CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2017

18 MIS Continued

Dr. Spencer Smith
Faculty of Engineering, McMaster University

November 6, 2017

McMaster
University ':*ﬁ

MIS Continued

@ Administrative details

@ Questions?

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 2/42

Administrative Details

@ admin points

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 3/42

Administrative Details: Deadlines

MG Week 09
MIS Present Week 10
MIS Week 11
Impl. Present Week 12

Final Documentation Week 13

Nov 8

Week of Nov 13
Nov 22

Week of Nov 27
Dec 6

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued

4/42

Administrative Details: Presentation Schedule

@ MIS Present
» Tuesday: Isobel, Keshav, Paul
» Friday: Shusheng, Xiaoye, Devi
@ Impl. Present

» Tuesday: Alexander S., Steven, Alexandre P.
» Friday: Jason, Geneva, Yuzhi

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 5/42

Questions?

@ Questions about ...

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 6/42

Exception Signaling

@ Useful to think about exceptions in the design process
@ Will need to decide how exception signalling will be done

» A special return value, a special status parameter, a
global variable

» Invoking an exception procedure

» Using built-in language constructs

@ Caused by errors made by programmers, not by users
@ Write code so that it avoid exceptions

@ Exceptions will be particularly useful during testing

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

7/42

Assumptions versus Exceptions

@ The assumptions section lists assumptions the module
developer is permitted to make about the programmer’s
behaviour

@ Assumptions are expressed in prose

@ Use assumptions to simplify the MIS and to reduce the
complexity of the final implementation

@ Interface design should provide the programmer with a
means to check so that they can avoid exceptions

@ When an exceptions occurs no state transitions should
take place, any output is don't care

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

8/42

Quality Criteria

@ Consistent

» Name conventions
» Ordering of parameters in argument lists
» Exception handling, etc.

@ Essential - omit unnecessary features

@ General - cannot always predict how the module will be
used

@ As implementation independent as possible

@ Minimal - avoid access routines with two potentially
independent services

@ High cohesion - components are closely related

@ Low coupling - not strongly dependent on other modules

Opaque - information hiding

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 9/42

SWHS Example
Look at SWHS repo

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 10/42

Modules with External Interaction

@ In general, some modules may interact with the
environment or other modules
@ Environment might include the keyboard, the screen, the
file system, motors, sensors, etc.
@ Sometimes the interaction is informally specified using
prose (natural language)
@ Can introduce an environment variable
» Name, type
» Interpretation
@ Environment variables include the screen, the state of a
motor (on, direction of rotation, power level, etc.), the
position of a robot

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 11/42

External Interaction Continued

@ Some external interactions are hidden
» Present in the implementation, but not in the MIS
» An example might be OS memory allocation calls
@ External interaction described in the MIS
» Naming access programs of the other modules
» Specifying how the other module’s state variables are

changed
» The MIS should identify what external modules are used

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 12/42

MIS for GUI Modules

@ Could introduce an environment variable
e window: sequence [RES_H][RES_V] of pixel T
» Where window(r][c] is the pixel located at row r and
column ¢, with numbering zero-relative and beginning at
the upper left corner
» Would still need to define pixel T
@ Could formally specify the environment variable
transitions

@ More often it is reasonable to specify the transition in
prose

@ In some cases the proposed GUI might be shown by rough
sketches

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 13/42

Display Point Masses Module Syntax

Exported Access Programs

Routine name

In

Out

Exc

DisplayPointMassesApplet

DisplayPointMassesApplet

paint

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

14/42

Display Point Masses Module Semantics

Environment Variables
win : 2D sequence of pixels displayed within a web-browser
DisplayPointMassesApplet():

@ transition: The state of the abstract object
ListPointMasses is modified as follows:
ListPointMasses.init()

ListPointMasses.add(0, PointMassT (20, 20, 10))
ListPointMasses.add(1, PointMassT (120, 200, 20))

paint():

@ transition win := Modify window so that the point
masses in ListPointMasses are plotted as circles. The
centre of each circles should be the corresponding x and y
coordinates and the radius should be the mass of the
point mass.

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 15/42

Specification of ADTs

@ Similar template to abstract objects
@ “Template Module” as opposed to “Module”

o “Exported Types" that are abstract use a 7
» pointT =7
» pointMassT = 7

Access routines know which abstract object called them

Use “self” to refer to the current abstract object
@ Use a dot “." to reference methods of an abstract object

» p.xcoord()
» self .pt.dist(p.point())

Similar notation to Java

The syntax of the interface in C is different

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 16/42

Syntax Line ADT Module

Template Module
lineADT

Uses

pointADT
Exported Types

lineT =7

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 17/42

Syntax Line ADT Module Continued

Routine name | In Out Exceptions
new lineT pointT, pointT | lineT

start pointT

end pointT

length real

midpoint pointT

rotate real

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

18/42

Semantics Line ADT Module

State Variables

s: pointT
e: pointT

State Invariant
None
Assumptions

None

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 19/42

Access Routine Semantics Line ADT Module
new lineT (p1, p2):

@ transition: s, e ;= p1, p»
@ output: out := self
@ exception: none
start:
@ output: out :=s
@ exception: none
end:
@ output: out := e

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 20/42

Access Routine Semantics Continued

length:
@ output: out := s.dist(e)
@ exception: none
midpoint:

@ output: out :=
new pointT(avg(s.xcoord, e.xcoord), avg(s.ycoord, e.ycoord))

@ exception: none

rotate (p):
@ is in radians

@ transition: s.rotate(y), e.rotate(y)

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 21/42

Line ADT Local Functions

Local Functions

avg: real x real — real

avg(xy, xp) = 122

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued

22/42

Generic Modules

e What if we have a sequence of integers, instead of a

sequence of point masses?
What if we want a stack of integers, or characters, or
pointT, or pointMassT?
Do we need a new specification for each new abstract
object?
No, we can have a single abstract specification
implementing a family of abstract objects that are
distinguished only by a few variabilities
Rather than duplicate nearly identical modules, we
parameterize one generic module with respect to type(s)
Advantages

» Eliminate chance of inconsistencies between modules

» Localize effects of possible modifications
» Reuse

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued 23/42

Generic Stack Module Syntax

Generic Module
Stack(T)

Exported Constants
MAX_SIZE = 100

Exported Access Programs

Routine name | In | Out | Exceptions

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 24/42

Stack Module Syntax

Exported Access Programs

Routine name | In | Out Exceptions
s_init

s_push T FULL

s_pop EMPTY
s_top T EMPTY
s_depth integer

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 25/42

Semantics

State Variables

State Invariant

Assumptions

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued

26/42

Semantics

State Variables
s: sequence of T

State Invariant

Assumptions

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 26/42

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE

Assumptions

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 26/42

Semantics

State Variables
s: sequence of T
State Invariant
|s| < MAX_SIZE
Assumptions

s_init() is called before any other access routine

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 26/42

Access Routine Semantics

s_init():

@ transition:

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics

s_init():

@ transition: s :=<>

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics

s_init():
@ transition: s :=<>
@ exception: none
s_push(x):
@ transition:
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 27/42

Access Routine Semantics

s_init():
@ transition: s :=<>
@ exception: none
s_push(x):
@ transition: s :=s|| < x >
@ exception:
s-pop():
@ transition:

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics

s_init():

@ transition:

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

s =<>
none

si=s||<x>
exc := (|s| = MAX_SIZE = FULL)

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics

s_init():

@ transition:

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

s =<>
none

si=s||<x>
exc := (|s| = MAX_SIZE = FULL)

s :=s[0..[s| — 2]

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics

s_init():

@ transition:

@ exception:

s_push(x):

@ transition:

@ exception:

s-pop():

@ transition:

@ exception:

s =<>
none

si=s||<x>
exc := (|s| = MAX_SIZE = FULL)

s :=s[0..]s| — 2]
exc := (|s| = 0 = EMPTY)

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

27/42

Access Routine Semantics Continued

s_top():
@ output:

@ exception:
s_depth():
@ output:

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued

28/42

Access Routine Semantics Continued

s_top():
@ output: out := s[|s| — 1]
@ exception:

s_depth():
@ output:

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 28/42

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output:

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 28/42

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s|

@ exception:

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 28/42

Access Routine Semantics Continued

s_top():

@ output: out := s[|s| — 1]

@ exception: exc := (|s| = 0 = EMPTY)
s_depth():

@ output: out := |s]

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 28/42

Stack Module Properties

{true}
s_init()

{Is'1=0}

{|s| < MAX_SIZE}
s_push(x)
{Is'| = |s| + L AS[|s'| — 1] = x A §'[0..]s| — 1] = s[0..|s| — 1]}

{|s| < MAX_SIZE}
s_push(x)

s_pop()
ss=s

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 29/42

Object Oriented Design

@ One kind of module, ADT, called class

@ A class exports operations (procedures) to manipulate
instance objects (often called methods)

@ Instance objects accessible via references

@ Can have multiple instances of the class (class can be
thought of as roughly corresponding to the notion of a

type)

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 30/42

Inheritance

@ Another relation between modules (in addition to USES

and IS.COMPONENT _OF)
@ ADTs may be organized in a hierarchy
@ Class B may specialize class A

» B inherits from A
» Conversely, A generalizes B

@ A is a superclass of B

@ B is a subclass of A

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

31/42

Template Module Employee

Dr. Smith

Routine name | In Out Except
Employee string, string, money T | Employee
first_Name string
last_Name string
where siteT
salary money T
fire
assign siteT
CAS 741, CES 741 Fall 2017: 18 MIS Continued 32/42

Inheritance Examples

Template Module Administrative_Staff inherits Employee

Routine name

In

Out

Exception

do_this

folderT

Template Module Technical_Staff inherits Employee

Routine name | In Out | Exception
get_skill skill T
def_skill skill T

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

33/42

Inheritance Continued

A way of building software incrementally
Useful for long lived applications because new features
can be added without breaking the old applications

@ A subclass defines a subtype
@ A subtype is substitutable for the parent type
@ Polymorphism - a variable referring to type A can refer to

an object of type B if B is a subclass of A

Dynamic binding - the method invoked through a
reference depends on the type of the object associated
with the reference at runtime

All instances of the sub-class are instances of the
super-class, so the type of the sub-class is a subtype

All instances of Administrative_Staff and Technical_Staff
are instances of Employee

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued 34/42

Dynamic Binding

e Many languages, like C, use static type checking
@ OO languages use dynamic type checking as the default

@ There is a difference between a type and a class once we
know this
» Types are known at compile time
» The class of an object may be known only at run time

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 35/42

Point ADT Module

Template Module
PointT

Uses

N/A

Syntax

Exported Types

PointT =7

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 36/42

Point ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointT real, real | PointT

xcoord real

ycoord real

dist PointT real
Semantics

State Variables

xc: real
yc: real

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

37/42

Point Mass ADT Module

Template Module
PointMassT inherits PointT
Uses

PointT

Syntax

Exported Types

PointMassT = ?

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 38/42

Point Mass ADT Module Continued

Exported Access Programs

Routine name | In Out Exceptions
new PointMassT | real, real, real | PointMassT | NegMassExcep
mval real

force PointMassT real

fx PointMassT real
Semantics

State Variables

ms: real

Dr. Smith

CAS 741, CES 741 Fall 2017: 18 MIS Continued

39/42

Point Mass ADT Module Semantics

new PointMassT(x, y, m):
@ transition: xc,yc, ms == x,y, m
@ output: out := self

@ exception: exc := (m < 0 = NegativeMassException)

force(p):
@ output:

self .ms x p.ms

t == UNIVERAL G
ou self .dist(p)?

@ exception: none

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 40/42

Examples

Example Point Line and Circle
Example Robot Path
Example Vector Space

Example Othello Program

Example Maze Formal Specification (Dr. v.
Mohrenschildt)

e Mustafa EISheikh Mesh Generator [1]
@ Wen Yu Mesh Generator 2]

@ Sven Barendt Filtered Backprojection
@ Sanchez sDFT

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 41/42

References |

@ Jacques Carette, Mustafa EISheikh, and W. Spencer
Smith.
A generative geometric kernel.
In ACM SIGPLAN 2011 Workshop on Partial Evaluation
and Program Manipulation (PEPM’11), pages 53-62,
January 2011.

@ W. Spencer Smith and Wen Yu.
A document driven methodology for improving the quality
of a parallel mesh generation toolbox.
Advances in Engineering Software, 40(11):1155-1167,
November 2009.

Dr. Smith CAS 741, CES 741 Fall 2017: 18 MIS Continued 42/42

