CAS 741 (Development of Scientific Computing
Software)

Winter 2024

02 Getting Started

Dr. Spencer Smith
Faculty of Engineering, McMaster University

January 12, 2024

McMaster
University ‘1*?:1

Getting Started

Administrative details
Problem statements
More information on Drasil

Project choice discussion

Software tools

» Git, GitLab and GitHub
» Continuous integration
> LaTeX
> Make

@ Questions on suggested reading?
e Software Engineering for Scientific Computing literature

@ Start Projectile example

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

2/43

Administrative Details

Teams channel created

Can everyone access our course repo on GitLab?
Create a GitHub account if you don't already have one
Use the GitHub template to create a new repo

Add smiths to your GitHub repo

Create a fork (on GitLab) and a merge request to modify
Repos.csv with your project details
Problem statement

» Problem statement due Fri, Jan 19 by 11:59 pm
» Assign an issue to instructor to review

Feel free to add me to you Linked-In network

Participation grades will be posted before the end of the
term, providing an opportunity to improve

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

3/43

https://gitlab.cas.mcmaster.ca/smiths/cas741
https://github.com/smiths/capTemplate
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/merge_requests
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Repos.csv
https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals
https://www.linkedin.com/in/spencer-smith-7369bba4/

Administrative Details: Domain Expert

@ Create issues for their partner’s written deliverables

@ Asks questions during their partner’s presentations

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 4/43

Administrative Details: Our Deliverables

Problem Statement

+Sysiem VnV Plan

System VnV Report

MIS —> Unit VnV Report

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

5/43

Administrative Details: Report Deadlines

Problem Statement Week 02
System Req. Spec. (SRS) Week 04
System VnV Plan Week 06
MG + MIS Week 09
Drasil Code Week 09
Final Documentation Week 13

@ The written deliverables will be graded based on the repo

Jan 19
Feb 2

Feb 16
Mar 15
Mar 15
Apr 12

contents as of 11:59 pm of the due date

@ If you need an extension for a written doc, please ask
@ When ready, assign issues to your primary and secondary

reviewers

@ GitHub issues due two days after assignment deadlines
@ From Drasil Code onward, Drasil projects no longer need

to maintain traditional SRS

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

6/43

Administrative Details: Presentations

SRS Week 03/04 Week of Jan 23, 30
Syst. VnV Week 06 Week of Feb 13
POC Demo Week 06, 07 Week of Feb 13, 27

MG + MIS Syntax Week 09 Week of Mar 13
MIS Semantics Week 09 Week of Mar 13
Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

@ Specific schedule depends on final class registration

@ Informal presentations with the goal of improving
everyone's written deliverables

@ Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 7/43

Presentation Schedule
TBD

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 8/43

Presentation Schedule

@ 4 presentations each (please check)

@ If you will miss a presentation, please trade with someone
else

@ Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 9/43

Problem Statement

@ Modify the Problem statement from the template repo

@ Written in LaTeX (or other text-based file format)

@ Due electronically (on GitHub) by deadline

@ Generated files should NOT be under source control
(except pdf)

@ Comments used to give advice, you can use for your own
reviews

@ Remove comments via
\newif\ifcomments\commentsfalse

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 10/43

https://github.com/smiths/capTemplate/tree/main/docs/ProblemStatementAndGoals

Problem Statement Cont'd

@ Abstractly state the problem to be solved
» What problem
> Not how to solve
@ Characterize the problem in terms of inputs and the

outputs
@ State why the problem is important

e Give context
» Stakeholders?
» Environment for the software?
» A page description should be sufficient

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 11/43

Sample Project Statements

@ Solar Cooker
SpectrumlmageAnalysisPy
Aqueous Speciation Diagram Generator

PyERT - For GPS trip data analysis

EMA (watch to monitor older adults with lumbar spinal
disorders)

e MTO Bridge

°
°
@ FloppyFish
°
°

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 12/43

https://github.com/DeeshaPatel/CAS-741-Solar-Cooker/blob/main/docs/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/icbicket/SpectrumImageAnalysisPy/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://github.com/palmerst/cas741_sp/blob/master/Doc/ProblemStatement/ProblemStatement.pdf
https://gitlab.cas.mcmaster.ca/theateam/FloppyFishGroup/-/blob/master/Game/documentation/Revision1/problemStatement/problemStatement.pdf
https://github.com/paezha/PyERT-BLACK/blob/main/docs/Rev1/ProblemStatementAndGoals/ProblemStatement.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/zakerl/Capstone_Project/blob/main/docs/ProblemStatementAndGoals/Team1_ProblemStatement%20%26%20Goals.pdf
https://github.com/agentvv/MTOBridge/blob/main/docs%20Rev1/ProblemStatementAndGoals/ProblemStatement.pdf

Goals

Refine problem statement into high level goals

Selling points for your project (could include you learning
new skills)

Goals should be measurable
Usually around 5 goals
Explain goals that are not obvious

Include goals and stretch goals

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 13/43

Sample Goals

o Skeleton Key
@ Hot Mesh Solutions
@ Smart Farm Solutions

Dr. Smith CAS 741 Winter 2024: 02 Getting Started

14/43

https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2351692-5508958.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2352546-5510383.pdf
https://gitlab.cas.mcmaster.ca/courses/capstone/-/blob/main/SamplesOfStudentWork/ProblemStatementAndGoals/document-2357548-5518434.pdf

mzameaganaraior.nat

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

15/43

Knowledge Capture

||| I".-'iﬁ
7

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 16/43

Drasil

(sRs (Lafex) | [SRS (hm) |
| -

typical val- h¢ is The heat
ues etc. transfer coeff
T between clad
and coolant

Dr. Smith CAS 741 Winter 2024: 02 Getting Started

17/43

Introduction to Drasil

Drasil uses a generative approach
Knowledge is captured in a Domain Specific Language
(DSL)

Documentation (in tex and html) and code (in Java,
C++, C#, Python and Swift) are generated

Changes are propagated throughout documentation and
code

Consistency and completeness checks

Reuse throughout document, between documents and
between projects

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

18/43

Project Selection ldeas/Questions

Let’s discuss some of your project ideas

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 19/43

Tool Tutorials

@ Best way to learn is by doing

@ Some getting started information and exercises in the
ToolTutorials folder, modified from undergrad classes

@ Tutorials for se 2aa4 and cs 2me3

@ Many other resources on-line

@ Your colleagues can help too

@ Instructions for setting up a Virtual Machines

@ Shared Team’'s Video on git and GitHub with extra
material

@ Shared Team’'s Video on Continuous Integration with
extra material

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

20/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials
https://gitlab.cas.mcmaster.ca/smiths/cas741/-/tree/master/Tools/VM_Instructions
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Git%20Tutorial.mp4?csf=1&web=1&e=4QBV28&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T01_GitGitHub
https://mcmasteru365.sharepoint.com/:v:/r/sites/course-555318-group/Shared%20Documents/General/Tutorials/Tutorial%202_%20CI_CD-20220919_143225-Meeting%20Recording.mp4?csf=1&web=1&e=obymWH&nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJTdHJlYW1XZWJBcHAiLCJyZWZlcnJhbFZpZXciOiJTaGFyZURpYWxvZy1MaW5rIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXcifX0%3D
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/Tutorials/T02_CICD?ref_type=heads

Git, GitLab and GitHub

e Git manages changes to documents
» Tracks changes
» Keeps history, you can roll back
» Useful documentation over time
» Allows people to work simultaneously

@ Benefits for SC [25]

» Not necessary to make a backup copy of everything,
stores just enough information to recreate

» Do not need to come up with names for backup copies -
same file name, but with timestamps

» Enforces changelog discipline

» Facilitates identifying conflict and merging changes

@ The real bottleneck in scientific computing [26]

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 21/43

Git Typical Usage
First either init repo or clone (git init, git clone), then typical
workflow is
1. update repo (git pull)
create files
stage changes to be committed (git status, git add)
commit staged changes (git commit -m “message”)

ok WD

push to remote, if using one (git push)
o Commit after every separate issue, and when need to stop
working

@ Always include a meaningful and descriptive commit
message for the log

@ If a push reveals conflicts, take appropriate action to
merge

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 22/43

GitLab and GitHub Issue Tracking

@ See brief document in course repo
@ See examples
@ Tutorials for se 2aa4 and cs 2me3

@ Create an issue

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 23/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Tools/gitAndGitLab/instructions_issue_tracking.pdf?ref_type=heads
https://github.com/JacquesCarette/literate-scientific-software/issues
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01a-VM-VersionControl/slides
https://gitlab.cas.mcmaster.ca/smiths/cas741/issues

Continuous Integration

@ Building and testing software on every push to the code
repository (see Fowler)
@ Requires:
» A version control system
» A fully automated build system
> An automated test system
» An automated system for other tasks, like code checking
(linting), doc building, web-site updating
» An integration build system
@ A good idea for your projects

@ A useful skill to have

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 24/43

https://martinfowler.com/articles/continuousIntegration.html

LaTeX

@ A typesetting language

@ Some initial information in course repo
@ Tutorials for se 2aa4 and cs 2me3

@ Start from an example

» The lectures notes
» The Project Template
» The problem statement

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 25/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/tree/master/ToolTutorials/LaTeX
https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/tree/master/Tutorials/T02a-LaTeX

Make

@ Software Carpentry: Automation and Make
@ The Project Template

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 26/43

https://swcarpentry.github.io/make-novice/

Suggested Reading Questions?

e Smith2016 [20]

e SmithEtAI2007 [22]

@ ParnasAndClements1986 [14]

@ Solar Water Heating System Example

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 27/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SoftEngForScienceBook.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/SmithLaiAndKhedri2007fulltext.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/ParnasAndClements1986.pdf
https://github.com/smiths/swhs

SE For SC Literature

@ CAS 741 process is document driven, adapted from the
waterfall model [6, 24]
@ Many say a document driven process is not used by, nor
suitable for, scientific software.
» Scientific developers naturally use an agile
philosophy [1, 4, 5, 17],
» or an amethododical process [9]
» or a knowledge acquisition driven process [10].
@ Scientists do not view rigid, process-heavy approaches,
favourably [4]
@ Reports for each stage of development are
counterproductive [16, p. 373]
e Up-front requirements are impossible [4, 18]
@ What are some arguments in favour of a rational
document driven process?

Dr. Smith CAS 741 Winter 2024: 02 Getting Started

28/43

Counter Arguments

@ Just because not used, doesn’'t mean docs shouldn't be
@ Documentation provides many benefits [15]:
» easier reuse of old designs
» better communication about requirements
» more useful design reviews
P easier integration of separately written modules
» more effective code inspection
» more effective testing
» more efficient corrections and improvements.
@ Actually faking a rational design process
@ Too complex for up-front requirements sounds like an
excuse
» Laws of physics/science slow to change
» Often simple design patterns
» Think program family, not individual member
@ Debunking myth against up-front requirements [19]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 29/43

Literature on SE applied to SCS

@ Highlights problems with SE
> Miller2006 [12]
» Hatton2007 [7]
» Sleipner A oil rig collapse [13, p. 38]
» Patriot missile disaster [13, p. 36]
@ Highlights gap/chasm between SE and SC
> Kelly2007 [11]
> Storer2017 [23]
e Studies of SE applied to SC

» CarverEtAI2007 [4]
» Segal2005 [17]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 30/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Miller2006.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Hatton2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Kelly2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Storer2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/CarverEtAl2007.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Segal2005.pdf

Literature on SE applied to SCS

@ Reproducibility

> BaileyEtAI2016 [2]

» BenureauAndRougier2017 [3]
e Future of SE for SC

» JohansonAndHasselbring2018 [8]
> Smith2018 [21]

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 31/43

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BaileyEtAl2016.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/BenureauAndRougier2017.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/JohansonAndHasselbring2018.pdf
https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/ReferenceMaterial/Smith2018.pdf

Requirements for Projectile

Projectile
lg

Launcher| / — Proreer . LlATZEL
A Pland
(—)l
doﬁ&er
Goal(s)?
Inputs?
Outputs?

Simplifying assumptions?
Kinematic theories for translational motion?
Refined Theories Projectile SRS

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 32/43

https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileSRS_RefinedTheories/Projectile_SRS.pdf

References |

[Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant,

Mike C. Miller, Christine A. Ramsdale, and Paul C.
Stephenson.

Scientific software development at a research facility.
IEEE Software, 25(4):44-51, July/August 2008.

David H. Bailey, Jonathan M. Borwein, and Victoria
Stodden.

Reproducibility: Principles, Problems, Practices, chapter
Facilitating reproducibility in scientific computing:
principles and practice, pages 205-232.

John Wiley and Sons, New York, 2016.

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 33/43

References ||

[@ F. Benureau and N. Rougier.

Re-run, Repeat, Reproduce, Reuse, Replicate:
Transforming Code into Scientific Contributions.
ArXiv e-prints, August 2017.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires,
and Douglass E. Post.

Software development environments for scientific and
engineering software: A series of case studies.

In ICSE '07: Proceedings of the 29th International
Conference on Software Engineering, pages 550-559,
Washington, DC, USA, 2007. IEEE Computer Society.

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

34/43

References |1

[§ Steve M. Easterbrook and Timothy C. Johns.

Engineering the software for understanding climate
change.

Comuting in Science & Engineering, 11(6):65—-74,
November/December 2009.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.

Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,

2003.

Les Hatton.
The chimera of software quality.
Computer, 40(8), August 2007.

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

35/43

References |V

@ Arne N. Johanson and Wilhelm Hasselbring.
Software engineering for computational science: Past,
present, future.
Computing in Science & Engineering, Accepted:1-31,
2018.

@ Diane Kelly.
Industrial scientific software: A set of interviews on
software development.
In Proceedings of the 2013 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON
'13, pages 299-310, Riverton, NJ, USA, 2013. IBM Corp.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 36/43

References V

@ Diane Kelly.

Scientific software development viewed as knowledge
acquisition: Towards understanding the development of
risk-averse scientific software.

Journal of Systems and Software, 109:50-61, 2015.

Diane F. Kelly.

A software chasm: Software engineering and scientific
computing.

IEEE Software, 24(6):120-119, 2007.

Greg Miller.

SCIENTIFIC PUBLISHING: A Scientist's Nightmare:
Software Problem Leads to Five Retractions.
Science, 314(5807):1856-1857, 2006.

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started

37/43

References VI

[§ Suely Oliveira and David E. Stewart.
Writing Scientific Software: A Guide to Good Style.

Cambridge University Press, New York, NY, USA, 2006.

[§ David L. Parnas and P.C. Clements.
A rational design process: How and why to fake it.

IEEE Transactions on Software Engineering,
12(2):251-257, February 1986.

[@ David Lorge Parnas.
Precise documentation: The key to better software.
In The Future of Software Engineering, pages 125-148,
2010.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started

38/43

References VI

[@ Patrick J. Roache.

Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

Judith Segal.

When software engineers met research scientists: A case
study.

Empirical Software Engineering, 10(4):517-536, October
2005.

Judith Segal and Chris Morris.
Developing scientific software.
IEEE Software, 25(4):18-20, July/August 2008.

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 39/43

References VIII

[Spencer Smith, Malavika Srinivasan, and Sumanth

Shankar.

Debunking the myth that upfront requirements are
infeasible for scientific computing software.

In 2019 International Workshop on Software Engineering
for Science (held in conjunction with ICSE’19), pages 1-8,
2019.

W. Spencer Smith.

A rational document driven design process for scientific
computing software.

In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
Chapman & Hall/CRC Computational Science, chapter
Examples of the Application of Traditional Software

Dr. Smith

CAS 741 Winter 2024: 02 Getting Started 40/43

References IX

Engineering Practices to Science, pages 33-63. Chapman
and Hall/CRC, Boca Raton, FL, 2016.

@ W. Spencer Smith.
Beyond software carpentry.
In 2018 International Workshop on Software Engineering
for Science (held in conjunction with ICSE’'18), pages 1-8,
2018.

@ W. Spencer Smith, Lei Lai, and Ridha Khedri.
Requirements analysis for engineering computation: A
systematic approach for improving software reliability.
Reliable Computing, Special Issue on Reliable Engineering
Computation, 13(1):83-107, February 2007.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 41/43

References X

[@ Tim Storer.
Bridging the chasm: A survey of software engineering
practice in scientific programming.
ACM Comput. Surv., 50(4):47:1-47:32, August 2017.

[Hans van Vliet.
Software Engineering (2nd ed.): Principles and Practice.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[§ Greg Wilson, Jennifer Bryan, Karen Cranston, Justin
Kitzes, Lex Nederbragt, and Tracy K. Teal.
Good enough practices in scientific computing.
CoRR, abs/1609.00037, 2016.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 42/43

References Xl

[{ Gregory V. Wilson.
Where's the real bottleneck in scientific computing?
Scientists would do well to pick some tools widely used in

the software industry.
American Scientist, 94(1), 2006.

Dr. Smith CAS 741 Winter 2024: 02 Getting Started 43/43

