
CAS 741 (Development of Scientific Computing
Software)

Winter 2024

02 Getting Started

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 12, 2024



Getting Started

Administrative details

Problem statements

More information on Drasil

Project choice discussion

Software tools
▶ Git, GitLab and GitHub
▶ Continuous integration
▶ LaTeX
▶ Make

Questions on suggested reading?

Software Engineering for Scientific Computing literature

Start Projectile example

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 2/43



Administrative Details

Teams channel created

Can everyone access our course repo on GitLab?

Create a GitHub account if you don’t already have one

Use the GitHub template to create a new repo

Add smiths to your GitHub repo

Create a fork (on GitLab) and a merge request to modify
Repos.csv with your project details

Problem statement
▶ Problem statement due Fri, Jan 19 by 11:59 pm
▶ Assign an issue to instructor to review

Feel free to add me to you Linked-In network

Participation grades will be posted before the end of the
term, providing an opportunity to improve

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 3/43

https://gitlab.cas.mcmaster.ca/smiths/cas741
https://github.com/smiths/capTemplate
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/merge_requests
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Repos.csv
https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals
https://www.linkedin.com/in/spencer-smith-7369bba4/


Administrative Details: Domain Expert

Create issues for their partner’s written deliverables

Asks questions during their partner’s presentations

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 4/43



Administrative Details: Our Deliverables

Problem Statement

Development Plan

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 5/43



Administrative Details: Report Deadlines

Problem Statement Week 02 Jan 19
System Req. Spec. (SRS) Week 04 Feb 2
System VnV Plan Week 06 Feb 16
MG + MIS Week 09 Mar 15
Drasil Code Week 09 Mar 15
Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 6/43



Administrative Details: Presentations

SRS Week 03/04 Week of Jan 23, 30
Syst. VnV Week 06 Week of Feb 13
POC Demo Week 06, 07 Week of Feb 13, 27
MG + MIS Syntax Week 09 Week of Mar 13
MIS Semantics Week 09 Week of Mar 13
Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 7/43



Presentation Schedule

TBD

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 8/43



Presentation Schedule

4 presentations each (please check)

If you will miss a presentation, please trade with someone
else

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 9/43



Problem Statement

Modify the Problem statement from the template repo

Written in LaTeX (or other text-based file format)

Due electronically (on GitHub) by deadline

Generated files should NOT be under source control
(except pdf)

Comments used to give advice, you can use for your own
reviews

Remove comments via
\newif\ifcomments\commentsfalse

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 10/43

https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals


Problem Statement Cont’d

Abstractly state the problem to be solved
▶ What problem
▶ Not how to solve

Characterize the problem in terms of inputs and the
outputs

State why the problem is important

Give context
▶ Stakeholders?
▶ Environment for the software?
▶ A page description should be sufficient

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 11/43



Sample Project Statements

Solar Cooker

SpectrumImageAnalysisPy

Aqueous Speciation Diagram Generator

FloppyFish

PyERT - For GPS trip data analysis

EMA (watch to monitor older adults with lumbar spinal
disorders)

MTO Bridge

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 12/43

https://github.com/DeeshaPatel/CAS-741-Solar-Cooker/blob/main/docs/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/icbicket/SpectrumImageAnalysisPy/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://github.com/palmerst/cas741_sp/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup/-/blob/master/Game/documentation/Revision1/problemStatement/problemStatement.pdf
https://github.com/paezha/PyERT-BLACK/blob/main/docs/Rev1/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/agentvv/MTOBridge/blob/main/docs%20Rev1/ProblemStatementAndGoals/ProblemStatement.pdf


Goals

Refine problem statement into high level goals

Selling points for your project (could include you learning
new skills)

Goals should be measurable

Usually around 5 goals

Explain goals that are not obvious

Include goals and stretch goals

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 13/43



Sample Goals

Skeleton Key

Hot Mesh Solutions

Smart Farm Solutions

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 14/43

https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2351692-5508958.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2352546-5510383.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2357548-5518434.pdf


Dr. Smith CAS 741 Winter 2024: 02 Getting Started 15/43



Knowledge Capture

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 16/43



Drasil

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 17/43



Introduction to Drasil

Drasil uses a generative approach

Knowledge is captured in a Domain Specific Language
(DSL)

Documentation (in tex and html) and code (in Java,
C++, C#, Python and Swift) are generated

Changes are propagated throughout documentation and
code

Consistency and completeness checks

Reuse throughout document, between documents and
between projects

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 18/43



Project Selection Ideas/Questions

Let’s discuss some of your project ideas

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 19/43



Tool Tutorials

Best way to learn is by doing

Some getting started information and exercises in the
ToolTutorials folder, modified from undergrad classes

Tutorials for se 2aa4 and cs 2me3

Many other resources on-line

Your colleagues can help too

Instructions for setting up a Virtual Machines

Shared Team’s Video on git and GitHub with extra
material

Shared Team’s Video on Continuous Integration with
extra material

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 20/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools/VM_Instructions
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Git%20Tutorial.mp4?csf=1&web=1&e=4QBV28&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Tutorial%202_%20CI_CD-20220919_143225-Meeting%20Recording.mp4?csf=1&web=1&e=obymWH&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T02_CICD?ref_type=heads


Git, GitLab and GitHub

Git manages changes to documents
▶ Tracks changes
▶ Keeps history, you can roll back
▶ Useful documentation over time
▶ Allows people to work simultaneously

Benefits for SC [25]
▶ Not necessary to make a backup copy of everything,

stores just enough information to recreate
▶ Do not need to come up with names for backup copies -

same file name, but with timestamps
▶ Enforces changelog discipline
▶ Facilitates identifying conflict and merging changes

The real bottleneck in scientific computing [26]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 21/43



Git Typical Usage

First either init repo or clone (git init, git clone), then typical
workflow is

1. update repo (git pull)

2. create files

3. stage changes to be committed (git status, git add)

4. commit staged changes (git commit -m “message”)

5. push to remote, if using one (git push)

Commit after every separate issue, and when need to stop
working

Always include a meaningful and descriptive commit
message for the log

If a push reveals conflicts, take appropriate action to
merge

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 22/43



GitLab and GitHub Issue Tracking

See brief document in course repo

See examples

Tutorials for se 2aa4 and cs 2me3

Create an issue

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 23/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Tools/gitAndGitLab/instructions_issue_tracking.pdf?ref_type=heads
https://github.com/JacquesCarette/literate-scientific-software/issues
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01a-VM-VersionControl/slides
https://gitlab.cas.mcmaster.ca/smiths/cas741/issues


Continuous Integration

Building and testing software on every push to the code
repository (see Fowler)

Requires:
▶ A version control system
▶ A fully automated build system
▶ An automated test system
▶ An automated system for other tasks, like code checking

(linting), doc building, web-site updating
▶ An integration build system

A good idea for your projects

A useful skill to have

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 24/43

https://martinfowler.com/articles/continuousIntegration.html


LaTeX

A typesetting language

Some initial information in course repo

Tutorials for se 2aa4 and cs 2me3

Start from an example
▶ The lectures notes
▶ The Project Template
▶ The problem statement

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 25/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/LaTeX
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials/T02a-LaTeX


Make

Software Carpentry: Automation and Make

The Project Template

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 26/43

https://swcarpentry.github.io/make-novice/


Suggested Reading Questions?

Smith2016 [20]

SmithEtAl2007 [22]

ParnasAndClements1986 [14]

Solar Water Heating System Example

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 27/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SoftEngForScienceBook.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SmithLaiAndKhedri2007fulltext.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/ParnasAndClements1986.pdf
https://github.com/smiths/swhs


SE For SC Literature

CAS 741 process is document driven, adapted from the
waterfall model [6, 24]

Many say a document driven process is not used by, nor
suitable for, scientific software.
▶ Scientific developers naturally use an agile

philosophy [1, 4, 5, 17],
▶ or an amethododical process [9]
▶ or a knowledge acquisition driven process [10].

Scientists do not view rigid, process-heavy approaches,
favourably [4]

Reports for each stage of development are
counterproductive [16, p. 373]

Up-front requirements are impossible [4, 18]

What are some arguments in favour of a rational
document driven process?

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 28/43



Counter Arguments

Just because not used, doesn’t mean docs shouldn’t be
Documentation provides many benefits [15]:
▶ easier reuse of old designs
▶ better communication about requirements
▶ more useful design reviews
▶ easier integration of separately written modules
▶ more effective code inspection
▶ more effective testing
▶ more efficient corrections and improvements.

Actually faking a rational design process
Too complex for up-front requirements sounds like an
excuse
▶ Laws of physics/science slow to change
▶ Often simple design patterns
▶ Think program family, not individual member

Debunking myth against up-front requirements [19]
Dr. Smith CAS 741 Winter 2024: 02 Getting Started 29/43



Literature on SE applied to SCS

Highlights problems with SE
▶ Miller2006 [12]
▶ Hatton2007 [7]
▶ Sleipner A oil rig collapse [13, p. 38]
▶ Patriot missile disaster [13, p. 36]

Highlights gap/chasm between SE and SC
▶ Kelly2007 [11]
▶ Storer2017 [23]

Studies of SE applied to SC
▶ CarverEtAl2007 [4]
▶ Segal2005 [17]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 30/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Miller2006.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Hatton2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Kelly2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Storer2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/CarverEtAl2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Segal2005.pdf


Literature on SE applied to SCS

Reproducibility
▶ BaileyEtAl2016 [2]
▶ BenureauAndRougier2017 [3]

Future of SE for SC
▶ JohansonAndHasselbring2018 [8]
▶ Smith2018 [21]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 31/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BaileyEtAl2016.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BenureauAndRougier2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/JohansonAndHasselbring2018.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Smith2018.pdf


Requirements for Projectile

Goal(s)?

Inputs?

Outputs?

Simplifying assumptions?

Kinematic theories for translational motion?

Refined Theories Projectile SRS

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 32/43

https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileSRS_RefinedTheories/Projectile_SRS.pdf


References I

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant,
Mike C. Miller, Christine A. Ramsdale, and Paul C.
Stephenson.
Scientific software development at a research facility.
IEEE Software, 25(4):44–51, July/August 2008.

David H. Bailey, Jonathan M. Borwein, and Victoria
Stodden.
Reproducibility: Principles, Problems, Practices, chapter
Facilitating reproducibility in scientific computing:
principles and practice, pages 205–232.
John Wiley and Sons, New York, 2016.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 33/43



References II

F. Benureau and N. Rougier.
Re-run, Repeat, Reproduce, Reuse, Replicate:
Transforming Code into Scientific Contributions.
ArXiv e-prints, August 2017.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.
Software development environments for scientific and
engineering software: A series of case studies.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 550–559,
Washington, DC, USA, 2007. IEEE Computer Society.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 34/43



References III

Steve M. Easterbrook and Timothy C. Johns.
Engineering the software for understanding climate
change.
Comuting in Science & Engineering, 11(6):65–74,
November/December 2009.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Les Hatton.
The chimera of software quality.
Computer, 40(8), August 2007.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 35/43



References IV

Arne N. Johanson and Wilhelm Hasselbring.
Software engineering for computational science: Past,
present, future.
Computing in Science & Engineering, Accepted:1–31,
2018.

Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
’13, pages 299–310, Riverton, NJ, USA, 2013. IBM Corp.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 36/43



References V

Diane Kelly.
Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.
Journal of Systems and Software, 109:50–61, 2015.

Diane F. Kelly.
A software chasm: Software engineering and scientific
computing.
IEEE Software, 24(6):120–119, 2007.

Greg Miller.
SCIENTIFIC PUBLISHING: A Scientist’s Nightmare:
Software Problem Leads to Five Retractions.
Science, 314(5807):1856–1857, 2006.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 37/43



References VI

Suely Oliveira and David E. Stewart.
Writing Scientific Software: A Guide to Good Style.
Cambridge University Press, New York, NY, USA, 2006.

David L. Parnas and P.C. Clements.
A rational design process: How and why to fake it.
IEEE Transactions on Software Engineering,
12(2):251–257, February 1986.

David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125–148,
2010.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 38/43



References VII

Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Judith Segal.
When software engineers met research scientists: A case
study.
Empirical Software Engineering, 10(4):517–536, October
2005.

Judith Segal and Chris Morris.
Developing scientific software.
IEEE Software, 25(4):18–20, July/August 2008.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 39/43



References VIII

Spencer Smith, Malavika Srinivasan, and Sumanth
Shankar.
Debunking the myth that upfront requirements are
infeasible for scientific computing software.
In 2019 International Workshop on Software Engineering
for Science (held in conjunction with ICSE’19), pages 1–8,
2019.

W. Spencer Smith.
A rational document driven design process for scientific
computing software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
Chapman & Hall/CRC Computational Science, chapter
Examples of the Application of Traditional Software

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 40/43



References IX

Engineering Practices to Science, pages 33–63. Chapman
and Hall/CRC, Boca Raton, FL, 2016.

W. Spencer Smith.
Beyond software carpentry.
In 2018 International Workshop on Software Engineering
for Science (held in conjunction with ICSE’18), pages 1–8,
2018.

W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation: A
systematic approach for improving software reliability.
Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83–107, February 2007.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 41/43



References X

Tim Storer.
Bridging the chasm: A survey of software engineering
practice in scientific programming.
ACM Comput. Surv., 50(4):47:1–47:32, August 2017.

Hans van Vliet.
Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

Greg Wilson, Jennifer Bryan, Karen Cranston, Justin
Kitzes, Lex Nederbragt, and Tracy K. Teal.
Good enough practices in scientific computing.
CoRR, abs/1609.00037, 2016.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 42/43



References XI

Gregory V. Wilson.
Where’s the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in
the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 43/43


