CAS 741, CES 741 (Development of Scientific
Computing Software)

Fall 2019

10 Verification and Validation
Continued

Dr. Spencer Smith

Faculty of Engineering, McMaster University

October 10, 2019

McMaster
University %ﬁ

Verification and Validation Continued

@ Administrative details

@ Questions?

@ Finish what started last day

@ Nonfunctional software testing

@ Theoretical foundations of testing
@ Complete coverage principle

@ White box testing

@ Oracle problem

@ SCS Specific Ideas

@ Overview of template

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

2/70

Administrative Details

@ As the GitHub repo owner

» Add your reviewers as collaborators
» When your project is ready for review

> Assign your reviewers an issue for them to create issues
» Assign the instructor to review

@ As a GitHub reviewer

> Assigned 2 colleagues (see Repos.x1sx in repo)
» Provide at least 5 issues on their SRS

@ Reading week, no 741 classes
e V&V template in repo
@ Adding a V&V checklist to repo

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 3/70

Administrative Details: Report Deadlines

System VnV Plan Week 08 Oct 28
MG + MIS Week 10 Nov 25
Final Documentation Week 14 Dec 9

@ The written deliverables will be graded based on the repo
contents as of 11:59 pm of the due date
@ If you need an extension, please ask

@ Two days after each major deliverable, your GitHub issues
will be due

@ Domain expert code due 1 week after MIS deadline

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 4/70

Administrative Details: Presentations

Syst. VnV Present Week 07 Week of Oct 21
MG + MIS Syntax Present Week 9 Week of Nov 4

MIS Semantics Present Week 11 Week of Nov 18
Unit VnV or Impl. Present Week 12/13 Week of Nov 28

@ Informal presentations with the goal of improving
everyone's written deliverables

@ Domain experts and secondary reviewers (and others) will
ask questions (listed in Repos.xlsx file)

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 5/70

Administrative Details: Presentation Schedule

@ Syst V&V Plan Present
»> Monday: Deema, Peter
» Thursday: Sharon, Ao
e MG + MIS Syntax Present
» Monday: Deema, Bo
» Thursday: Sasha
@ MIS Syntax + Semantics Present
» Monday: Zhi, Peter
» Thursday: Sharon, Ao
@ Unit VnV Plan or Impl. Present

» Monday: Bo, Sasha
» Thursday: Zhi, Peter, Ao

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 6/70

Questions?

@ Questions about SRS?
@ Questions about V&V?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 7/70

Goals of Testing

@ If our code passes all test cases, is it now guaranteed to
be error free?

@ Are 5000 random tests always better than 5 carefully
selected tests?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 8/70

Goals of Testing

@ To show the presence of bugs (Dijkstra, 1972)

o If tests do not detect failures, we cannot conclude that
software is defect-free

@ Still, we need to do testing - driven by sound and
systematic principles

» Random testing is often not a systematic principle to use
> Need a test plan

@ Should help isolate errors - to facilitate debugging

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 9/70

Goals of Testing Continued

@ Should be repeatable

» Repeating the same experiment, we should get the same
results

» Repeatability may not be true because of the effect of
the execution environment on testing

» Repeatability may not occur if there are uninitialized
variables

P> Repeatability may not happen when there is
nondeterminism

@ Should be accurate
» Accuracy increases reliability
» Part of the motivation for formal specification
@ Is a successful test case one that passes the test, or one
that shows a failure?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

10/70

Test (V&V) Plan

@ Given that no single verification technique can prove
correctness, the practical approach is to use ALL
verification techniques. Is this statement True or False?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 11/70

Test (V&V) Plan

@ Testing can uncover errors and build confidence in the
software

@ Resources of time, people, facilities are limited
@ Need to plan how the software will be tested

@ You know in advance that the software is unlikely to be
perfect

@ You need to put resources into the most important parts
of the project

@ A risk analysis can determine where to put your limited
resources

@ A risk is a condition that can result in a loss

@ Risk analysis involves looking at how bad the loss can be
and at the probability of the loss occurring

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

12/70

White Box Versus Black Box Testing

@ Do you know (or can you guess) the difference between
white box and black box testing?

@ What if they were labelled transparent box and opaque
box testing, respectively?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

13/70

White Box Versus Black Box Testing

@ White box testing is derived from the program'’s internal
structure

@ Black box testing is derived from a description of the
program’s function
@ Should perform both white box and black box testing
@ Black box testing
» Uncovers errors that occur in implementing requirements
or design specifications
» Not concerned with how processing occurs, but with the
results

» Focuses on functional requirements for the system
» Focuses on normal behaviour of the system

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 14/70

White Box Testing

@ Uncovers errors that occur during implementation of the
program

@ Concerned with how processing occurs
@ Evaluates whether the structure is sound

@ Focuses on abnormal or extreme behaviour of the system

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

15/70

Dynamic Testing

@ Is there a dynamic testing technique that can guarantee
correctness?

@ If so, what is the technique?

@ Is this technique practical?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 16/70

Dynamic Versus Static Testing

@ Another classification of verification techniques, as
previously discussed

@ Use a combination of dynamic and static testing

@ Dynamic analysis

>
4

>

Requires the program to be executed

Test cases are run and results are checked against
expected behaviour

Exhaustive testing is the only dynamic technique that
guarantees program validity

Exhaustive testing is usually impractical or impossible
Reduce number of test cases by finding criteria for
choosing representative test cases

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 17/70

Static Testing Continued

@ Static analysis

>

4
4
| 4

vy

Does not involve program execution

Testing techniques simulate the dynamic environment
Includes syntax checking

Generally static testing is used in the requirements and
design stage, where there is no code to execute
Document and code walkthroughs

Document and code inspections

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 18/70

Manual Versus Automated Testing

@ What is the difference between manual and automated
testing?
@ What are the advantages of automated testing?

@ What is regression testing?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 19/70

Manual Versus Automated Testing

@ Manual testing

» Has to be conducted by people
» Includes by-hand test cases, structured walkthroughs,
code inspections

@ Automated testing

» The more automated the development process, the
easier to automate testing

P Less reliance on people

» Necessary for regression testing

P Test tools can assist, such as Junit, Cppunit, CuTest etc.

» Can be challenging to automate GUI tests

» Test suite for Maple has 2 000 000 test cases, run on 14
platforms, every night, automated reporting

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 20/70

Continuous Integration Testing

@ What is continuous integration testing?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 21/70

Continuous Integration Testing

@ Information available on Wikipedia

@ Developers integrate their code into a shared repo
frequently (multiple times a day)

@ Each integration is automatically accompanied by
regression tests and other build tasks

o Build server

| 4
>
>
>
4
>
>

>

Unit tests

Integration tests

Static analysis

Profile performance
Extract documentation
Update project web-page
Portability tests

etc.

@ Avoids potentially extreme problems with integration
when the baseline and a developer's code greatly differ

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 22/70

https://en.wikipedia.org/wiki/Continuous_integration

Continuous Integration Tools

e Gitlab
» Example at Rogue Reborn
@ Jenkins
@ Travis
@ Docker

» Eliminates the “it works on my machine” problem
» Package dependencies with your apps

» A container for lightweight virtualization

» Not a full VM

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 23/70

https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/pipelines
https://www.docker.com/

Sample Nonfunctional System Testing

@ Stress testing - Determines if the system can function
when subject to large volumes

o Usability testing
@ Performance measurement

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 24/70

Sample Functional System Testing

@ Parallel: Determines the results of the new application are
consistent with the processing of the previous application
or version of the application

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 25/70

Theoretical Foundations Of Testing: Definitions

@ P (program), D (input domain), R (output domain)
» P: D — R (may be partial)

Correctness defined by OR C D x R
» P(d) correct if (d, P(d)) € OR
» P correct if all P(d) are correct

Failure
» P(d) is not correct
» May be undefined (error state) or may be the wrong
result
Error (Defect)
» Anything that may cause a failure
» Typing mistake
» Programmer forgot to test “x=0"
Fault
» Incorrect intermediate state entered by program

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 26/70

Definitions Questions

@ A test case t is an element of D or R?
@ A test set T is a finite subset of D or R?
@ How would we define whether a test is successful?

@ How would we define whether a test set is successful?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 27/70

Definitions Continued

@ Test case t: An element of D
@ Test set T: A finite subset of D
@ Test is successful if P(t) is correct

@ Test set successful if P correct for all tin T

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 28/70

Theoretical Foundations of Testing

@ Desire a test set T that is a finite subset of D that will
uncover all errors

@ Determining and ideal T leads to several undecideable
problems
@ No algorithm exists:
P> To state if a test set will uncover all possible errors
» To derive a test set that would prove program
correctness
» To determine whether suitable input exists to guarantee
execution of a given statement in a given program
> etc.

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 29/70

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Undecidable_problem

Empirical Testing

@ Need to introduce empirical testing principles and
heuristics as a compromise between the impossible and
the inadequate

e Find a strategy to select significant test cases

@ Significant means the test cases have a high potential of
uncovering the presence of errors

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 30/70

Complete-Coverage Principle

@ Try to group elements of D into subdomains Dy, Ds, ...,
D, where any element of each D; is likely to have similar
behaviour

e D=D,UD,U...UD,

@ Select one test as a representative of the subdomain

o If D;N Dy =0 for all j # k, (partition), any element can
be chosen from each subdomain

@ Otherwise choose representatives to minimize number of
tests, yet fulfilling the principle

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 31/70

Complete-Coverage Principle

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 32/70

White-box Testing

@ Intuitively, after running your test suites, what percentage
of the lines of code in your program should be exercised?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 33/70

White-box Coverage Testing

@ (In)adequacy criteria - if significant parts of the program
structure are not tested, testing is inadequate
@ Control flow coverage criteria

» Statement coverage
» Edge coverage
» Condition coverage
» Path coverage

Examples that follow are from [1]

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 34/70

Statement-Coverage Criterion

@ Select a test set T such that every elementary statement
in P is executed at least once by some d in T

@ An input datum executes many statements - try to
minimize the number of test cases still preserving the
desired coverage

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 35/70

Example
read (x); read (y);

if x >0 then
write ("1");

else

. write ("2"); How would you write a test case?

ena It;

if y >0 then What is the minimum number of
write ("3"); test cases?

else
write ("4");

end if;

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 36/70

Example
read (x); read (y);

if x>0 then
write ("1"): {x=2,y=-3><x=-13,y =515,

else KX=97,y=17>,<xx=-1,y=-15}
write ("2"); covers all statements

end if;

if y> 0 then {(<x=-13,y=5l>,<x=2,y=-3>}
Wwrite ("3"); is minimal

else
write ("4");

end if;

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 37/70

Weakness of the Criterion

if x <0 then
X=X {<x=-3>} covers all
Bl".ld 'fj statements. Why
Z=X, is this not enough?
Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 38/70

Weakness of the Criterion

if X <0 then
X = -X;

end if;

Z =X,

{<x=-3} covers all
statements

it does not exercise the
case when X is positive
and the then branch is
not entered

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

39/70

Edge-Coverage Criterion

@ Select a test set T such that every edge (branch) of the
control flow is exercised at least once by some d in T
@ This requires formalizing the concept of the control graph
and how to construct it
» Edges represent statements
» Nodes at the ends of an edge represent entry into the
statement and exit

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 40/70

Control Graph Construction Rules

I/0, assignment,

or procedure call if-then-else if-then

two sequential
statements

while loop

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

41/70

Simplification

A sequence of edges can be collapsed into just one edge

n1 n

Ny 3 -1 Ty
oO—0O0—0 ... O—=0O

Vb

k

Ny

O =0

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 42/70

Example: Euclid’s Algorithm

begin
read (x); read (y);
while x #y loop
if x>y then

X=X-Y: Draw the control

else flow graph

y=y-X
end if;
end loop;
ged : =X;
end;

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

43/70

Example: Euclid’s Algorithm

_ O
begin
read (x); read (y); v
while x #y loop g)
if x>y then
X=X-Y; \
else O
y =Yy -X; ¥ SN
end if; O o D
end loop;

end; godi=x (5 K@ b
’/

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 44/70

Weakness

found := false; counter := 1;
while (not found) and counter < number_of_items loop
if table (counter) = desired_element then

found := true;
end if;
counter := counter + 1;
end loop;

if found then

write ("the desired element is in the table");
else

write ("the desired element is not in the table");
end if;

test cases: (1) empty table, (2) table with 3 items, second of
which is the item to look for

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 45/70

Weakness

found := false; counter := 1;
while (not found) and counter < number_of_items loop
if table (counter) = desired_element then

found := true;
end if;
counter := counter + 1;
end loop;

if found then

write ("the desired element is in the table");
else

write ("the desired element is not in the table");
end if;

test cases: (1) empty table, (2) table with 3 items, second of
which is the item to look for

Do not discover the error (< instead of <)

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 45/70

if cl and c2 then
st ;

else
sf;

// equivalent to

if cl then
if c2 then
st
else
sf:
else
sf;

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 46/70

Condition-Coverage Criterion

@ Select a test set T such that every edge of P's control
flow is traversed and all possible values of the constituents
of compound conditions are exercised at least once

@ This criterion is finer than edge coverage

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 47/70

Weakness

if x# 0 then

y = 5;
else

Z2'=2Z-X;
end if;
if z> 1 then

z=2/X;
else

z:=0;
end if;

{<x=0,z=1>,<x=1,z=3>}
causes the execution of all edges,
but fails to expose the risk of a
division by zero

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

48/70

Path-Coverage Criterion

@ Select a test set T that traverses all paths from the initial
to the final node of Ps control flow
@ It is finer than the previous kinds of coverage

@ However, number of paths may be too large, or even
infinite (see while loops)
@ Loops
» Zero times (or minimum number of times)
> Maximum times
» Average number of times

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 49/70

The Infeasibility Problem

@ Syntactically indicated behaviours (statements, edges,
etc.) are often impossible
@ Unreachable code, infeasible edges, paths, etc.
@ Adequacy criteria may be impossible to satisfy
» Manual justification for omitting each impossible test

case
» Adequacy “scores” based on coverage - example 95 %

statement coverage

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 50/70

Further Problem

@ What if the code omits the implementation of some part
of the specification?

@ White box test cases derived from the code will ignore
that part of the specification!

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 51/70

Testing Boundary Conditions

@ Testing criteria partition input domain in classes,
assuming that behavior is “similar” for all data within a
class

@ Some typical programming errors, however, just happen
to be at the boundary between different classes

» Off by one errors
> < instead of <
» equals zero

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 52/70

Criterion

@ After partitioning the input domain D into several classes,
test the program using input values not only “inside” the
classes, but also at their boundaries

@ This applies to both white-box and black-box techniques

@ In practice, use the different testing criteria in
combinations

@ Use testing tools for coverage metrics

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 53/70

The Oracle Problem

When might it be difficult to know the “expected”
output/behaviour?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 54/70

The Oracle Problem

@ Given input test cases that cover the domain, what are
the expected outputs?

@ Oracles are required at each stage of testing to tell us
what the right answer is

@ Black-box criteria are better than white-box for building
test oracles

@ Automated test oracles are required for running large
amounts of tests

@ Oracles are difficult to design - no universal recipe

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

55/70

The Oracle Problem Continued

@ Determining what the right answer should be is not
always easy
» Scientific computing
» Machine learning
» Artifical intelligence

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 56/70

The Oracle Problem Continued

What are some strategies we can use when we do not have a
test oracle?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 57/70

Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)
@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

» Examples?

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 58/70

Strategies Without An Oracle

@ Using an independent program to approximate the oracle
(pseudo oracle)

@ Method of manufactured solutions

@ Properties of the expected values can be easier than
stating the expected output

4
| 4
>
>
4

>

Examples?

List is sorted

Number of entries in file matches number of inputs
Conservation of energy or mass

Expected trends in output are observed (metamorphic
testing [5, 4, 6])

etc.

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 58/70

Challenges Specific to Scientific Computing

@ Unknown solution
@ Approximation of real numbers
@ Nonfunctional requirements

e Parallel computation

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 59/70

Mutation Testing for SC

@ Generate changes to the source code, called mutants,
which become code faults

@ Mutants include changing an operation, modifying
constants, changing the order of execution, etc.

@ The adequacy of a set of tests is established by running
the tests on all generated mutants

@ Need to account for floating point approximations

@ See [3]

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

60/70

Specific SC V&V Approaches

Summary of most points below in [10]

@ Compare to closed-form solutions

Method of manufactured solutions [8]
Interval arithmetic [2]

Convergence studies

Compare to other program (parallel testing)

Can also consider using code inspection
> [7,9]
» Sample checklists

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 61/70

http://www.cs.nott.ac.uk/~pszcah/G53QAT/fi.pdf

Specific SC V&V NonFunctional

@ Installability, consider VMs
e Portability, consider VMs, Docker, Cl

@ Describe (rather than specify) impact of changing inputs

» Accuracy
» Performance
» Relative comparison

o Usability

» Fairly simple standard survey
» Example

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 62/70

https://measuringu.com/sus/
https://gitlab.cas.mcmaster.ca/andrem5/RogueReborn/blob/master/Doc/TestPlan/TestPlan.pdf

Validation Testing Report for PMGT

o Prepared by Wen Yu (here)

@ Do not know the correct solution, but know properties of
the correct solution
@ Automated correctness validation tests
» The area of each element is greater than zero
» The boundary of the mesh is closed
» Vertices in a clockwise order
» nc+nv—ne=1
> ..
@ Visual correctness validation tests
» No vertex outside the input domain
» No vertex inside a cell
» No dangling edges
» All cells connected
» The mesh is conformal

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 63/70

https://gitlab.cas.mcmaster.ca/smiths/cas741/blob/master/Examples/MeshGenToolbox/doc/testingApp.pdf

Validation Testing Report for PMGT (Continued)

@ List and description of test cases

@ Test cases are labelled and numbered
@ Traceability to SRS requirements

@ Traceability to MG

@ Summary of results

@ Analysis of results

» Focus on nonfunctional requirements
» Speed

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 64/70

Test Plan From BlankProject Template

@ Add links to templates
@ For Unit VnV plan mention tools
> Linters
» Coding standard checkers (like flake8)
P unit testing frameworks
» Performance testing (like Valgrind)

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 65/70

References |

@ Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.

Fundamentals of Software Engineering.
Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Timothy Hickey, Qun Ju, and Maarten H. Van Emden.
Interval arithmetic: From principles to implementation.
J. ACM, 48(5):1038-1068, September 2001.

Daniel Hook and Diane Kelly.

Testing for trustworthiness in scientific software.

In Proceedings of the 2009 ICSE Workshop on Software
Engineering for Computational Science and Engineering,
SECSE '09, pages 59-64, Washington, DC, USA, 2009.
IEEE Computer Society.

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 66/70

References ||

[@ U. Kanewala and J. M. Bieman.

Techniques for testing scientific programs without an
oracle.

In Software Engineering for Computational Science and
Engineering (SE-CSE), 2013 5th International Workshop
on, pages 48-57, May 2013.

Upulee Kanewala, James M. Bieman, and Asa Ben-Hur.
Predicting metamorphic relations for testing scientific
software: A machine learning approach using graph
kernels.

Software Testing Verification and Reliability, preprint,
2015.

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

67/70

References |1

@ Upulee Kanewala and Anders Lundgren.

Automated metamorphic testing of scientific software.

In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
Chapman & Hall/CRC Computational Science, chapter
Examples of the Application of Traditional Software
Engineering Practices to Science, pages 151-174. Taylor &
Francis, 2016.

Diane Kelly and Terry Shepard.

Task-directed software inspection technique: an
experiment and case study.

In CASCON '00: Proceedings of the 2000 conference of
the Centre for Advanced Studies on Collaborative
research, page 6. IBM Press, 2000.

Dr. Smith

CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued

68,/70

References |V

[@ Patrick J. Roache.
Verification and Validation in Computational Science and
Engineering.
Hermosa Publishers, Albuquerque, New Mexico, 1998.

[§ Terry Shepard and Diane Kelly.
How to do inspections when there is no time.
In Proceedings of the 23rd International Conference on
Software Engineering, page 718. IEEE Computer Society,
2001.

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 69/70

References V

@ W. Spencer Smith.
A rational document driven design process for scientific
computing software.
In Jeffrey C. Carver, Neil Chue Hong, and George
Thiruvathukal, editors, Software Engineering for Science,
chapter Section | — Examples of the Application of
Traditional Software Engineering Practices to Science,
pages 33-63. Taylor & Francis, 2016.

Dr. Smith CAS 741, CES 741 Fall 2019: 10 Verification and Validation Continued 70/70

