
ues etc. transfer coeff
:5§ween clad
and coolant

Dr. Smith CAS 741 Winter 2023: Artifact Generation 43/78

Chunk
id : String

Namedidea
term : Sentence
getA : Sentence +1

SymbolForm
symbol : Symbal

Concept
defn : Sentence
cdom : Concept ¢ == [c]
may

T have

have

Commonidea
abrv : Sentence +1

Unit Quantity

typ : Space
get-symb : SymbolForm s => s +1
get-unit : Unitu == u +1

unit : USymbo

is-a

Constrained
constraints : [Constraint]
reasVal : Expr+1

Unitary
unit: Unitu=>u

UncertainQuantity
uncert : Double +1

Dr. Smith CAS 741 Winter 2023: Artifact Generation 44/78

GlassBR

Given

@ dimensions of glass
plane

@ glass type

@ explosion

- characteristics
PI” @ tolerable breakage

explosion proba blllty

Predict whether the glass
will withstand the
explosion

Glass

Dr. Smith CAS 741 Winter 2023: Artifact Generation 45/78

Drasil Inputs:

- Program Name: GlassBR
- Authors: Nikitha K and Spencer S
- Symbols: tolerable load (g,), Risk of failure (B), ...
- Assumptions: Load duration factor constant,
- Data definitions: relation for B, ...
- Design decisions:
Modularity (input module),
Implementation Type (Program),
Logging (Yes),
Input Structure (Bundled),
Constant Structure (Inlined),
Constant Rep (Constants),
Real Number Rep (Double),

Dr. Smith CAS 741 Winter 2023: Artifact Generation 46/78

Drasil Inputs:

- Symbols: tolerable load (g,), Risk of failure (B), ...
- Assumptions: Load duration factor constant,
- Data definitions: relation for B, ...
- Design decisions:

Modularity (input module),

Implementation Type (Program),

Logging (Yes),

Input Structure (Bundled),

Constant Structure (Inlined),

Constant Rep (Constants),

Real Number Rep (Double),

Dr. Smith CAS 741 Winter 2023: Artifact Generation 47/78

/glassbr
/Website/GlassBR_SRS.html
/Website/GlassBR_SRS.css
/SRS/bibfile.bib
/SRS/Makefile
/SRS/GlassBR_SRS.tex
/ISRS/GlassBR_SRS.pdf
/src/python
[src/python/README.md
/src/python/InputParameters.py
[src/python/Calculations.py
I/src/python/Makefile
/src/python/doxConfig

.).src/java/GIassBR/CaIcuIations.java

/srcljava/Makefile
/src/java/README.md

/src/cpp/GlassBR
/src/cpp/ReadTable.cpp
/src/cpp/InputFormat.hpp
/src/cpp/Calculations.cpp

};rc/swift/CaIculations.swift

/src/csharp/Control.cs

/src/python/README md
[src/python/InputParameters.py
[src/python/Calculations.py
/src/python/Makefile
/src/python/doxConfig

[srcl/javi@/GlassBR/Calculations.java
/src/javaMakefi

/src/java/README.md

);rc/cp (GlassBR
/src/cpp/RaadIakte.cpp

/src/cpp/InputFormat.hpp
/src/cpp/Calculations.cpp

}grc/swift/CaIculations.swift

/src/csharp/Control.cs

tex

Software Requirements Specification for GlassBR
Nikitha K and Spencer S

Table of Symbols
q o0l

B

Introduction
... The software, herein called GlassBR,}..

Assumptions
IdfConstant: LDF is constant, depends on assumed
value of t; and m, ...

Data Definitions

B= (b)% (ER?)™LDFe’

html

o k (mp2\mr LT

sBR

e README.md

<|GlassBR|>
ikitha K and Spencer S

How to Run the Program: In your terminal command
line, enter the same directory as this README file. Then
enter the following line

make run RUNARGS=input.txt

Configuration Files: SDF.txt, TSD.txt must be in the
same directory as the executable to run successfully
Versioning: Python Version 3.5.1

TN, |

build: (GlassBR/[Control.class
build:

GlassBR/Control.class:

run: build GlassBR/Conpf0ol . Jaya
python Control.py javac (GlassBR

run: build
java GlassBR.Control $ (RUNARGS)

ontrol. java

Caleulations.py

\Tile Calculations.py

\author Niki nan and W. Spencer Smith Calculations.java
\brigpackage \GlassBR
e \br]“ AFLL ations.java

‘author Nikitha Krithnan and W. Spencer Smith

ﬁ tg::c \brief Provides functions for calculating the outputs
\retl.*"
def fur---
out public static double func_B(InputParameters inParams, double J) throws IOException {
pri PrintWriter outfile;
outfile = new PrintWriter(new FileWriter(new File("log.txt"), true));
ou outfile.println("function func_B called with inputs: {");
ret outfile.close();

return 2.86e-53 /Math.pow(inParams.a * inParams.b, 7.8 - 1.8) *
Math.pow(7.17el® * Math.pow(inParams.h, 2.8), 7.@) * inParams.LDF
* Math.exp(J);

Jiol in SRS.pdf

Refname DD:sdf.tol
Label Stress Distribution Factor (Function) Based on Pbtol
Units Unitless
_— = toe (1om (1Y ()™
quation i = log <log (FPM«") k((ﬁ-looo(ﬁ)z))ﬁl‘DF)
Description Jior 18 the stress distribution factor (Function) based on Pbtol

Pyor is the tolerable probability of breakage
a is the plate length (long dimension) (m)
b is the plate width (short dimension) (m)

. 12
m is the surface flaw parameter (111\17)

k is the surface flaw parameter (r11\11172>

E is the modulus of elasticity of glass (Pa)
h is the actual thickness (m)

LDF is the load duration factor

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

54/78

Jtol in SRS .tex

Label & Stress distribution factor (Function) based on
Pbtol

\\ \midrule \\
Symbol & ${J_{\text{tol}}}$

\\ \midrule \\
Units & Unitless

\\ \midrule \\
Equation & \begin{displaymath}
{I_{\text{tol}}}=\1n\left (\1n\left (\frac{1}{1-{
P_{\text{b}\text{tol}}}}\right) \frac{\left
(\frac{a}{1000} \frac{b}{1000}\right) "{m
-1}3{k \left (E\cdot{}1000 \left (\frac{h
}{1000}\right) “{2}\right) "{m} LDF}\right)
\end{displaymath}
\\ \midrule \\

Description &

Jtol in SRS.html

<th>Equation</th>

<td>

\N[{JI_{\text{tol}}}=\1n\left (\1n\left (\frac{1}{1-{P_{\text{
bI\text{tol}}}}\right) \frac{\left (\frac{a}{1000} \
frac{b}{1000}\right) "{m-1}}{k \left(E\cdot{}1000 \left

(\frac{h}{1000}\right) "{2}\right) "{m} LDF}\right)\]
</td>

Jiol In Python

\brief Calculates stress distribution factor (Function)
based on Pbtol

\param inParams structure holding the input values

\return stress distribution factor (Function) based on

Pbtol
def func_J_tol(inParams):
outfile = open("log.txt", "a"

print ("function func_J_tol called with inputs: {",
file=outfile)

print (" inParams = ", end="", file=outfile)
print ("Instance of InputParameters object", file=
outfile)

print (" }", file=outfile)
outfile.close ()

return math.log(math.log(1.0 / (1.0 - inParams.P_btol)
) * ((inParams.a / 1000.0 * (inParams.b / 1000.0))
**% (7.0 - 1.0) / (2.86e-53 * (7.17e10 * 1000.0 =*
(inParams.h / 1000.0) ** 2.0) **x 7.0 * inParams.
LDF)))

Jtol in Java

/** \brief Calculates stress distribution factor (
Function) based on Pbtol
\param inParams structure holding the input values
\return stress distribution factor (Function)
based on Pbtol
*/
public static double func_J_tol(InputParameters
inParams) throws IOException {
PrintWriter outfile;
outfile = new PrintWriter (new FileWriter (new File(
"log.txt"), true));

return Math.log(Math.log(1.0 / (1.0 - inParams.
P_btol)) * (Math.pow(inParams.a / 1000.0 * (
inParams.b / 1000.0), 7.0 - 1.0) / (2.86e-53 x*
Math.pow(7.17e10 * 1000.0 * Math.pow(inParams
.h / 1000.0, 2.0), 7.0) * inParams.LDF)));

Jio| in Drasil (Haskell)

tolStrDisFacEq :: Expr
tolStrDisFacEq = 1ln (ln (recip_ (exactDbl 1 $- sy pbTol))
‘mulRe ¢ (((sy platelen $/ exactDbl 1000) ‘mulRe‘ (sy
plateWidth $/ exactDbl 1000)) $~ (sy sflawParamM $-
exactDbl 1) $/
(sy sflawParamK ‘mulRe‘ ((sy modElas ‘mulRe‘ exactDbl
1000 ‘mulRe
square (sy minThick $/ exactDbl 1000)) $~ sy
sflawParamM) ‘mulRe‘ sy 1lDurFac)))

Jtol without Unit Conversion

tolStrDisFacEq :: Expr
tolStrDisFacEq = 1n (ln (recip_ (exactDbl 1 $- sy pbTol))
‘mulRe ¢ ((sy platelen ‘mulRe‘ sy plateWidth) $~ (sy
sflawParamM $- exactDbl 1) $/
(sy sflawParamK ‘mulRe‘ ((sy modElas ‘mulRe
square (sy minThick)) $° sy sflawParamM) ‘mulRe‘ sy
1DurFac)))

Drasil Inputs:

- Program Name: GlassBR
- Authors: Nikitha K and Spencer S
- Symbols: tolerable load (g,), Risk of failure (B), ...
- Assumptions: Load duration factor constant,
- Data definitions: relation for B, ...
- Design decisions:
Modularity (input module),
Implementation Type (Program),
Logging (Yes),
Input Structure (Bundled),
Constant Structure (Inlined),
Constant Rep (Constants),
Real Number Rep (Double),

Dr. Smith CAS 741 Winter 2023: Artifact Generation 61/78

s Load distrl
‘Modularity (input module),
i) ogram),

Real Number Rep)

[Software Requirements Specification fof GlassBR
Nikitha K and Spencer S

Isrefpythar
Istelnython/README md
Isrcipython/inputParameters py
(| isrerpytnon/Calcutations. py

. The software, herein called|

Drasil Source for software to predict whether [gassbr
o tate of glass wil brea ’ SRS himl

@ /Websile/GlassBR’ SRS css L

¢ /SRS/ibfile.bib Table of Symbols [SBR

{ Nitha & and Spacgor 5] /SRS a
- Symi of ISRS/GlassBR_§RS tex B
ailu - RS.pdf
i introduction

Isrcipython/doxConfig

1 isrcaviiGlassBREalculations java.

[GiConstant: LDF s constant, depends on assumed
|value of £ ang 1. ..

Isrofjava/README.md

Isrelcpp{GlassBR
Isrciepp/ReadTabié.cpp

- rminal command
line, enter the same directory as this README file. Then
lenter the foliowing line

imake run RUNARGS=input.txt

(Configuration Files: SDF-txt, TSD.txt must be in the
lsame directory as the executable to run successfully
\Versioning: Python Version 3.5.1

pp
IsreloppiCalculations.cpp
IsrelewifuCalculations. swift

Isrclosharp/Control.cs

lbuild:

run: build
lpython Control.p:

fouild: @urtxcl class

GlassBR/Control.class:

GlassBR/Conerol Jaga ...
javac (Glass2R/Control .3

run: build
java GlassBR.Control § (RUNARGS)

\brief Calculates risk of failure

\retu
def fun

\param inParams structure holding the input vds+
\param J stress distribution factor (Function

e \file
/ex \File ations. java
e T e Toeoee| \authof Nikitha Krithnan and W, Spencer Smith

4

public static double fu
Printuriter outfile;

outfile.close

* Math.exp(2);

outfile = new PrintWriter(new FileWriter(new
outfile.printin("function func_B called with Tnputst

\brief PFOVIGes TURCTIONS TOT CalCUTAating The outputs

nputParameters inParams]|doubld|)) throws [OException {

Bl)

Traceability Graph

<

Y
K
J

IME
A

Lcs
A13 a15| [a16 a8] [a19

#]

M1 I;Aﬂq

AL

LC3

D D—7I

] (7] (7] =

v
|

v
]

DD1

IGD1|

GD2)|

T1

Maintainability

Al:

A2:

A3:

A4:

Ab:

The only form of energy that is relevant for this problem is
thermal energy. All other forms of energy, such as mechanical
energy, are assumed to be negligible [T1].

All heat transfer coefficients are constant over time [GD1].

The water in the tank is fully mixed, so the temperature is the
same throughout the entire tank [GD2, DD2].

The PCM has the same temperature throughout [GD2, DD2,
LC1].

etc.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

64/78

Verifiability

t
Ew = / hcAc(Tc — Tw(t))dt —
0

Var Constraints Typical Value Uncertainty

L L>0 1.5m 10%
op pp >0 1007 kg/m?3 10%

0

@ If wrong, wrong everywhere
Sanity checks captured and reused

Generate guards against invalid input

o

o

e Generate test cases

@ Generate view suitable for inspection
o

Traceability for verification of change

/t hpAp(Tw(t) — Tp(t))dt

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

65/78

Reusability

Num. TI1
Label Conservation of energy
/. oT

Eq =V-q+4q" =pC%

Descrip The above equation gives the conservation of energy
for time varying heat transfer in a material of specific
heat capacity C and density p, where q is the thermal
flux vector, " is the volumetric heat generation, T
is the temperature, V is the del operator and t is the
time.

Dr. Smith CAS 741 Winter 2023: Artifact Generation 66/78

Reusability

@ De-embed knowledge
@ Reuse throughout document
> Units
» Symbols
» Descriptions
» Traceability information
@ Reuse between documents
» SRS
> MIS
> Code
P Test cases

@ Reuse between projects
» Knowledge reuse
> A family of related models, or reuse of pieces

» Conservation of thermal energy
» Interpolation, Etc.

Dr. Smith CAS 741 Winter 2023: Artifact Generation 67/78

Reproducibility

@ Usual emphasis is on reproducing code execution

e However, [2] show reproducibility challenges due to
undocumented:

» Assumptions
» Modifications
» Hacks

@ Shouldn’t it be easier to independently replicate the work of
others?

@ Require theory, assumptions, equations, etc.

@ Drasil can potentially check for completeness and consistency

Dr. Smith CAS 741 Winter 2023: Artifact Generation 68/78

Smith and Koothoor (2016) [12]

f 1
Rcode _ 1
1 Bmkavy + 2mrehg (1)
f 1 T,
Rmanual _ c 2
1 87TkAV * 27Trfhg * 47Trfkc ()

@ Uncovered 27 issues with the previous documentation
> Incompleteness (Rgap)
» Inconsistency(r, ry, hg)
» Verifiability problems (R;)
» Lack of traceability (circuit analogy)
@ Advantages of proposed approach
> Abstract to concrete
» Separation of concerns

» Every equation, assumption, definition, model, derivation,
source and traceability between them

Dr. Smith CAS 741 Winter 2023: Artifact Generation 69/78

NO <SSEED

Dr. Smith CAS 741 Winter 2023: Artifact Generation 70/78

Drasil Framework for LSS

SCS has the opportunity to lead other software fields

Document driven design is feasible

Requires an investment of time

Documentation does not have to be painful

Develop/refactor via practical case studies

Ontology may naturally emerge

Open source Drasil here

\
A

AATE

-
memagenerator.net

T
Y D
/ 8 [8RS (taex) | [sAs imh \
/ (MG Makefie | \

\ss}wwﬁw

[cms | ‘ Il [oot
< AV iy
ot [ol
(1L o—

Dr. Smith

CAS 741 Winter 2023:

Artifact Generation

71/78

https://github.com/JacquesCarette/literate-scientific-software

Drasil Links

Drasil on GitHub

Design Language for Code Variabilities in Chapter 6 of
Brook's thesis

Drasil Generated Examples

Drasil Haddock Documentation

Package Dependency Graph (at the bottom of the page)

Dr. Smith CAS 741 Winter 2023: Artifact Generation 72/78

https://github.com/JacquesCarette/literate-scientific-software
https://macsphere.mcmaster.ca/handle/11375/25542
https://macsphere.mcmaster.ca/handle/11375/25542
https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/docs/index.html
https://jacquescarette.github.io/Drasil/

References |

[@ Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and

Douglass E. Post.

Software development environments for scientific and
engineering software: A series of case studies.

In ICSE '07: Proceedings of the 29th International Conference
on Software Engineering, pages 550-559, Washington, DC,
USA, 2007. IEEE Computer Society.

Cezar lonescu and Patrik Jansson.

Dependently-Typed Programming in Scientific Computing —
Examples from Economic Modelling.

In Revised Selected Papers of the 24th International
Symposium on Implementation and Application of Functional
Languages, volume 8241 of Lecture Notes in Computer
Science, pages 140-156. Springer International Publishing,
2012.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

73/78

References |l

[§ Diane Kelly.

Industrial scientific software: A set of interviews on software
development.

In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON '13,
pages 299-310, Riverton, NJ, USA, 2013. IBM Corp.

Diane Kelly.

Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.

Journal of Systems and Software, 109:50-61, 2015.

Diane Kelly and Rebecca Sanders.

The challenge of testing scientific software.

In Proceedings of the Conference for the Association for
Software Testing, pages 30-36, 2008.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation 74/78

References 1l

[§ Diane F. Kelly.

A software chasm: Software engineering and scientific
computing.
IEEE Software, 24(6):120-119, 2007.

Zeeya Merali.
Computational science: ...error.
Nature, 467:775—777, 2010.

Steven J. Owen.

A survey of unstructured mesh generation technology.
In INTERNATIONAL MESHING ROUNDTABLE, pages
239-267, 1998.

David Lorge Parnas.
Precise documentation: The key to better software.

In The Future of Software Engineering, pages 125-148, 2010.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

75/78

References IV

[Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

ﬁ W. Spencer Smith, Thulasi Jegatheesan, and Diane F. Kelly.
Advantages, disadvantages and misunderstandings about
document driven design for scientific software.

In Proceedings of the Fourth International Workshop on
Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCE). In
conjunction with SC16: The International Conference for High
Performance Computing, Networking, Storage and Analysis,
November 2016.

8 pp.

Dr. Smith CAS 741 Winter 2023: Artifact Generation 76/78

References V

[@ W. Spencer Smith and Nirmitha Koothoor.

A document-driven method for certifying scientific computing
software for use in nuclear safety analysis.

Nuclear Engineering and Technology, 48(2):404-418, April
2016.

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng.
Assurance cases for scientific computing software (poster).

In ICSE 2018 Proceedings of the 40th International Conference
on Software Engineering, May 2018.

2 pp.

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan Wassyng.
Raising the bar: Assurance cases for scientific computing
software.

Computing in Science and Engineering, 23(1):47-57, February
2020.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

77/78

References VI

@ Muhammad Usman, Muhammad Zohaib Igbal, and

Muhammad Uzair Khan.

A product-line model-driven engineering approach for
generating feature-based mobile applications.

Journal of Systems and Software, 123:1-32, 01 2017.

Gregory V. Wilson.

Where's the real bottleneck in scientific computing? Scientists
would do well to pick some tools widely used in the software
industry.

American Scientist, 94(1), 2006.

Dr. Smith

CAS 741 Winter 2023: Artifact Generation

78/78

