
CAS 741 (Development of Scientific Computing
Software)

Winter 2023

Assurance Cases

Dr. Spencer Smith

Faculty of Engineering, McMaster University

March 22, 2023

Assurance Cases

Administrative details

Final documentation

Make

Coding standards

Coding advice

Connecting code to MG and MIS

License and copyright

README file

Other files in capTemplate

Assurance cases

Dr. Smith CAS 741 Winter 2023: Assurance Cases 2/48

Administrative Details

When developing your code, remember that your goal is
for someone else to be able to compile and run it

Upcoming classes
I L19 — Assurance Cases
I L20 — Artifact Generation
I L21 — A Holistic Approach
I L22 — Drasil Presentations
I L23–24 — Implementation/Testing Presentations
I L25 — Discussion

No requirement to provide feedback to colleagues on final
documentation

Dr. Smith CAS 741 Winter 2023: Assurance Cases 3/48

Administrative Details: Report Deadlines

Final Documentation Week 13 Apr 12

The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date

If you need an extension for a written doc, please ask

When ready, assign issues to your primary and secondary
reviewers

GitHub issues due two days after assignment deadlines

From Drasil Code onward, Drasil projects no longer need
to maintain traditional SRS

Dr. Smith CAS 741 Winter 2023: Assurance Cases 4/48

Administrative Details: Presentations

Drasil Week 11 Week of Mar 27
Unit VnV/Implement Week 12 Week of Apr 3

Specific schedule depends on final class registration

Informal presentations with the goal of improving
everyone’s written deliverables

Domain experts and secondary reviewers (and others) will
ask questions

Dr. Smith CAS 741 Winter 2023: Assurance Cases 5/48

Presentation Schedule

Drasil Project Present (25 min each)
I Mar 30: Karen, Sam, Jason

Dr. Smith CAS 741 Winter 2023: Assurance Cases 6/48

Presentation Schedule

Test or Impl. Present (25 min each)
I Apr 5: Lesley, Deesha, Volunteer?
I Apr 6: Mina, Joachim, Maryam

4 presentations each (please check)

If you will miss a presentation, please trade with someone
else

Implementation presentation could be used to run a code
review, or code walkthrough

Dr. Smith CAS 741 Winter 2023: Assurance Cases 7/48

Final Documentation

Looking for
I Revision of documentation
I Consistency between documents
I Traceability between documents - should be able to pick

a requirement and trace it all the way to testing
I Effort made to address issues and comments
I Appropriate challenge level

Make it easy to see changes from Rev 0
I Reflection document
I Closed issues in the issue tracker
I Specific explanation in Revision History
I Comments in tex file

Dr. Smith CAS 741 Winter 2023: Assurance Cases 8/48

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Documentation

Problem Statement revised and improved

Requirements Document revised and improved

Design Documents revised and improved

VnV Plan revised and improved (complete unit testing
sections)
I Summarize unit testing philosophy
I Point to unit testing code

VnV Report

Source Code

Drasil projects no longer need to maintain the
traditionally generated SRS

Reflection Document

Dr. Smith CAS 741 Winter 2023: Assurance Cases 9/48

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Doc: Reflection

Reflection document updated in capTemplate repo

Summarize changes in response to feedback from
reviewers, instructor, supervisor, users

Explain how you arrived at your final design and
implementation

Reflect on and justify your design decisions

Ignore questions related to:
I Hazard analysis
I Economic considerations

How did your project management compare to your dev
plan
I What went well? (continue)
I What went wrong? (stop)
I What would you do differently next time? (start)

Dr. Smith CAS 741 Winter 2023: Assurance Cases 10/48

https://github.com/smiths/capTemplate/tree/main/docs/Reflection

Final Project Quality

Installability - instructions given, makefiles etc to support,
means to validate the installation, required libraries are
explicitly identified

Learnability - instructions to get someone started using
the software

Robustness - can the software handle garbage inputs
reasonably

Performance - measured if appropriate

Usability - measured if appropriate

Dr. Smith CAS 741 Winter 2023: Assurance Cases 11/48

Installability and Learnability

You can test this

Ask a colleague to install your software

Run it on a virtual machine, like VirtualBox

Use a “light weight” VM like docker

Include installation instructions (INSTALL.txt)

Include instructions so that someone else can run your
tests cases

Dr. Smith CAS 741 Winter 2023: Assurance Cases 12/48

https://www.virtualbox.org/

Consider Make for Installability, running test cases

Tutorial on Make, with links

Example Makefile for GlassBR

Dr. Smith CAS 741 Winter 2023: Assurance Cases 13/48

https://gitlab.cas.mcmaster.ca/smiths/se3xa3/blob/master/Labs/L12/Lab12.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/glass/src/Python/Makefile

Unit VnV Plan

Complete VnV Plan

Scope - what modules will be verified

Your approach for automated testing (if not already
covered)

Tools for code coverage metrics (if not already covered)

Non-testing based verification (if planned)

Unit test cases for each module - from black box and
white box (can point to code)

Performance tests for individual modules (if appropriate)

Evidence that all modules are considered

Dr. Smith CAS 741 Winter 2023: Assurance Cases 14/48

Final Documentation: VnV Report

Completing what you proposed in your test plan

You do not need to repeat material from your test plan -
the emphasis is not on the rational for test case selection,
but on the results.

If your test plan does not match what you are now
testing, edit your test plan to “fake” a rational design
process.

If your test report is not complete, because there is not
time for all of the tests, explain this in your report

Dr. Smith CAS 741 Winter 2023: Assurance Cases 15/48

VnV Report Continued

Point to specific test cases in test plan

Summarize your test results
I Test case name
I Initial state
I Input
I Expected results
I Whether actual output matched expected

Summarize and explain usability tests - quantify the
results

Performance tests - quantify the results

Stress tests

Robustness tests

After quantification of nonfunctional tests, explain
significance of results

Dr. Smith CAS 741 Winter 2023: Assurance Cases 16/48

VnV Report Continued

In cases where there are many similar tests
I Summarize the results
I If the expected result is obvious, you might not need to

state it
I Give an example test case, and explain how similar tests

were constructed
I If the tests were random, describe how they were

selected, and how many, but not all of the details
I Use graphs and tables
I You need enough information that

I Someone could reproduce your tests
I Your test results are convincing
I Evidence that you have used testing to improve the

quality of your project

Dr. Smith CAS 741 Winter 2023: Assurance Cases 17/48

VnV Report Continued

Summarize changes made in response to test results

Explain your automated testing set-up (if require more
detail than from the test plan)

Provide traceability to requirements (if not in test plan)

Provide traceability to modules (if not in test plan)

Make sure you show test results for “bad/abnormal” input

Dr. Smith CAS 741 Winter 2023: Assurance Cases 18/48

Sample VnV Report Documents

Screenholders

2D Physics Based Game (Uses doxygen)

Capstone Sample reports

Solar Water Heating System

Follow given template

Examples are not perfect

Examples are intended to give you ideas, not to be strictly
followed

You can modify/extend the test report template as
appropriate

Dr. Smith CAS 741 Winter 2023: Assurance Cases 19/48

https://gitlab.cas.mcmaster.ca/screenholders/screenholders
https://github.com/palmerst/CS-4ZP6/tree/master
https://gitlab.cas.mcmaster.ca/courses/capstone/-/tree/main/SamplesOfStudentWork/VnVReport
https://github.com/smiths/swhs/tree/master/docs/VnVReport
https://github.com/smiths/capTemplate

Final Documentation: Source Code

Source code in src folder

Comments on “what” not “how”

Identifiers that are consistent, distinctive, and meaningful

Avoidance of hard-coded constants (other than maybe 0
and 1)

Appropriate modularization
I Generally follow module guide
I Show explicit traceability between MG modules and code

files

Consistent indentation

Explicit identification of coding standards (see next slide)

Parameters are in the same order for all functions

Descriptive names of source code files

Show mapping between MIS symbols and code symbols
Dr. Smith CAS 741 Winter 2023: Assurance Cases 20/48

Coding Style

Having a coding standard is more important than which
standard you use

Examples
I Google guides

I Python
I C++
I Java

I Mozilla Developer Network
I NASA C Style Guide

Important to be consistent

Dr. Smith CAS 741 Winter 2023: Assurance Cases 21/48

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/javaguide.html
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf

Doxygen

A tool that generates documentation (say in html or tex)
from the code

Comments with special syntax are used in source files to
mark information for Doxygen to use

Tutorial on Doxygen

There are alternative to doxygen (pydoc, javadoc, sphinx,
etc.)

Dr. Smith CAS 741 Winter 2023: Assurance Cases 22/48

https://gitlab.cas.mcmaster.ca/smiths/se2aa4_cs2me3/-/tree/master/Tutorials/T01b-Doxygen

No License?

Can others use your work if you do not include a license?

See this link for the answer

Dr. Smith CAS 741 Winter 2023: Assurance Cases 23/48

http://choosealicense.com/no-license/

Copyright

Your work is automatically afforded protection by
copyright law
I Your cannot infringe on someone else’s copyright
I Must be some creativity

Additional protection through registration with the
copyright office

Copyright does not apply to the idea, but the expression
of the idea

Trademarks and patents cover concepts and ideas

In work for hire, copyright belongs to employer

You can assign your copyright to someone else or a
corporation

Dr. Smith CAS 741 Winter 2023: Assurance Cases 24/48

Rights

Owner has full and exclusive rights to control who may
copy or create a derivative work

Right to sue for copyright infringement

Dr. Smith CAS 741 Winter 2023: Assurance Cases 25/48

Licensing

Permission to others to reproduce or distribute a work

Licenses are distinguished by the restrictions (conditions)

Dr. Smith CAS 741 Winter 2023: Assurance Cases 26/48

Proprietary License

Copyright holder retains all rights

Cannot copy

Cannot use

Cannot modify

Dr. Smith CAS 741 Winter 2023: Assurance Cases 27/48

GNU General Public License (GPL)

Can copy the software

Can distribute the software

Can charge a fee to distribute the software (which will
still include the license information)

Can make modifications

Condition – all modifications/uses are also under GPL,
source code must be available

Lesser GPL allows to link to libraries, without
automatically falling under GPL conditions

Dr. Smith CAS 741 Winter 2023: Assurance Cases 28/48

BSD and MIT

Removes “virus” from GPL

Can copy, distribute, charge a fee, make modifications

Under the condition that you keep the license intact,
credit the author

Not required to disclose source

Use at your own risk (cannot sue)

Dr. Smith CAS 741 Winter 2023: Assurance Cases 29/48

Public Domain

Do what you want with the code

No conditions

Dr. Smith CAS 741 Winter 2023: Assurance Cases 30/48

Copyright and License Related Links

Developer’s guide to copyright law

Summary of licenses

Main types of licenses

Choose a license

Another summary

Plain English summaries

Dr. Smith CAS 741 Winter 2023: Assurance Cases 31/48

http://haacked.com/archive/2006/01/24/TheDevelopersGuideToCopyrightLaw-Part1.aspx/
https://www.smashingmagazine.com/2010/03/a-short-guide-to-open-source-and-similar-licenses/
http://haacked.com/archive/2007/04/04/there-are-only-four-software-licenses.aspx/
http://choosealicense.com
http://choosealicense.com/licenses/
https://tldrlegal.com

Other Potential Files in Your Project

README

Contributing guidelines

Citation

Changelog

Install/Uninstall

Dependency list

Authors

Code of conduct

Acknowledgements

Style guide

Release information

Product roadmap

Getting started guide, user manual, tutorials

FAQ
Dr. Smith CAS 741 Winter 2023: Assurance Cases 32/48

Code of Conduct

Open source projects with a large diverse base of
developers frequently create a code of conduct

Open Code of Conduct

Diversity statement for Python

Geek Feminism

Dr. Smith CAS 741 Winter 2023: Assurance Cases 33/48

https://github.com/todogroup/opencodeofconduct
https://www.python.org/community/diversity/
https://geekfeminismdotorg.wordpress.com/about/code-of-conduct/

README files

Make sure the README file on your landing page is up
to date

Categories and Contents of README files

A README file is useful in any folder

Give the reader information on the contents of the folder

Dr. Smith CAS 741 Winter 2023: Assurance Cases 34/48

https://arxiv.org/abs/1802.06997

Assurance Cases in Scientific Computing [2, 1]

Assurance cases
I Organized and explicit argument for correctness
I Successfully used for safety critical systems

Advantages for SC
I Engaging domain experts
I Producing necessary and relevant documentation
I Evidence that can be verified/replicated by a third party

Example of 3dfim+
I No errors found
I However

I Documentation ambiguities
I No warning about parametric statistical model

Dr. Smith CAS 741 Winter 2023: Assurance Cases 35/48

Assurance Cases in SC Motivation

Do we put too much trust in the quality of SCS?

Are enough checks and balances in place, especially for
safety related software?

Problems with imposing external requirements for
certification
I External body does not have expertise
I SCS developers dislike documentation

Solution – Assurance Cases by experts
I Experts engaged
I Relevant documentation

Current techniques of development and testing still used,
but arguments will no longer be ad hoc and incompletely
documented

Dr. Smith CAS 741 Winter 2023: Assurance Cases 36/48

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 3, Issue 10, October 2015

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2015. 0310003 9122

 G: System Goal / Sub-Goal
C: Context Information
A: Assumption
ST: Strategy to meet goal
S: Solution to support goal
 : Remain to be supported

G1 (System top level
Assurance Goal)

 C1: System Requirement
Specifications

 ST1 (Strategy for
Meeting Goal)

G2 (System Sub-Goal
supported by Evidence)

S1 (Test
Results)

G3 (System Sub-Goal
supported by Evidence)

S2
(Simulation

Results)

A1: Assumption
made

G4 (System Sub-Goal to
be addressed later)

Fig. 1 Assurance Case with its basic elements

An Assurance Case presents an argument that a system is acceptably safe, secure, reliable, etc. in a given context.
Where, a system could be physical or a combination of hardware and software. Based on the system goals identified in
an Assurance Case, Assurance Case can also be referred as security case, dependability case, and safety case or by
other relevant name as per goals applicability.

For better clarity, uses, critical engineering decisions and to ensure consistency, it is required to meet some
minimum requirements for the contents and structure of an Assurance Case. These minimum requirements are specified
by an International Standard ISO/IEC 15026-2:2011. To present an Assurance Case in a way to make it easy for
visualization, understanding and reviewing purpose, following Graphical notation tools are used

x Goal Structuring Notation (GSN) and
x Claims-Arguments-Evidence (CAE)

CAE defines nodes for Claims, Arguments and Evidence whereas GSN uses goal oriented presentation style and
defines nodes for Goals (claims), Strategy (arguments) and Solutions (evidence). Both these graphics notations are
mostly similar, with some difference of progression approach. GSN follows Top –Down approach while creating the
Assurance Case starting with top level goal of the system where as CAE supports Bottom-UP view starting with
evidence to determine the possible claim, while preparing Assurance Case [10]. There is no thumb rule as such to
decide which approach should be followed, it can be decided by developers based on their choice and information
available in hand before proceeding ahead with creating of Assurance Case. Arguments presented using GSN can help
provide assurance of critical properties of systems, services or organizations (such as safety or security properties).
Such arguments can form a key part of an overall assurance Case [11]. Refer figure 1, which is showing the typical
structure of an Assurance Case represented with Goal Structuring Notations.

Assurance Case in its simple form basically consists of following main components.

x Claim or Goal: This is generally some functionality, characteristics, requirement or behavior of the system

that needs to be fulfilled. This can include all the essential requirements, functionalities and behavior of the
system which is supposed to be met to ensure that system is fit for use. All the goals/claims are required to
be supported by valid arguments based on valid evidences. The higher level goal/claim can be further

Proposed Changes to 3dfim+

No mistakes found in calculations

Goal of original software was not certification

Problems found
I GR goal not satisfied

I Not complete, verifiable, modifiable or traceable
I Coordinate system information missing
I Ambiguous rank function

I Inputs not checked in code
I User not informed of their responsibility to use tool with

correct statistical model

Dr. Smith CAS 741 Winter 2023: Assurance Cases 46/48

Concluding Remarks

Hopefully motivated assurance cases for SC

Quality is improved by looking at a problem from different
perspectives, assurance cases provide a systematic and
rigorous way to introduce a new perspective

An assurance cases will likely use the same
documentation and ideas used in CAS 741

However, an assurance case can focus and direct efforts
right from the start of the project

Dr. Smith CAS 741 Winter 2023: Assurance Cases 47/48

References I

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan
Wassyng.
Assurance cases for scientific computing software (poster).

In ICSE 2018 Proceedings of the 40th International
Conference on Software Engineering, May 2018.
2 pp.

W. Spencer Smith, Mojdeh Sayari Nejad, and Alan
Wassyng.
Raising the bar: Assurance cases for scientific computing
software.
Computing in Science and Engineering, 23(1):47–57,
February 2020.

Dr. Smith CAS 741 Winter 2023: Assurance Cases 48/48

