Assignment 2

SFWR ENG 2AA4
Files due Feb 2, E-mail partner due Feb 3, Lab report due Feb 9

The purpose of this software design exercise is to write a C program that creates, uses,
and tests an ADT for points, lines and circles. A module that stores a deque of circles is
also to be implemented and tested.

Step 1

Write a module that creates a point ADT. It should consist of an OCaml code file named
pointADT.ml. The specification for this module (Point Module) is given at the end of the
assignment.

Step 2

Write a module that creates a line ADT. It should consist of an OCaml file named
1lineADT.ml. The new module should follow the specification (Line Module) given at
the end of the assignment.

Step 3

Write a module that creates a circle ADT. It should consist of an OCaml file named
circleADT.ml. The new module should follow the specification (Circle Module) given at
the end of the assignment.

Step 4

Write a module that implements a deque (double ended queue) of circles. It should consist
of OCaml files named deque.ml and deque.mli, with the m11i file exporting the module’s

interface. The new module should follow the specification (Deque of Circles) given at the
end of the assignment. Although efficient use of computing resources is always a good
goal, your implementation will be judged on correctness and not on performance.

Step 5

Write a module that tests all of the other modules together. It should be an OCaml
file named testCircleDeque.ml that uses all of the other modules. Write a makefile
Makefile to build the executable testCircleDeque. Each procedure should have at
least one test case. Record your rationale for test case selection and the results of using
this module to test the procedures in your modules. (You will submit your rationale
with your lab report.) Please make an effort to test normal cases, boundary cases, and
exception cases. Your test program should have the test cases “hard coded” into the
program, rather than expecting user input. If possible, your test program should also
automatically compare the calculated output to the expected output and automatically
state whether the test case has passed or not. However, at this time simply displaying
the test case outputs and not automating the tests for correctness is acceptable.

Step 6

Submit the files pointADT.ml, 1ineADT.ml, circleADT.ml, deque.ml, deque.mli, testCircleDeque.ml
and Makefile using subversion. This must be completed no later than midnight of the
deadline for file submission.
E-mail the circleADT.ml file to your assigned partner. (Partner assignments will be
posted on WebCT, on the day after the initial submission.) Your partner will likewise e-
mail you his or her files. These e-mails should be traded by midnight of the day following
the file submission.

Step 7

After you have received your partner’s files, replace your corresponding files with your
partner’s. Do not make any modifications to any of the code. Run your test module and
record the results. Your evaluation for this step does not depend on the quality of your
partner’s code, but only on your discussion of the testing results.

Step 8

Write a report that includes the following:

1.
2.

8.

Your name and student number.

Your partner’s circleADT.ml file.

The results of testing your files (along with the rational for test case selection).
The results of testing your files combined with your partner’s files.

A discussion of the test results and what you learned doing the exercise. List any
problems you found with (a) your program, (b) your partner’s module, and (c) the
specification of the modules.

. A discussion of the advantages of using OCaml to implement ADTs as opposed to

using C.

The specification for the last two access programs (totalArea() and averageRadius())
is missing the definition for the output. Please complete the specification as part
of the assignment submission. You are not required to implement these two access
programs.

A copy of the part of your log book relevant to this lab exercise.

A physical copy of the lab report is due at the beginning of the lecture on the assigned
due date.

Notes

1.

2.

Place all submitted files in your svn repository in the folder Assig?2.

Please put your name and student number at the top of each of your source files.
(You should remove the student number before e-mailing any files to your partner.)

. Your program must work in the I'TB labs on moore when compiled by ocamlopt and

ocamlc.

If your partner fails to provide you with a copy of his or her files by the deadline,
please tell the instructor via e-mail as soon as possible.

If you do not send your files to your partner by the deadline, you will be assessed a
10% penalty to your assignment grade.

6. The exceptions in the specification should simply be generated; you do not need to
trap them.

7. For the OCaml implementation of the modules, you will need to “map” the MIS
syntax to OCaml syntax. In particular, when the input to an access program consists
of several parameters, you should provide each parameter separately, as opposed to
combining them in a tuple. That is, if function f has two arguments, the type of f
is A— (B — C),not Ax B — C. A concrete example, in OCaml syntax, is the
constructor for pointT. Please use

class pointT xc yc = ... as opposed to
class pointT (xc ,yc) =
8. Your grade will be based to a significant extent on the ability of your

code to compile and its correctness. If your code does not compile, then
your grade will be significantly reduced.

9. Any changes to the assignment specification will be announced in class. It is your
responsibility to be aware of these changes.

Point ADT Module

Template Module

pointADT

Uses
N/A

Syntax

Exported Types

pointT = 7

Exported Access Programs

Routine name | In Out Exceptions
new pointT real, real | pointT

xcoord real

ycoord real

dist point™T real

rotate real
Semantics

State Variables
zc: real
yc: real
State Invariant

None

Assumptions

None

Access Routine Semantics
new pointT (z,y):

e transition: zc,yc:=x,y

e output: out := self

e exception: none
xcoord:

e output: out := zc

e exception: none
ycoord:

e output: out := yc

e exception: none

dist(p):

e output: out := \/(zc — p.xcoord)? + (yc — p.ycoord)?
e exception: none

rotate():
e ¢ is in radians

e transition:

xc | | cosg —sing xc
ye | | sing cos¢ | | yc

e exception: none

Line Module

Template Module
lineADT

Uses
pointADT

Syntax
Exported Types

lineT = ?

Exported Access Programs

Routine name | In Out Exceptions
new lineT pointT, pointT | lineT

startpt pointT

endpt pointT

length real

midpoint point™T

rotate real

Semantics

State Variables
s: pointT
e: pointT
State Invariant

None

Assumptions

None

Access Routine Semantics
new lineT (py, po):

e transition: s,e := pq, po

e output: out := self

e exception: none
startpt:

e output: out :=s

e exception: none
endpt:

e output: out :=e

e exception: none
length:

e output: out := s.dist(e)

e exception: none
midpoint:

e output:

out := new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

e exception: none
rotate (¢):
e ¢ is in radians
e transition: s.rotate(¢), e.rotate(¢)

e cxception: none

Local Functions

avg: real x real — real

avg(xy, xo) = %

Circle Module

Template Module

circleADT

Uses

pointADT, lineADT

Syntax

Exported Types

circleT = 7

Exported Access Programs

Routine name | In Out Exceptions
new circleT pointT, real | circleT

centre point™T

radius real

intersect circleT boolean

connection circleT lineT
Semantics

State Variables
c: pointT

r: real

State Invariant

None

Assumptions

None

Access Routine Semantics
new circleT (cinput, rinput):
e transition: c,r := cinputi, rinput
e output: out := self
e exception: none
centre:
e output: out :=c
e exception: none
radius:
e output: out :=1r
e exception: none
intersect(ci):
e output: I(p : pointT|insideCircle(p, i) : insideCircle(p, self))
e exception: none
connection(ci):
e output: out := new lineT(c, ci.centre)

e exception: none

Local Functions

insideCircle: pointT X circleT — boolean
insideCircle(p, ¢) = p.dist(c.centre) < c.radius

10

Deque Of Circles Module

Module
DequeCircleModule

Uses
circleADT

Syntax
Exported Constants

max_size = 20

Exported Access Programs

Routine name | In Out Exceptions
init
pushBack circleT FULL
pushFront circleT FULL
popBack EMPTY
popFront EMPTY
back circleT | EMPTY
front circleT | EMPTY
size integer
disjoint boolean | EMPTY
totalArea real EMPTY
averageRadius real EMPTY
Semantics

State Variables

s: sequence of circleT

State Invariant

|s| < max_size

11

Assumptions

init() is called before any other access program.

Access Routine Semantics

init():

e transition:

e exception:

pushBack(c):

e transition:

e exception:

pushFront(c):

e transition:

e exception:

popBack():

e transition:

e exception:

popFront():

e transition:

e exception:

back():

S =<>

none

s:=sl|<ec>

exc := (|s| = max_size = FULL)

si=<c>||s

exc := (|s| = max_size = FULL)

s :=s[0..|s| — 2]
exc:= (|s| = 0 = EMPTY)

s :=s[l..|s| — 1]

exc:= (|s| = 0 = EMPTY)

e output: out := s||s| — 1]

e exception:

front():

exc:= (|s| = 0 = EMPTY)

e output: out := s[0]

e exception:

exc:= (|s| = 0 = EMPTY)

12

size():
e output: out := |s|
e exception: none
disjoint():
e output

out :=VY(i,7 :Nji € [0..]s] = 1] A7 € [0..]s] — 1] Ai # j : =s[i].intersect(s[]]))

e cxception: exc:= (|s| = 0 = EMPTY)
totalArea():

e output
out :=7

e cxception: exc:= (|s| = 0= EMPTY)
averageRadius():

e output
out :="?

e cxception: exc:= (|s| = 0 = EMPTY)

13

