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Getting Started

Administrative details
Problem statements
More information on Drasil

Project choice discussion

Software tools

» Git, GitLab and GitHub
» Continuous integration
> LaTeX
> Make

@ Questions on suggested reading?
e Software Engineering for Scientific Computing literature

@ Start Projectile example
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Administrative Details

Teams channel created

Can everyone access our course repo on GitLab?
Create a GitHub account if you don't already have one
Use the GitHub template to create a new repo

Add smiths to your GitHub repo

Create a fork (on GitLab) and a merge request to modify
Repos.csv with your project details
Problem statement

» Problem statement due Fri, Jan 19 by 11:59 pm
» Assign an issue to instructor to review

Feel free to add me to you Linked-In network

Participation grades will be posted before the end of the
term, providing an opportunity to improve
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https://gitlab.cas.mcmaster.ca/smiths/cas741
https://github.com/smiths/capTemplate
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/merge_requests
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Repos.csv
https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals
https://www.linkedin.com/in/spencer-smith-7369bba4/

Administrative Details: Domain Expert

@ Create issues for their partner’s written deliverables

@ Asks questions during their partner’s presentations
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Administrative Details: Our Deliverables

Problem Statement

+Sysiem VnV Plan

System VnV Report

MIS —> Unit VnV Report

Dr. Smith
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Administrative Details: Report Deadlines

Problem Statement Week 02
System Req. Spec. (SRS) Week 04
System VnV Plan Week 06
MG + MIS Week 09
Drasil Code Week 09
Final Documentation Week 13

@ The written deliverables will be graded based on the repo

Jan 19
Feb 2

Feb 16
Mar 15
Mar 15
Apr 12

contents as of 11:59 pm of the due date

@ If you need an extension for a written doc, please ask
@ When ready, assign issues to your primary and secondary

reviewers

@ GitHub issues due two days after assignment deadlines
@ From Drasil Code onward, Drasil projects no longer need

to maintain traditional SRS
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Administrative Details: Presentations

SRS Week 03/04 Week of Jan 23, 30
Syst. VnV Week 06 Week of Feb 13
POC Demo Week 06, 07 Week of Feb 13, 27

MG + MIS Syntax Week 09 Week of Mar 13
MIS Semantics Week 09 Week of Mar 13
Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

@ Specific schedule depends on final class registration

@ Informal presentations with the goal of improving
everyone's written deliverables

@ Domain experts and secondary reviewers (and others) will
ask questions
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Presentation Schedule
TBD
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Presentation Schedule

@ 4 presentations each (please check)

@ If you will miss a presentation, please trade with someone
else

@ Implementation presentation could be used to run a code
review, or code walkthrough
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Problem Statement

@ Modify the Problem statement from the template repo

@ Written in LaTeX (or other text-based file format)

@ Due electronically (on GitHub) by deadline

@ Generated files should NOT be under source control
(except pdf)

@ Comments used to give advice, you can use for your own
reviews

@ Remove comments via
\newif\ifcomments\commentsfalse

Dr. Smith
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https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals

Problem Statement Cont'd

@ Abstractly state the problem to be solved
» What problem
> Not how to solve
@ Characterize the problem in terms of inputs and the

outputs
@ State why the problem is important

e Give context
» Stakeholders?
» Environment for the software?
» A page description should be sufficient
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Sample Project Statements

@ Solar Cooker
SpectrumlmageAnalysisPy
Aqueous Speciation Diagram Generator

PyERT - For GPS trip data analysis

EMA (watch to monitor older adults with lumbar spinal
disorders)

e MTO Bridge

°
°
@ FloppyFish
°
°

Dr. Smith
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https://github.com/DeeshaPatel/CAS-741-Solar-Cooker/blob/main/docs/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/icbicket/SpectrumImageAnalysisPy/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://github.com/palmerst/cas741_sp/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup/-/blob/master/Game/documentation/Revision1/problemStatement/problemStatement.pdf
https://github.com/paezha/PyERT-BLACK/blob/main/docs/Rev1/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/agentvv/MTOBridge/blob/main/docs%20Rev1/ProblemStatementAndGoals/ProblemStatement.pdf

Goals

Refine problem statement into high level goals

Selling points for your project (could include you learning
new skills)

Goals should be measurable
Usually around 5 goals
Explain goals that are not obvious

Include goals and stretch goals
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Sample Goals

o Skeleton Key
@ Hot Mesh Solutions
@ Smart Farm Solutions
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https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2351692-5508958.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2352546-5510383.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2357548-5518434.pdf

mzameaganaraior.nat
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Knowledge Capture
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Drasil
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| -

typical val- h¢ is The heat
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Introduction to Drasil

Drasil uses a generative approach
Knowledge is captured in a Domain Specific Language
(DSL)

Documentation (in tex and html) and code (in Java,
C++, C#, Python and Swift) are generated

Changes are propagated throughout documentation and
code

Consistency and completeness checks

Reuse throughout document, between documents and
between projects

Dr. Smith
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Project Selection ldeas/Questions

Let’s discuss some of your project ideas
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Tool Tutorials

@ Best way to learn is by doing

@ Some getting started information and exercises in the
ToolTutorials folder, modified from undergrad classes

@ Tutorials for se 2aa4 and cs 2me3

@ Many other resources on-line

@ Your colleagues can help too

@ Instructions for setting up a Virtual Machines

@ Shared Team’'s Video on git and GitHub with extra
material

@ Shared Team’'s Video on Continuous Integration with
extra material

Dr. Smith
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https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools/VM_Instructions
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Git%20Tutorial.mp4?csf=1&web=1&e=4QBV28&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Tutorial%202_%20CI_CD-20220919_143225-Meeting%20Recording.mp4?csf=1&web=1&e=obymWH&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T02_CICD?ref_type=heads

Git, GitLab and GitHub

e Git manages changes to documents
» Tracks changes
» Keeps history, you can roll back
» Useful documentation over time
» Allows people to work simultaneously

@ Benefits for SC [25]

» Not necessary to make a backup copy of everything,
stores just enough information to recreate

» Do not need to come up with names for backup copies -
same file name, but with timestamps

» Enforces changelog discipline

» Facilitates identifying conflict and merging changes

@ The real bottleneck in scientific computing [26]

Dr. Smith
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Git Typical Usage
First either init repo or clone (git init, git clone), then typical
workflow is
1. update repo (git pull)
create files
stage changes to be committed (git status, git add)
commit staged changes (git commit -m “message”)

ok WD

push to remote, if using one (git push)
o Commit after every separate issue, and when need to stop
working

@ Always include a meaningful and descriptive commit
message for the log

@ If a push reveals conflicts, take appropriate action to
merge
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GitLab and GitHub Issue Tracking

@ See brief document in course repo
@ See examples
@ Tutorials for se 2aa4 and cs 2me3

@ Create an issue
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https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Tools/gitAndGitLab/instructions_issue_tracking.pdf?ref_type=heads
https://github.com/JacquesCarette/literate-scientific-software/issues
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01a-VM-VersionControl/slides
https://gitlab.cas.mcmaster.ca/smiths/cas741/issues

Continuous Integration

@ Building and testing software on every push to the code
repository (see Fowler)
@ Requires:
» A version control system
» A fully automated build system
> An automated test system
» An automated system for other tasks, like code checking
(linting), doc building, web-site updating
» An integration build system
@ A good idea for your projects

@ A useful skill to have
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https://martinfowler.com/articles/continuousIntegration.html

LaTeX

@ A typesetting language

@ Some initial information in course repo
@ Tutorials for se 2aa4 and cs 2me3

@ Start from an example

» The lectures notes
» The Project Template
» The problem statement
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https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/LaTeX
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials/T02a-LaTeX

Make

@ Software Carpentry: Automation and Make
@ The Project Template
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https://swcarpentry.github.io/make-novice/

Suggested Reading Questions?

e Smith2016 [20]

e SmithEtAI2007 [22]

@ ParnasAndClements1986 [14]

@ Solar Water Heating System Example
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SoftEngForScienceBook.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SmithLaiAndKhedri2007fulltext.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/ParnasAndClements1986.pdf
https://github.com/smiths/swhs

SE For SC Literature

@ CAS 741 process is document driven, adapted from the
waterfall model [6, 24]
@ Many say a document driven process is not used by, nor
suitable for, scientific software.
» Scientific developers naturally use an agile
philosophy [1, 4, 5, 17],
» or an amethododical process [9]
» or a knowledge acquisition driven process [10].
@ Scientists do not view rigid, process-heavy approaches,
favourably [4]
@ Reports for each stage of development are
counterproductive [16, p. 373]
e Up-front requirements are impossible [4, 18]
@ What are some arguments in favour of a rational
document driven process?
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Counter Arguments

@ Just because not used, doesn’'t mean docs shouldn't be
@ Documentation provides many benefits [15]:
» easier reuse of old designs
» better communication about requirements
» more useful design reviews
P easier integration of separately written modules
» more effective code inspection
» more effective testing
» more efficient corrections and improvements.
@ Actually faking a rational design process
@ Too complex for up-front requirements sounds like an
excuse
» Laws of physics/science slow to change
» Often simple design patterns
» Think program family, not individual member
@ Debunking myth against up-front requirements [19]
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Literature on SE applied to SCS

@ Highlights problems with SE
> Miller2006 [12]
» Hatton2007 [7]
» Sleipner A oil rig collapse [13, p. 38]
» Patriot missile disaster [13, p. 36]
@ Highlights gap/chasm between SE and SC
> Kelly2007 [11]
> Storer2017 [23]
e Studies of SE applied to SC

» CarverEtAI2007 [4]
» Segal2005 [17]
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Miller2006.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Hatton2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Kelly2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Storer2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/CarverEtAl2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Segal2005.pdf

Literature on SE applied to SCS

@ Reproducibility

> BaileyEtAI2016 [2]

» BenureauAndRougier2017 [3]
e Future of SE for SC

» JohansonAndHasselbring2018 [8]
> Smith2018 [21]
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https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BaileyEtAl2016.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BenureauAndRougier2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/JohansonAndHasselbring2018.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Smith2018.pdf

Requirements for Projectile

Projectile
lg

Launcher| / — Proreer . LlATZEL
A Pland
(—)l
doﬁ&er
Goal(s)?
Inputs?
Outputs?

Simplifying assumptions?
Kinematic theories for translational motion?
Refined Theories Projectile SRS
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https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileSRS_RefinedTheories/Projectile_SRS.pdf
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