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Getting Started

Administrative details

Problem statements

More information on Drasil

Project choice discussion

Software tools
▶ Git, GitLab and GitHub
▶ Continuous integration
▶ LaTeX
▶ Make

Questions on suggested reading?

Software Engineering for Scientific Computing literature

Start Projectile example
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Administrative Details

Teams channel created

Can everyone access our course repo on GitLab?

Create a GitHub account if you don’t already have one

Use the GitHub template to create a new repo

Add smiths to your GitHub repo

Create a fork (on GitLab) and a merge request to modify
Repos.csv with your project details

Problem statement
▶ Problem statement due Fri, Jan 19 by 11:59 pm
▶ Assign an issue to instructor to review

Feel free to add me to you Linked-In network

Participation grades will be posted before the end of the
term, providing an opportunity to improve

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 3/43

https://gitlab.cas.mcmaster.ca/smiths/cas741
https://github.com/smiths/capTemplate
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/merge_requests
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Repos.csv
https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals
https://www.linkedin.com/in/spencer-smith-7369bba4/


Administrative Details: Domain Expert

Create issues for their partner’s written deliverables

Asks questions during their partner’s presentations
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Administrative Details: Our Deliverables

Problem Statement

Development Plan

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan
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Administrative Details: Report Deadlines

Problem Statement Week 02 Jan 19
System Req. Spec. (SRS) Week 04 Feb 2
System VnV Plan Week 06 Feb 16
MG + MIS Week 09 Mar 15
Drasil Code Week 09 Mar 15
Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS
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Administrative Details: Presentations

SRS Week 03/04 Week of Jan 23, 30
Syst. VnV Week 06 Week of Feb 13
POC Demo Week 06, 07 Week of Feb 13, 27
MG + MIS Syntax Week 09 Week of Mar 13
MIS Semantics Week 09 Week of Mar 13
Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Domain experts and secondary reviewers (and others) will
ask questions
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Presentation Schedule

TBD
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Presentation Schedule

4 presentations each (please check)

If you will miss a presentation, please trade with someone
else

Implementation presentation could be used to run a code
review, or code walkthrough
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Problem Statement

Modify the Problem statement from the template repo

Written in LaTeX (or other text-based file format)

Due electronically (on GitHub) by deadline

Generated files should NOT be under source control
(except pdf)

Comments used to give advice, you can use for your own
reviews

Remove comments via
\newif\ifcomments\commentsfalse
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https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals


Problem Statement Cont’d

Abstractly state the problem to be solved
▶ What problem
▶ Not how to solve

Characterize the problem in terms of inputs and the
outputs

State why the problem is important

Give context
▶ Stakeholders?
▶ Environment for the software?
▶ A page description should be sufficient
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Sample Project Statements

Solar Cooker

SpectrumImageAnalysisPy

Aqueous Speciation Diagram Generator

FloppyFish

PyERT - For GPS trip data analysis

EMA (watch to monitor older adults with lumbar spinal
disorders)

MTO Bridge

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 12/43

https://github.com/DeeshaPatel/CAS-741-Solar-Cooker/blob/main/docs/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/icbicket/SpectrumImageAnalysisPy/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://github.com/palmerst/cas741_sp/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup/-/blob/master/Game/documentation/Revision1/problemStatement/problemStatement.pdf
https://github.com/paezha/PyERT-BLACK/blob/main/docs/Rev1/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/agentvv/MTOBridge/blob/main/docs%20Rev1/ProblemStatementAndGoals/ProblemStatement.pdf


Goals

Refine problem statement into high level goals

Selling points for your project (could include you learning
new skills)

Goals should be measurable

Usually around 5 goals

Explain goals that are not obvious

Include goals and stretch goals
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Sample Goals

Skeleton Key

Hot Mesh Solutions

Smart Farm Solutions
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https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2351692-5508958.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2352546-5510383.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2357548-5518434.pdf
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Knowledge Capture
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Drasil

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 17/43



Introduction to Drasil

Drasil uses a generative approach

Knowledge is captured in a Domain Specific Language
(DSL)

Documentation (in tex and html) and code (in Java,
C++, C#, Python and Swift) are generated

Changes are propagated throughout documentation and
code

Consistency and completeness checks

Reuse throughout document, between documents and
between projects
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Project Selection Ideas/Questions

Let’s discuss some of your project ideas
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Tool Tutorials

Best way to learn is by doing

Some getting started information and exercises in the
ToolTutorials folder, modified from undergrad classes

Tutorials for se 2aa4 and cs 2me3

Many other resources on-line

Your colleagues can help too

Instructions for setting up a Virtual Machines

Shared Team’s Video on git and GitHub with extra
material

Shared Team’s Video on Continuous Integration with
extra material
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https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools/VM_Instructions
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Git%20Tutorial.mp4?csf=1&web=1&e=4QBV28&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Tutorial%202_%20CI_CD-20220919_143225-Meeting%20Recording.mp4?csf=1&web=1&e=obymWH&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T02_CICD?ref_type=heads


Git, GitLab and GitHub

Git manages changes to documents
▶ Tracks changes
▶ Keeps history, you can roll back
▶ Useful documentation over time
▶ Allows people to work simultaneously

Benefits for SC [25]
▶ Not necessary to make a backup copy of everything,

stores just enough information to recreate
▶ Do not need to come up with names for backup copies -

same file name, but with timestamps
▶ Enforces changelog discipline
▶ Facilitates identifying conflict and merging changes

The real bottleneck in scientific computing [26]
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Git Typical Usage

First either init repo or clone (git init, git clone), then typical
workflow is

1. update repo (git pull)

2. create files

3. stage changes to be committed (git status, git add)

4. commit staged changes (git commit -m “message”)

5. push to remote, if using one (git push)

Commit after every separate issue, and when need to stop
working

Always include a meaningful and descriptive commit
message for the log

If a push reveals conflicts, take appropriate action to
merge
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GitLab and GitHub Issue Tracking

See brief document in course repo

See examples

Tutorials for se 2aa4 and cs 2me3

Create an issue
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https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Tools/gitAndGitLab/instructions_issue_tracking.pdf?ref_type=heads
https://github.com/JacquesCarette/literate-scientific-software/issues
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01a-VM-VersionControl/slides
https://gitlab.cas.mcmaster.ca/smiths/cas741/issues


Continuous Integration

Building and testing software on every push to the code
repository (see Fowler)

Requires:
▶ A version control system
▶ A fully automated build system
▶ An automated test system
▶ An automated system for other tasks, like code checking

(linting), doc building, web-site updating
▶ An integration build system

A good idea for your projects

A useful skill to have
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https://martinfowler.com/articles/continuousIntegration.html


LaTeX

A typesetting language

Some initial information in course repo

Tutorials for se 2aa4 and cs 2me3

Start from an example
▶ The lectures notes
▶ The Project Template
▶ The problem statement
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https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/LaTeX
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials/T02a-LaTeX


Make

Software Carpentry: Automation and Make

The Project Template
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https://swcarpentry.github.io/make-novice/


Suggested Reading Questions?

Smith2016 [20]

SmithEtAl2007 [22]

ParnasAndClements1986 [14]

Solar Water Heating System Example
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SoftEngForScienceBook.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SmithLaiAndKhedri2007fulltext.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/ParnasAndClements1986.pdf
https://github.com/smiths/swhs


SE For SC Literature

CAS 741 process is document driven, adapted from the
waterfall model [6, 24]

Many say a document driven process is not used by, nor
suitable for, scientific software.
▶ Scientific developers naturally use an agile

philosophy [1, 4, 5, 17],
▶ or an amethododical process [9]
▶ or a knowledge acquisition driven process [10].

Scientists do not view rigid, process-heavy approaches,
favourably [4]

Reports for each stage of development are
counterproductive [16, p. 373]

Up-front requirements are impossible [4, 18]

What are some arguments in favour of a rational
document driven process?
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Counter Arguments

Just because not used, doesn’t mean docs shouldn’t be
Documentation provides many benefits [15]:
▶ easier reuse of old designs
▶ better communication about requirements
▶ more useful design reviews
▶ easier integration of separately written modules
▶ more effective code inspection
▶ more effective testing
▶ more efficient corrections and improvements.

Actually faking a rational design process
Too complex for up-front requirements sounds like an
excuse
▶ Laws of physics/science slow to change
▶ Often simple design patterns
▶ Think program family, not individual member

Debunking myth against up-front requirements [19]
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Literature on SE applied to SCS

Highlights problems with SE
▶ Miller2006 [12]
▶ Hatton2007 [7]
▶ Sleipner A oil rig collapse [13, p. 38]
▶ Patriot missile disaster [13, p. 36]

Highlights gap/chasm between SE and SC
▶ Kelly2007 [11]
▶ Storer2017 [23]

Studies of SE applied to SC
▶ CarverEtAl2007 [4]
▶ Segal2005 [17]
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Miller2006.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Hatton2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Kelly2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Storer2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/CarverEtAl2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Segal2005.pdf


Literature on SE applied to SCS

Reproducibility
▶ BaileyEtAl2016 [2]
▶ BenureauAndRougier2017 [3]

Future of SE for SC
▶ JohansonAndHasselbring2018 [8]
▶ Smith2018 [21]
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BaileyEtAl2016.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BenureauAndRougier2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/JohansonAndHasselbring2018.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Smith2018.pdf


Requirements for Projectile

Goal(s)?

Inputs?

Outputs?

Simplifying assumptions?

Kinematic theories for translational motion?

Refined Theories Projectile SRS
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https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileSRS_RefinedTheories/Projectile_SRS.pdf
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