
CAS 741 (Development of Scientific Computing
Software)

Winter 2024

09 Verification and Validation

Dr. Spencer Smith

Faculty of Engineering, McMaster University

January 31, 2024

Verification and Validation

Administrative details

Questions?

741 workflow

Overview of testing

Scientific software specific issues

V&V examples

V&V template

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 2/56

https://github.com/smiths/capTemplate/tree/main/docs/VnVPlan

Administrative Details: Report Deadlines

System Req. Spec. (SRS) Week 04 Feb 2
System VnV Plan Week 06 Feb 16
MG + MIS Week 09 Mar 15
Drasil Code Week 09 Mar 15
Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 3/56

Administrative Details: Presentations

SRS Week 03/04 Week of Jan 23, 30
Syst. VnV Week 06 Week of Feb 13
POC Demo Week 06, 07 Week of Feb 13, 27
MG + MIS Syntax Week 09 Week of Mar 13
MIS Semantics Week 09 Week of Mar 13
Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 4/56

Presentation Schedule

SRS Present (15 min)
▶ Feb 2: Phil, Nada, Yi-Leng, Atiyeh, Tanya, Hossain
▶ Feb 6: Waqar, Fatemeh

Syst V&V Plan Present (L11, L12) (20 min)
▶ Feb 13: Fasil, Hunter, Phil, Adrian
▶ Feb 16: Gaofeng, Hossain, Seyed Ali, Xinyu

Proof of Concept Demonstrations (L14) (20 min)
▶ Mar 1: Cynthia, Valerie, Waqar, Yi-Leng

MG+MIS Present (L17, L18) (20 minutes)
▶ Mar 12: Nada, Morteza, Kim Ying, Atiyeh
▶ Mar 15: Fatemeh, Yiding, Tanya, Volunteer?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 5/56

Presentation Sched Cont’d

Implementation Present (L22–L25) (15 min each)
▶ Mar 29: Fatemeh, Waqar, Hossain, Tanya, Atiyeh,

Yi-Leng
▶ Apr 2: Nada, Phil, Xinyu, Fasil, Seyed Ali, Kim Ying
▶ Apr 5: Gaofeng, Morteza, Valerie, Hunter, Cynthia,

Adrian
▶ Apr 9: Yiding

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 6/56

Presentation Schedule

3 presentations each
▶ SRS everyone
▶ VnV and POC subset of class
▶ Design subset of class
▶ Implementation everyone

If you will miss a presentation, please trade with someone

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 7/56

Administrative Details

SRS Presentation grades on Avenue

Create GitHub issues for your colleagues (see next slide)

Go ahead and address the colleague created issues

No classes for Reading week (Feb 20 – Feb 24)

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 8/56

GitHub Reviews

Project owners
▶ “Domain Expert” and “Secondary Reviewer”
▶ Find your reviewers in Repos.xlsx
▶ Add your reviewers as collaborators
▶ Assign review issues to myself and your reviewers
▶ separate issue for each reviewer

Reviewers
▶ Provide at least 5 issues on the document
▶ Grading

▶ Not enough issues, or poor issues 0/2
▶ Enough issues, but shallow 1/2
▶ Enough issues and deep (not surface) 2/2

▶ Issues are due 2 days after being assigned

GitHub conventions (Writing Checklist (last sect.))

How to give (and take) constructive criticism

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 9/56

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Repos.csv
https://github.com/smiths/capTemplate/blob/main/docs/Checklists/Writing-Checklist.pdf
https://asana.com/resources/constructive-criticism

Administrative Details: Drasil

For some students, the SRS will be translated to Drasil
▶ Due in place of design documentation
▶ Forking Drasil (the last few instructions)
▶ Creating a Project in Drasil

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 10/56

https://gitlab.cas.mcmaster.ca/smiths/cas741/-/blob/master/Tools/VM_Instructions/VM_Instructions.pdf
https://github.com/JacquesCarette/Drasil/wiki/Creating-Your-Project-in-Drasil

Administrative Details: VnV Presentations

Not everyone will do VnV presentations

Select 1 or 2 of the following:
▶ Specific functional system test cases
▶ Specific nonfunctional system test cases, such as

▶ Performance profile
▶ Usability testing

▶ SRS verification plan
▶ Automated testing and verification tools

▶ Profiling tools
▶ Continuous integration
▶ Code coverage
▶ Linters

▶ Other related topic, etc.

We would like a variety of topics presented

If you are uncertain of your specific presentation plan,
please ask

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 11/56

Proof of Concept (POC) Presentations

Deepen your understanding by jumping into
implementation

A good idea, even if you aren’t doing a POC

Identify a risk with your code and implement enough to
show you can resolve it

Looking for an actual demo with running code

Presentation
▶ Explicitly identify your risk
▶ Run your code
▶ Discuss your implementation

Simplify as much as necessary

Do not use this code in your actual implementation

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 12/56

Questions?

Questions about SRS?

Questions about Soft Dev technology?

Questions about the application of SE
methods/tools/techniques/principles to research
software?

Questions about deliverables?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 13/56

“Faked” Rational Design Process

Problem Statement

Development Plan

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 14/56

Verification Plan Needs to Be Specific

State exactly what your test cases are, give the actual
input, and expected output

State feasible plans for testing and inspection

Decide what to emphasize, could include performance
testing, or usability testing

Give specific measures of error/performance/....

How do you quantify error for a single scalar value?

How do you quantify error for a vector value?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 15/56

Outline of Verification Topics

What are the goals of verification?

What are the main approaches to verification?
▶ What kind of assurance do we get through testing?
▶ Can testing prove correctness?
▶ How can testing be done systematically?
▶ How can we remove defects (debugging)?

What are the main approaches to software analysis?

Informal versus formal analysis

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 16/56

Incorrect Version of Delete

Using s = new T[MAX SIZE], for some type T; length is a
state variable

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j <= (l e n g t h − 1) ; j++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}
What is the error?
What test case would highlight the error?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 17/56

Correct Version of Delete

publ ic s t a t i c void d e l (i n t i)
{

i n t j ;

fo r (j = i ; j < (l e n g t h − 1) ; j++)
{

s [j] = s [j +1] ;
}

l e n g t h = l e n g t h − 1 ;
}

Avoids potential ArrayIndexOutOfBoundsException Exception

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 18/56

Verification Versus Validation

What is the difference between verification and validation?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 19/56

Verification Versus Validation

Verification - Are we building the product right? Are we
implementing the requirements correctly (internal)

Validation - Are we building the right product? Are we
getting the right requirements (external)

According to Capability Maturity Model (CMM)
▶ Software Verification: The process of evaluating software

to determine whether the products of a given
development phase satisfy the conditions imposed at the
start of that phase. [IEEE-STD-610]

▶ Software Validation: The process of evaluating software
during or at the end of the development process to
determine whether it satisfies specified requirements.
[IEEE-STD-610]

We will focus on verification

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 20/56

https://en.wikipedia.org/wiki/Software_verification_and_validation

Verification Activities

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 21/56

Testing Phases

1. Unit testing

2. Integration testing

3. System testing

4. Acceptance testing

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 22/56

Need for Verification

Designers are fallible even if they are skilled and follow
sound principles

We need to build confidence in the software

Everything must be verified, every required functionality,
every required quality, every process, every product, every
document

For every work product covered in this class we have
discussed its verification

Even verification itself must be verified

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 23/56

Properties of Verification

From [1]

May not be binary (OK, not OK)
▶ Severity of defect is important
▶ Some defects may be tolerated
▶ Our goal is typically acceptable reliability, not correctness

May be subjective or objective - for instance, usability,
generic level of maintainability or portability
▶ How might we make usability objective?

Even implicit qualities should be verified
▶ Because requirements are often incomplete
▶ For instance robustness, maintainability

What is better than implicitly specified qualities?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 24/56

Approaches to Verification

What are some approaches to verification?

How can we categorize these approaches?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 25/56

Approaches to Verification

Experiment with behaviour of product
▶ Sample behaviours via testing
▶ Goal is to find “counter examples”
▶ Dynamic technique
▶ Examples: unit testing, integration testing, acceptance

testing, white box testing, stress testing, etc.

Analyze product to deduce its adequacy
▶ Analytic study of properties
▶ Static technique
▶ Examples: Code walk-throughs, code inspections,

correctness proof, etc.

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 26/56

Does our Engineering Analogy Fail?

If a bridge can hold 512 kN, can it hold 499 kN?

If our software works for the input 512, will it work for
499?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 27/56

Verification in Engineering

Example of bridge design

One test assures infinite correct situations

In software a small change in the input may result in
significantly different behaviour

There are also chaotic systems in nature, but products of
engineering design are usually stable and well-behaved

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 28/56

Modified Version Works for 512, but not 499

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 29/56

Testing and Lack of “Continuity”

Testing samples behaviours by examining “test cases”

Impossible to extrapolate behaviour of software from a
finite set of test cases

No continuity of behaviour - it can exhibit correct
behaviour in infinitely many cases, but may still be
incorrect in some cases

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 30/56

Goals of Testing

If our code passes all test cases, is it now guaranteed to
be error free?

Are 5000 random tests always better than 5 carefully
selected tests?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 31/56

Goals of Testing

To show the presence of bugs (Dijkstra, 1972)

If tests do not detect failures, we cannot conclude that
software is defect-free

Still, we need to do testing - driven by sound and
systematic principles
▶ Random testing is often not a systematic principle to use
▶ Need a test plan

Should help isolate errors - to facilitate debugging

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 32/56

Goals of Testing Continued

Should be repeatable
▶ Repeating the same experiment, we should get the same

results
▶ Repeatability may not be true because of the effect of

the execution environment on testing
▶ Repeatability may not occur if there are uninitialized

variables
▶ Repeatability may not happen when there is

nondeterminism

Should be accurate
▶ Accuracy increases reliability
▶ Part of the motivation for formal specification

Is a successful test case one that passes the test, or one
that shows a failure?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 33/56

Test (V&V) Plan

Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 34/56

Test (V&V) Plan

Testing can uncover errors and build confidence in the
software

Resources of time, people, facilities are limited

Need to plan how the software will be tested

You know in advance that the software is unlikely to be
perfect

You need to put resources into the most important parts
of the project

A risk analysis can determine where to put your limited
resources

A risk is a condition that can result in a loss

Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 35/56

White Box Versus Black Box Testing

Do you know (or can you guess) the difference between
white box and black box testing?

What if they were labelled transparent box and opaque
box testing, respectively?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 36/56

White Box Versus Black Box Testing

White box testing is derived from the program’s internal
structure

Black box testing is derived from a description of the
program’s function

Should perform both white box and black box testing

Black box testing
▶ Uncovers errors that occur in implementing requirements

or design specifications
▶ Not concerned with how processing occurs, but with the

results
▶ Focuses on functional requirements for the system
▶ Focuses on normal behaviour of the system

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 37/56

White Box Testing

Uncovers errors that occur during implementation of the
program

Concerned with how processing occurs

Evaluates whether the structure is sound

Focuses on abnormal or extreme behaviour of the system

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 38/56

Dynamic Testing

Is there a dynamic testing technique that can guarantee
correctness?

If so, what is the technique?

Is this technique practical?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 39/56

Dynamic Versus Static Testing

Another classification of verification techniques, as
previously discussed

Use a combination of dynamic and static testing

Dynamic analysis
▶ Requires the program to be executed
▶ Test cases are run and results are checked against

expected behaviour
▶ Exhaustive testing is the only dynamic technique that

guarantees program validity
▶ Exhaustive testing is usually impractical or impossible
▶ Reduce number of test cases by finding criteria for

choosing representative test cases

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 40/56

Static Testing Continued

Static analysis
▶ Does not involve program execution
▶ Testing techniques simulate the dynamic environment
▶ Includes syntax checking
▶ Generally static testing is used in the requirements and

design stage, where there is no code to execute
▶ Document and code walkthroughs
▶ Document and code inspections

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 41/56

Manual Versus Automated Testing

What is the difference between manual and automated
testing?

What are the advantages of automated testing?

What is regression testing?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 42/56

Manual Versus Automated Testing

Manual testing
▶ Has to be conducted by people
▶ Includes by-hand test cases, structured walkthroughs,

code inspections

Automated testing
▶ The more automated the development process, the

easier to automate testing
▶ Less reliance on people
▶ Necessary for regression testing
▶ Test tools can assist, such as Junit, Cppunit, CuTest etc.
▶ Can be challenging to automate GUI tests
▶ Test suite for Maple has 2 000 000 test cases, run on 14

platforms, every night, automated reporting

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 43/56

Continuous Integration Testing

What is continuous integration testing?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 44/56

Continuous Integration Testing

Information available on Wikipedia
Developers integrate their code into a shared repo
frequently (multiple times a day)
Each integration is automatically accompanied by
regression tests and other build tasks
Build server
▶ Unit tests
▶ Integration tests
▶ Static analysis
▶ Profile performance
▶ Extract documentation
▶ Update project web-page
▶ Portability tests
▶ etc.

Avoids potentially extreme problems with integration
when the baseline and a developer’s code greatly differ

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 45/56

https://en.wikipedia.org/wiki/Continuous_integration

Continuous Integration Tools

Gitlab
▶ Example at Rogue Reborn

Jenkins

Travis

Docker
▶ Eliminates the “it works on my machine” problem
▶ Package dependencies with your apps
▶ A container for lightweight virtualization
▶ Not a full VM

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 46/56

https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/pipelines
https://www.docker.com/

Sample Nonfunctional System Testing

Stress testing - Determines if the system can function
when subject to large volumes

Usability testing

Performance measurement

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 47/56

Sample Functional System Testing

Requirements: Determines if the system can perform its
function correctly and that the correctness can be
sustained over a continuous period of time

Error Handling: Determines the ability of the system to
properly process incorrect transactions

Manual Support: Determines that the manual support
procedures are documented and complete, where manual
support involves procedures, interfaces between people
and the system, and training procedures

Parallel: Determines the results of the new application are
consistent with the processing of the previous application
or version of the application

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 48/56

Theoretical Foundations Of Testing: Definitions

P (program), D (input domain), R (output domain)
▶ P: D → R (may be partial)

Correctness defined by OR ⊆ D × R
▶ P(d) correct if ⟨ d, P(d) ⟩ ∈ OR
▶ P correct if all P(d) are correct

Failure
▶ P(d) is not correct
▶ May be undefined (error state) or may be the wrong

result

Error (Defect)
▶ Anything that may cause a failure

▶ Typing mistake
▶ Programmer forgot to test “x=0”

Fault
▶ Incorrect intermediate state entered by program

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 49/56

Definitions Questions

A test case t is an element of D or R?

A test set T is a finite subset of D or R?

How would we define whether a test is successful?

How would we define whether a test set is successful?

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 50/56

Definitions Continued

Test case t: An element of D

Test set T: A finite subset of D

Test is successful if P(t) is correct

Test set successful if P correct for all t in T

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 51/56

Theoretical Foundations of Testing

Desire a test set T that is a finite subset of D that will
uncover all errors

Determining and ideal T leads to several undecideable
problems

No algorithm exists:
▶ To state if a test set will uncover all possible errors
▶ To derive a test set that would prove program

correctness
▶ To determine whether suitable input exists to guarantee

execution of a given statement in a given program
▶ etc.

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 52/56

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Undecidable_problem

Empirical Testing

Need to introduce empirical testing principles and
heuristics as a compromise between the impossible and
the inadequate

Find a strategy to select significant test cases

Significant means the test cases have a high potential of
uncovering the presence of errors

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 53/56

Complete-Coverage Principle

Try to group elements of D into subdomains D1, D2, ...,
Dn where any element of each Di is likely to have similar
behaviour

D = D1 ∪ D2 ∪ ... ∪ Dn

Select one test as a representative of the subdomain

If Dj ∩ Dk = ∅ for all j ̸= k , (partition), any element can
be chosen from each subdomain

Otherwise choose representatives to minimize number of
tests, yet fulfilling the principle

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 54/56

Complete-Coverage Principle

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 55/56

References I

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Dr. Smith CAS 741 Winter 2024: 09 Verification and Validation 56/56

