
Assignment 4

SFWR ENG 2AA4

Specification due Mar 11, Code submission due Mar 18

The purpose of this software design exercise is to design and implement a portion of
the specification for an autonomous rescue robot. You are given a partial specification
and asked to fill in the specification of the missing semantics. Once the specification is
complete, you will implement a portion of the version provided by the instructor.

The motivation for the current problem is the capstone design project from last year
(2006–2007). In this project teams of 5 or 6 students developed Remote Image Guided
Autonomous Rescue Robots (RIGARR). The inspiration for the project is real life rescue
robots, which are used when a disaster occurs and the conditions are too dangerous for
human rescuers. To determine the path for the rescue mission the teams were given a
digital image showing the destinations they had to reach and the obstacles blocking their
path. Teams competed to reach all of the destinations in the shortest time. The hardware
used for robot construction was the Lego Mindstorms NXT kit.

The focus of the current assignment will only be on the route planning portion of
the above project. The information on obstacles and destinations will be assumed to be
available to the modules designed in this exercise. The modules for this assignment deal
with determining a path from a safe zone back to the safe zone, while passing through all
rescue regions and avoiding all obstacles. Figure ?? shows a map of the area of interest.
The lower left corner of the map is located at the origin of the x-y coordinate system.
The map has length MAX X in the x direction and length MAX Y in the y direction.
Any point outside of the map area is considered to be an invalid point. Within the map
there are rectangles (regions) for the safe zone, the rescue regions (destinations), and for
the obstacles. Each rectangle is defined by the coordinate of its lower left corner, together
with values for its width and its height. This information is identified on Figure ?? for
one of the obstacle regions.

To rescue all of the potential victims, a valid path proceeds from the safe zone back
to the safe zone, visits all of the rescue regions, does not cross any of the obstacles and
respects that stated tolerances. The purpose of the tolerances is to allow for the fact
that the robot may not be exactly where you plan it to be. The robot cannot be closer

1

y

x

Safe
Region

Obstacle

M
A

X
_Y

MAX_X
(0,0)

width

he
ig

ht

(lower_left.xcoord(), lower_left.ycoord())

Obstacle
Obstacle

Valid Path

Rescue region

Figure 1: Example map with valid and invalid paths

2

than TOLERANCE to an obstacle to take this into account. The robot is also allowed to
“miss” the rescue regions and the safezone by the TOLERANCE amount. A path is made
up of a sequence of points, where each point is defined as a tuple of x and y coordinates.
The path is defined as the straight line connecting subsequent points.

The modules specified at the end of this assignment description are as follows: Con-
stants, PointT, RegionT, GenericList(T), PathT, Obstacles, Destinations, SafeZone, Map
and PathCalculation. A portion of the specification is given, but within it there are sev-
eral mathematical specifications that you need to design. Your specifications should not
involve writing algorithms or pseudo-code. The specifications should use discrete math-
ematics to specify the desired properties. That is, you should be writing a descriptive
specification as opposed to an operational specification. Specifications within a module
are free to use access programs defined within the current module or from another module
that is used by the current module.

Step 1

Complete the specification for the RegionT module. You will need to complete the fol-
lowing:

RegionT(p, w, l): Write the mathematical specification for the InvalidRegionException
exception in the constructor for RegionT. This exception should be thrown when
any portion of input region would extend outside of the map area, as defined in
Figure ??.

pointInRegion(p): Write the output portion of the specification. This routine should
return true if the point p is within TOLERANCE of the region. That is, if the
distance from the point p to any point within the region is less than TOLERANCE,
then return true.

Step 2

Complete the specification of the semantics portion of the PathCalculation module. A
description of the behaviour of each of the access programs is as follows:

is validSegment(p1, p2): This routine should return true if the line segment between
p1 and p2 does not come any closer than TOLERANCE to any of the obstacles.

is validPath(p): This routine returns true if the path is valid. A valid path must begin
and end within TOLERANCE of the safe zone region. The path must pass within

3

TOLERANCE of all of the rescue regions and none of the points in the line segments
connecting subsequent points in the path should come closer than TOLERANCE
to any of the obstacles.

is shortestPath(p): This routine returns true if the path p is the shortest of all valid
paths.

totalDistance(p): This routine returns the sum of the lengths of the piecewise segments
that make up the sequence of points in the path.

totalTurns(p): This routine returns the number of turns in the path p. A turn is any
change of the orientation of the robot.

estimatedTime(p): This routine returns the estimated time for traversing the path p.
The time is calculated as the sum of the times to traverse the straight segments and
the times to do all of the turns. The time for covering a straight segment is calculated
using Constants.VELOCITY LINEAR. The time for turning is calculated using the
angle of the turn (in radians) and Constants.VELOCITY ANGULAR. You may
assume that all constants are in

Step 3

Submit a report showing the specifications from the previous steps. The specifications can
be hand-written and you do not need to reproduce the portions of the specification that
have already been provided to you. Your report should be accompanied by the portion
of your logbook relevant to this assignment.

Step 4

After the report has been submitted, you will be provided with a complete specifi-
cation for all of the modules. Implement the modules in Java. The names of the
modules that need to be implemented are as follows: Constants.java, PointT.java,
InvalidPointException.java, RegionT.java, InvalidRegionException.java, PathT.java,
Obstacles.java, Destinations.java, SafeZone.java, FullSequenceException.java,
InvalidPositionException.java, Map.java and PathCalculation.java. For the PathCal-
culation.java class, you do not need to implement the methods for is validSegment,
is validPath and is shortestPath.

4

Step 5

Write a fourth module, names TestPathCalculation.java that tests the implemented
routines of the PathCalculation module. You can test other routines as well, but you
are only required to test the PathCalculation routines. Each procedure should have at
least one test case. For this assignment you are not required to submit a lab report, but
you should still carefully think about your rationale for test case selection. Please make
an effort to test normal cases, boundary cases, and exception cases. Your test program
should have the test cases “hard coded” into the program, rather than expecting user
input. Your test program should also automatically compare the calculated output to the
expected output and automatically state whether the test case has passed or not. Your
test program should keep the following counts: tests cases passed, test cases failed, and
total number of test cases. The end of your test program should summarize these counts.

Step 6

Submit all Java files to the subversion repository. This must be completed no later than
midnight of the deadline for file submission.

Notes

1. Please put your name and student number at the top of each of your source files.

2. Your program must work in the ITB labs on moore when compiled by javac and
run using java.

3. Please use double in your implementation of real.

4. Your Subversion submission should be in the folder Assig4.

5. All exceptions should be RunTimeExceptions and they should have a constructor
that takes a string argument. The string provided when the exception is thrown
will be an explanation of the error.

6. The robot is assumed to only move forward, so the specification does not need to
worry about a robot that can drive backwards.

7. The grading for this assignment will be 50 % for part 1 (the specification) and 50
% for part 2 (the implementation)

5

8. Your grade will be based to a significant extent on the ability of your
code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

6

Constants Module

Module

Constants

Uses

N/A

Syntax

Exported Constants

MAX X = 180 //dimension in the x-direction of the problem area
MAX Y = 160 //dimension in the y-direction of the problem area
TOLERANCE = 5 //space allowance around obstacles
VELOCITY LINEAR = 15 //speed of the robot when driving straight
VELOCITY ANGULAR = 30 //speed of the robot when turing

Exported Access Programs

none

Semantics

State Variables

none

State Invariant

none

7

Point ADT Module

Template Module

PointT

Uses

Constants

Syntax

Exported Types

PointT = ?

Exported Access Programs

Routine name In Out Exceptions
PointT real, real PointT InvalidPointException
xcoord real
ycoord real
dist PointT real

Semantics

State Variables

xc: real
yc: real

State Invariant

none

Assumptions

The constructor PointT is called for each abstract object before any other access routine
is called for that object. The constructor cannot be called on an existing object.

8

Access Routine Semantics

PointT(x, y):

• transition: xc, yc := x, y

• output: out := self

• exception

exc := ((¬(0 ≤ x ≤ Contants.MAX X)∨¬(0 ≤ y ≤ Constants.MAX Y)) ⇒ InvalidPointException)

xcoord():

• output: out := xc

• exception: none

ycoord():

• output: out := yc

• exception: none

dist(p):

• output: out :=
√

(self .xc− p.xc)2 + (self .yc− p.yc)2

• exception: none

9

Region Module

Template Module

RegionT

Uses

PointT, Constants

Syntax

Exported Types

RegionT = ?

Exported Access Programs

Routine name In Out Exceptions
RegionT PointT, real, real RegionT InvalidRegionException
pointInRegion PointT boolean

Semantics

State Variables

lower left : PointT //coordinates of the lower left corner of the region
width: real //width of the rectangular region
height : real //height of the rectangular region

State Invariant

None

Assumptions

The RegionT constructor is called for each abstract object before any other access routine
is called for that object. The constructor can only be called once.

10

Access Routine Semantics

RegionT(p, w, h):

• transition: lower left ,width, height := p, w, h

• output: out := self

• exception: exc :=?

pointInRegion(p):

• output: out :=?

• exception: none

11

Generic List Module

Generic Template Module

GenericList(T)

Uses

N/A

Syntax

Exported Types

GenericList(T) = ?

Exported Constants

MAX SIZE = 100

Exported Access Programs

Routine name In Out Exceptions
GenericList GenericList
add integer, T FullSequenceException,

InvalidPositionException
del integer InvalidPositionException
setval integer, T InvalidPositionException
getval integer T InvalidPositionException
size integer

Semantics

State Variables

s: sequence of T

State Invariant

|s| ≤ MAX SIZE

12

Assumptions

The GenericList() constructor is called for each abstract object before any other access
routine is called for that object. The constructor can only be called once.

Access Routine Semantics

GenericList():

• transition: self .s :=<>

• output: out := self

• exception: none

add(i, p):

• transition: s := s[0..i− 1]|| < p > ||s[i..|s| − 1]

• exception: exc := (|s| = MAX SIZE ⇒ FullSequenceException | i /∈ [0..|s|] ⇒
InvalidPositionException)

del(i):

• transition: s := s[0..i− 1]||s[i + 1..|s| − 1]

• exception: exc := (i /∈ [0..|s| − 1] ⇒ InvalidPositionException)

setval(i, p):

• transition: s[i] := p

• exception: exc := (i /∈ [0..|s| − 1] ⇒ InvalidPositionException)

getval(i):

• output: out := s[i]

• exception: exc := (i /∈ [0..|s| − 1] ⇒ InvalidPositionException)

size():

• output: out := |s|

• exception: none

13

Path Module

Template Module

PathT is GenericList(PointT)

Obstacles Module

Template Module

Obstacles is GenericList(RegionT)

Destinations Module

Template Module

Destinations is GenericList(RegionT)

SafeZone Module

Template Module

SafeZone extends GenericList(RegionT)

Exported Constants

MAX SIZE = 1

14

Map Module

Module

Map

Uses

Obstacles, Destinations, SafeZone

Syntax

Exported Access Programs

Routine name In Out Exceptions
init Obstacles, Destinations, SafeZone
get obstacles Obstacles
get destinations Destinations
get safeZone SafeZone

Semantics

State Variables

obstacles : Obstacles
destinations : Destinations
safeZone : SafeZone

State Invariant

none

Assumptions

The access routine init() is called for the abstract object before any other access routine
is called. If the map is changed, init() can be called again to change the map.

Access Routine Semantics

init(o, d, sz):

• transition: obstacles , destinations , safeZone := o, d, sz

15

• exception: none

get obstacles():

• output: out := obstacles

• exception: none

get destinations():

• output: out := destinations

• exception: none

get safeZone():

• output: out := safeZone

• exception: none

16

Path Calculation Module

Module

PathCalculation

Uses

Constants, PointT, RegionT, PathT, Obstacles, Destinations, SafeZone, Map

Syntax

Exported Access Programs

Routine name In Out Exceptions
is validSegment PointT, PointT boolean
is validPath PathT boolean
is shortestPath PathT boolean
totalDistance PathT real
totalTurns PathT integer
estimatedTime PathT real

Semantics

?

17

